Assignment 1 (ML with noisy labels). We want to learn a binary classifier \(q(k \mid x; \theta) \) with classes \(k = \pm 1 \). It is defined as a neural network with parameters \(\theta \) and with the sigmoid logistic distribution in the output.

The true labels \(k_i \) of the images \(x_i \) are however unknown. Instead we are given training pairs \((x_i, t_i)\) with “noisy labels” \(t_i = \pm 1 \). They might have been incorrectly assigned by the person who annotated the data. More specifically, let us assume that the label \(t_i \) is correct \((t_i = k_i)\) with probability \(1 - \varepsilon \) and incorrect \((t_i = -k_i)\) with probability \(\varepsilon \).

a) Formulate the conditional maximum likelihood learning of the parameters \(\theta \).

Hint: the conditional likelihood of the training data sample \((x_i, t_i)\) is obtained by marginalizing over the unknown true label

\[
p(t_i \mid x_i) = \sum_{k \in \{-1, 1\}} p(t_i \mid k) q(k \mid x_i ; \theta),
\]

where \(p(t \mid k) \) is the labelling noise model.

b) A popular practical solution is to minimize the cross-entropy loss

\[
- \sum_i \sum_k p_i(k) \log q(k \mid x_i ; w), \tag{1}
\]

where \(p_i(k) \) denote "softened 1-hot labels": \(p_i(k) = 1 - \varepsilon \) for \(k = t_i \) and \(\varepsilon \) otherwise. Prove that the negative cross-entropy (1) is a lower bound of the log likelihood in a). Use Jensen’s inequality for \(\log \).

Assignment 2. Let \(q(x) \) and \(p(x) \) be two factorizing probability distributions for random vectors \(x \in \mathbb{R}^n \), i.e.

\[
p(x) = \prod_{i=1}^n p(x_i) \quad \text{and} \quad q(x) = \prod_{i=1}^n q(x_i).
\]

Prove that their KL-divergence decomposes into a sum of KL-divergences for the components, i.e.

\[
D_{KL}(q(x) \parallel p(x)) = \sum_{i=1}^n D_{KL}(q(x_i) \parallel p(x_i))
\]

Assignment 3. Compute the KL-divergence of two univariate normal distributions.
Assignment 4 (AP vs Triplet Loss). Starting with the expression for AP (see eq. (3) in the metric learning lab):

\[AP = 1 - \frac{1}{T} \sum_{p \in P} \sum_{n \in N} \frac{[d_n < d_p]}{k(p)}, \]

(2)

Verify that \([z] \leq \max(z/\alpha + 1, 0) \) holds for each \(\alpha > 0 \) and use it as an approximation in the numerator of (2). How the resulting approximate AP is related to the triplet loss we used in the metric learning lab?