DEEP LEARNING (SS2023)
SEMINAR 2

Assignment 1 (Chebyshev). In this assignment, we will derive the Chebyshev inequality
for the empirical risk. Let X be a real valued random variable with expectation 1 and
finite variance v. The Chebyshev inequality asserts
v
P(|X —pl>¢) < =
Let X;,7 = 1,...,m be independent, identically distributed random variables with ex-
pectation 4 and finite variance v and let X = % >, X be their empirical mean. Prove
the inequality
P(IX —EX|>¢) < —. )
me

Let us now consider a predictor h: X — ), and a loss ¢(y,y’). The risk of the predictor
is denoted by R(h) and its empirical risk on a test set 7™ = {(z7,97) | j = 1,...,m}
is denoted by Ry (h). Apply (1) to obtain the Chebyshev inequality for empirical risk in
the lecture 2 slide 5.

Assignment 2 (Hoeffding). Next we prove the Hoeffding inequality for the empirical
risk. Let X;, 2 = 1,..., m be independent random variables bounded by the interval
[a,b],ie.a < X; < b Let X = % >, X; be their empirical mean. The Hoeffding
inequality asserts that

_ _ 2me?
P(|X —EX|>¢) < 2exp (—(brf—im) .

As in the previous assignment, let us now consider a predictor ~: X — ), and a loss
{(y,y'). The risk of the predictor is denoted by R(h) and its empirical risk on a test set
Tm={(27,y7) | j =1,...,m} is denoted by Ry (h).

a) Prove that the generalisation error of & can be bounded in probability by

2me?

]P’<|R(h) ~ Ryn(h)| > s) < 2¢ (AR, 2)

where ANV = 00 — Lonin.-

b) Verify the value m given in Example 1 of Lecture 2. for the special case of a binary
classifier and the 0/1-loss.

¢*) We want to utilise the Hoeffding inequality for choosing the best predictor from a finite
set of predictors /. Denoting the r.h.s. of (2) by J, we interpret it as follows. Among all
possible test sets 7" of size m there are at most o * 100 percent “bad” test sets for a
given predictor h. We call a test set 7" bad for the predictor h if |R(h) — Rym(h)| > e.
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Conclude that the percentage of test sets, which are bad for at least one i € H can be
bounded by

_ 2me?
P(max|R(h) — Ryn(h)| > s) < 2|H|e” Bo7
heH
Assignment 3 (Log Softmax). Consider a neural network with outputs yx, k= 1,..., K

representing posterior class probabilities. The last layer of this network is a softmax layer
with output

etk

yk:W>

where x;, are the outputs of the last linear layer and represent class scores. When learning
such a network by maximising the log conditional likelihood, we have to consider log-
probabilities

2z = logyr = xp — logZe”
¢
We will analyze the nonlinear part of the r.h.s., the log-sum-exp (aka smooth maximum)

function:
f(z) =log Z evt 3)
¢

a) Prove that its gradient is given by V f(z) = y = softmax(z), i.e. by the vector of class
probabilities. Conclude that the norm of the gradient is bounded by 1. This is a good
property for gradient-based optimization.

b) Compute the second derivative of f and show that it can be expressed as
V?f(x) = Diag(y) — yy" .

Prove that this symmetric matrix is positive semi-definite and conclude that f(x) is a con-
vex function. Note that the second derivative of log-sum-exp is the Jacobian of softmax.

Assignment 4 (Backprop). Given an operation with the output y and the derivative of
the loss w.r.t. y — a row vector J,, the "backprop" operation needs to compute derivatives
w.r.t. all inputs. Compute the backprop of the following operations:

a) y = ||, where the absolute value is applied coordinate-wise to a vector z.
b)y=x+=2
¢) y = (x; z) — the concatenated vector of = and z

d) Convolution in 1D: y; = Zk wiTi—k + b;. The inputs are: w, z,b. Ignore the index
ranges for simplicity.



