
DEEP LEARNING (SS2023)
SEMINAR 2

Assignment 1 (Chebyshev). In this assignment, we will derive the Chebyshev inequality
for the empirical risk. Let X be a real valued random variable with expectation µ and
finite variance v. The Chebyshev inequality asserts

P
(
|X − µ| > ε

)
6

v

ε2
.

Let Xi, i = 1, . . . ,m be independent, identically distributed random variables with ex-
pectation µ and finite variance v and let X̄ = 1

m

∑m
i=1Xi be their empirical mean. Prove

the inequality
P
(
|X̄ − EX̄| > ε

)
6

v

mε2
. (1)

Let us now consider a predictor h : X → Y , and a loss `(y, y′). The risk of the predictor
is denoted by R(h) and its empirical risk on a test set T m =

{
(xj, yj)

∣∣ j = 1, . . . ,m
}

is denoted by RT m(h). Apply (1) to obtain the Chebyshev inequality for empirical risk in
the lecture 2 slide 5.

Assignment 2 (Hoeffding). Next we prove the Hoeffding inequality for the empirical
risk. Let Xi, i = 1, . . . ,m be independent random variables bounded by the interval
[a, b], i.e. a 6 Xi 6 b. Let X̄ = 1

m

∑m
i=1Xi be their empirical mean. The Hoeffding

inequality asserts that

P
(
|X̄ − EX̄| > ε

)
6 2 exp

(
− 2mε2

(b− a)2

)
.

As in the previous assignment, let us now consider a predictor h : X → Y , and a loss
`(y, y′). The risk of the predictor is denoted by R(h) and its empirical risk on a test set
T m =

{
(xj, yj)

∣∣ j = 1, . . . ,m
}

is denoted by RT m(h).

a) Prove that the generalisation error of h can be bounded in probability by

P
(
|R(h)−RT m(h)| > ε

)
< 2e

− 2mε2

(4`)2 , (2)

where4` = `max − `min.

b) Verify the value m given in Example 1 of Lecture 2. for the special case of a binary
classifier and the 0/1-loss.

c*) We want to utilise the Hoeffding inequality for choosing the best predictor from a finite
set of predictors H. Denoting the r.h.s. of (2) by δ, we interpret it as follows. Among all
possible test sets T m of size m there are at most δ ∗ 100 percent “bad” test sets for a
given predictor h. We call a test set T m bad for the predictor h if |R(h)− RT m(h)| > ε.
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Conclude that the percentage of test sets, which are bad for at least one h ∈ H can be
bounded by

P
(

max
h∈H
|R(h)−RT m(h)| > ε

)
< 2|H|e−

2mε2

(4`)2

Assignment 3 (Log Softmax). Consider a neural network with outputs yk, k = 1, . . . , K
representing posterior class probabilities. The last layer of this network is a softmax layer
with output

yk =
exk∑
` e

x`
,

where xk are the outputs of the last linear layer and represent class scores. When learning
such a network by maximising the log conditional likelihood, we have to consider log-
probabilities

zk = log yk = xk − log
∑
`

ex`

We will analyze the nonlinear part of the r.h.s., the log-sum-exp (aka smooth maximum)
function:

f(x) = log
∑
`

ex` (3)

a) Prove that its gradient is given by∇f(x) = y = softmax(x), i.e. by the vector of class
probabilities. Conclude that the norm of the gradient is bounded by 1. This is a good
property for gradient-based optimization.

b) Compute the second derivative of f and show that it can be expressed as

∇2f(x) = Diag(y)− yyT .

Prove that this symmetric matrix is positive semi-definite and conclude that f(x) is a con-
vex function. Note that the second derivative of log-sum-exp is the Jacobian of softmax.

Assignment 4 (Backprop). Given an operation with the output y and the derivative of
the loss w.r.t. y – a row vector Jy, the "backprop" operation needs to compute derivatives
w.r.t. all inputs. Compute the backprop of the following operations:

a) y = |x|, where the absolute value is applied coordinate-wise to a vector x.

b) y = x+ z

c) y = (x; z) — the concatenated vector of x and z

d) Convolution in 1D: yi =
∑

k wkxi−k + bi. The inputs are: w, x, b. Ignore the index
ranges for simplicity.
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