
DEEP LEARNING (SS2024)
SEMINAR 3

Assignment 1 (Sampling with Replacement). In deep learning examples forming mini-
batches are drawn randomly without replacement. Strictly speaking, this approach is not
i.i.d. because the realization of a mini-batch depends on the realizations of the previous
mini-batches. The scheme has however proven to be much more efficient for learning
in practice. We will inspect theoretical reasons for this by analyzing the i.i.d. sampling
strategy with replacement.

a) Let the dataset contain n examples. During an epoch, we make n random draws with
replacement. What is the probability that a particular example i will not be drawn in the
epoch? What is the limit of this probability for n→∞?

Hint: Use L’Hôpital’s rule to compute the limit.
(or compute it e.g. with www.wolframalpha.com)

b) We conclude that a considerable portion of training data will remain unused in a given
epoch when sampling with replacement. It is therefore natural to ask the following ques-
tion: What is the expected number of epochs we need to run in order to have each example
being drawn at least once? This question corresponds to the “Coupon collector’s prob-
lem” (see Wikipedia), Establish a relation to this problem and use the formula from there
to find the expected time.

Assignment 2 (EWA and Momentum).

a) PyTorch defines SGD with momentum as follows:

vt+1 = µvt + g̃t (1)
θt+1 = θt − εvt+1,

where g̃t is the stochastic gradient at the point θt . Derive this algorithm by applying EWA
to stochastic gradient estimates in plain SGD (SGD lecture slides 13 and 14). How is the
momentum parameter µ related to q in EWA?

b) The initial value of v0 may have an undesirable effect in the beginning of training,
before its weight becomes negligibly small (weight w0 in SGD lecture slide 14). We
address this problem by designing the coefficients q smoothly transiting from flat mean
to exponentially weighted mean and we will verify that it is equivalent to momentum in
Adam optimizer.

Let g̃t for t = 1, . . . n be a sequence of stochastic gradients obtained for the same model
parameter vector θ by sampling mini-batches at random without doing any optimization
steps (or doing the optimization, but with infinitesimally small step size). Consider the
following variant of the exponentially weighted average:

vt = (1 − qt)vt−1 + qt g̃t, (2)

1

where v0 = 0, qt =
q

1−(1−q)t and q is a constant.

Show that for any t ≥ 1, vt is an unbiased estimator of the true gradient.
Hint: Start by showing it for t = 1 and t = 2.

c) Alternatively, consider the usual EWA with constant q:

v̂t = (1 − q)v̂t−1 + qg̃t (3)

and show that v̄t = v̂t/(1 − (1 − q)t) is also unbiased and coincides with vt .
Hint: Use the mathematical induction over t to prove the equivalence.

d) Inspect the Adam optimizer in PyTorch and the implementation of momentum there
(consider only the first order moment, the relevant momentum parameter is β1). Which
of the above EWA methods is being used, the one derived in b) or in c) ?

Assignment 3 (Receptive fields). Consider a convolutional network consisting of convo-
lution layers and max-pooling layers. Each of them is characterized by a kernel size k`
and a stride s`. The receptive field of a neuron in layer ` is the bounding box of all nodes
in the input layer that can influence its output. Let us define the stride of the receptive
field as the shift in pixels between receptive fields of two neighboring neurons in layer `.
Knowing the receptive field size S` and receptive field stride T` of neurons in layer ` and
the kernel size k and stride s of the next operation (convolution or max pooling), find the
receptive field size and stride of neurons in layer ` + 1.

Note: This relation will be needed for the lab on CNN visualization & adversarial patterns.

N.B. The effective receptive field, the set of pixels in the input which have a non-negligible
average contribution to the neuron’s activation, depends also on the network weights and
is usually substantially smaller.

Assignment 4 (SGD step). Let f (θ) denote the loss function and let gt = ∇θ f (θt) denote
the gradient at θt . The standard gradient descent step is θt+1 = θt − εgt . Show that the
step vector ∆θ = −εgt is the solution to the following optimization problem:

f (θt) + 〈∆θ,gt〉︸ ︷︷ ︸
Approximation of f (θ + ∆θ)

+
1
2ε
‖∆θ‖22︸ ︷︷ ︸

Penalty for step length

→ min
∆θ

. (4)

This expression occurred when we discussed implicit regularization of SGD (slide 20)
and will be also used in the adaptive methods.

2

