DEEP LEARNING (SS2023)
SEMINAR 6

Assignment 1 (ML with noisy labels). We want to learn a binary classifier ¢(k | x; #) with
classes k = *1. It is defined as a neural network with parameters # and with the sigmoid
logistic distribution in the output.

The true labels k; of the images x; are however unknown. Instead we are given training
pairs (x;, t;) with “noisy labels” ¢; = +1. They might have been incorrectly assigned by
the person who annotated the data. More specifically, let us assume that the label ?; is
correct (t; = k;) with probability 1 — ¢ and incorrect (¢; = —k;) with probability ¢.

a) Formulate the conditional maximum likelihood learning of the parameters 6.

Hint: the conditional likelihood of the training data sample (x;, t;) is obtained by marginal-
izing over the unknown true label

pltilz) = Y plti| k)a(k|i0),
ke{-1,1}

where p(t | k) is the labelling noise model.

b) A popular practical solution is to minimize the cross-entropy loss
—ZZpZ )log q(k | 3 w), (1)

where p; (k) denote "softened 1-hot labels": p;(k) = 1 — ¢ for k = ¢; and € otherwise.
Prove that the negative cross-entropy (1) is a lower bound of the log likelihood in a). Use
Jensen’s inequality for log.

Assignment 2. Let ¢(x) and p(z) be two factorizing probability distributions for random
vectors © € R", i.e.

n n

p(x) =[] p(z:) and q() = [T alas).

i=1 i=1

Prove that their KL-divergence decomposes into a sum of KL-divergences for the compo-
nents, 1.e.

Dri(q(z) || p(z) ZDKL (i) || p(:))

Assignment 3. Compute the KL-divergence of two univariate normal distributions.

Assignment 4 (Smooth AP). In this exercise we will see the relation between average
precision and triplet loss and consider also an alternative smoothing technique.
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Let a be a given anchor or query. Let P be the set of all positive examples for a and NV be
the set of all negative examples (so that P U N is a disjoint partition of the whole dataset).
Let d, = d(f(a), f(x)) be the distance in the feature space between the anchor a and
another example x € P U N. It can be shown that the average precision defined in Lab 6
can be expressed as

1 1
Ale—T;%%[{dn<dp]], (2)

where 7" = | P| is the total number of positive examples and k(p) = > p n[de < dp].
In this expression the inner sum counts the number of negative examples which have a
smaller distance to the query than p, i.e. they will be incorrectly listed earlier in a sorted
list of retrieved items. The function k(p) expresses the position of p in the sorted list of
all examples. Efficiently 1/k(p) gives a higher relative weights to errors in the beginning
of the retrieval list and discounts errors towards the end of the retrieval list.

a) Can we train a neural network f by gradient descent to maximize AP directly?

b) Consider minimizing just > p >, cy[dn < d], i.e. ignoring the weights ﬁ. What

is the relation between this objective and the triplet loss /(a) proposed in the lab?

¢) Another variant to make the function [d,,<d,| differentiable is to replace it by some
smooth function. Let’s give it a latent variable interpretation. Assume Z is a noise with
logistic distribution with scale 7. Consider the loss with injected noise Z in each term,
modeling imprecise descriptors:

Id, —d, + Z <0]. 3)
Compute its expectation in Z.

Applying such smoothing to all indicator functions in (2), including those occurring in
k(p) results in the method of A. Brown et al.: Smooth-AP: Smoothing the Path Towards
Large-Scale Image Retrieval (2020).



