
DEEP LEARNING (SS2023)
SEMINAR 6

Assignment 1 (ML with noisy labels). We want to learn a binary classifier q(k |x; θ) with
classes k = ±1. It is defined as a neural network with parameters θ and with the sigmoid
logistic distribution in the output.

The true labels ki of the images xi are however unknown. Instead we are given training
pairs (xi, ti) with “noisy labels” ti = ±1. They might have been incorrectly assigned by
the person who annotated the data. More specifically, let us assume that the label ti is
correct (ti = ki) with probability 1− ε and incorrect (ti = −ki) with probability ε.

a) Formulate the conditional maximum likelihood learning of the parameters θ.

Hint: the conditional likelihood of the training data sample (xi, ti) is obtained by marginal-
izing over the unknown true label

p(ti |xi) =
∑

k∈{−1,1}

p(ti | k)q(k |xi; θ),

where p(t | k) is the labelling noise model.

b) A popular practical solution is to minimize the cross-entropy loss

−
∑
i

∑
k

pi(k) log q(k |xi;w), (1)

where pi(k) denote "softened 1-hot labels": pi(k) = 1 − ε for k = ti and ε otherwise.
Prove that the negative cross-entropy (1) is a lower bound of the log likelihood in a). Use
Jensen’s inequality for log.

Assignment 2. Let q(x) and p(x) be two factorizing probability distributions for random
vectors x ∈ Rn, i.e.

p(x) =
n∏

i=1

p(xi) and q(x) =
n∏

i=1

q(xi).

Prove that their KL-divergence decomposes into a sum of KL-divergences for the compo-
nents, i.e.

DKL(q(x) ‖ p(x)) =
n∑

i=1

DKL(q(xi) ‖ p(xi))

Assignment 3. Compute the KL-divergence of two univariate normal distributions.

Assignment 4 (Smooth AP). In this exercise we will see the relation between average
precision and triplet loss and consider also an alternative smoothing technique.
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Let a be a given anchor or query. Let P be the set of all positive examples for a and N be
the set of all negative examples (so that P ∪N is a disjoint partition of the whole dataset).
Let dx = d(f(a), f(x)) be the distance in the feature space between the anchor a and
another example x ∈ P ∪N . It can be shown that the average precision defined in Lab 6
can be expressed as

AP = 1− 1

T

∑
p∈P

1

k(p)

∑
n∈N

Jdn < dpK, (2)

where T = |P | is the total number of positive examples and k(p) =
∑

x∈P∪NJdx ≤ dpK.
In this expression the inner sum counts the number of negative examples which have a
smaller distance to the query than p, i.e. they will be incorrectly listed earlier in a sorted
list of retrieved items. The function k(p) expresses the position of p in the sorted list of
all examples. Efficiently 1/k(p) gives a higher relative weights to errors in the beginning
of the retrieval list and discounts errors towards the end of the retrieval list.

a) Can we train a neural network f by gradient descent to maximize AP directly?

b) Consider minimizing just
∑

p∈P
∑

n∈NJdn < dpK, i.e. ignoring the weights 1
k(p)

. What
is the relation between this objective and the triplet loss l(a) proposed in the lab?

c) Another variant to make the function Jdn<dpK differentiable is to replace it by some
smooth function. Let’s give it a latent variable interpretation. Assume Z is a noise with
logistic distribution with scale τ . Consider the loss with injected noise Z in each term,
modeling imprecise descriptors:

Jdn − dp + Z < 0K. (3)

Compute its expectation in Z.

Applying such smoothing to all indicator functions in (2), including those occurring in
k(p) results in the method of A. Brown et al.: Smooth-AP: Smoothing the Path Towards
Large-Scale Image Retrieval (2020).
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