Assignment 1. Consider a neuron
\[y = f \left(\sum_{i=1}^{n} w_i x_i + b \right) \]
for inputs \(x \in \mathbb{R}^n \) with weights \(w \in \mathbb{R}^n \), bias \(b \in \mathbb{R} \) and activation function \(f \). Show that the affine mapping given by \((w, b)\) can be replaced by a linear mapping if we extend the input space by one dimension. Give a geometric interpretation.

Assignment 2 (Softmax). Show the following properties of the function
\[\text{softmax}: \mathbb{R}^n \to \mathbb{R}^n_+ : s \mapsto \frac{e^{s_i}}{\sum_j e^{s_j}} \]

a) softmax is invariant to adding the same number to all scores \(s \)

b) \(\arg\max_i \text{softmax}(s)_i = \arg\max_i (s_i) \)

c) Consider a classification problem with features \(x \in \mathbb{R}^n \) and two classes \(\{+1, -1\} \). A neural network for this problem may be designed to output the vector of class probabilities \((p, 1 - p) \) for classes \(+1, -1\), respectively, as
\[\text{softmax}(W x + b), \] (1)
using weights \(W \in \mathbb{R}^{2 \times n}, b \in \mathbb{R}^2 \). Another network for the same problem is designed to output real-valued scores
\[a = v^T x + c, \] (2)
using weights \(v \in \mathbb{R}^n, c \in \mathbb{R} \). It defines the predictive probability as \(p(y=1 \mid x) = \text{sigmoid}(a) \). Given such a network, find a network of the form (1) that outputs equivalent predictive probabilities.

Assignment 3. Consider a two-layer network
\[x^2 = F(x^0) = f \circ A^2 \circ f \circ A^1 x^0 \]
with affine mappings \(A^k x^{k-1} = W^k x^{k-1} + b^k, k = 1, 2 \) and element-wise activation function \(f \).

a) Assume that the activation function \(f \) is the identity mapping \(f : x \to x \). Show that the network is equivalent to a network with only one affine layer.

b) Assume that the activation function is ReLU, i.e. \(f(x) = \max(0, x) \). Show that re-scaling \((W^1, b^1) \to (\lambda W^1, \lambda b^1)\) and \((W^2, b^2) \to (\lambda^{-1} W^2, b^2)\) with some positive \(\lambda \) keeps the network mapping \(F \) unchanged.
Assignment 4. Let us consider the logistic regression model

\[p(y \mid x; w) = S(yw^T x), \]

where \(y = \pm 1 \) is the class, \(x \in \mathbb{R}^n \) is the feature vector, \(w \in \mathbb{R}^n \) is a parameter vector and \(S \) denotes the logistic sigmoid function. Given training data \(T_m = \{(x_j, y_j) \mid j = 1 \ldots m\} \), we want to estimate \(w \) by maximising the (conditional) log-likelihood \(\mathbb{E}_{T_m} \log p(y \mid x; w) \).

a) Let us assume that the training data are linearly separable. Show that in this case the logistic regression problem has no finite optimal solution.
 Hint: show that for any \(w \) that achieves a correct classification taking \(w' = \alpha w \) with \(\alpha > 1 \) achieves a higher likelihood.

b) Show that adding the regularizer on the weight norm \(\lambda \|w\|^2 \) with some \(\lambda > 0 \) fixes this problem.

Assignment 5 (Hopfield network). Let us consider a fully connected recurrent network with \(n \) binary neurons. Denoting their outputs by \(x_i = \pm 1 \), the corresponding dynamical system reads

\[x_i(t + 1) = \text{sign} \left(\sum_{j \neq i} w_{ij} x_j(t) \right). \]

We will assume sequential updates in some fixed order over the neurons. Let us further assume that the weight matrix is symmetric, i.e. \(w_{ij} = w_{ji} \).

Prove that the function

\[\mathcal{H}(x) = -\frac{1}{2} \sum_{i,j} x_i w_{ij} x_j = -\frac{1}{2} x^T W x \]

is a Lyapunov function for this dynamical system, i.e. it can decrease only:

\[\mathcal{H}(x(t + 1)) \leq \mathcal{H}(x(t)). \]

Conclude that the network will eventually reach a fixpoint configuration.
 Hint: express the change of \(\mathcal{H}(x) \) for an update of a single neuron \(x_i \).