Assignment 1 (ML with noisy labels). We want to learn a binary classifier \(q(k \mid x; \theta) \) with classes \(k = \pm 1 \). It is defined as a neural network with parameters \(\theta \) and with the sigmoid logistic distribution in the output. The true labels \(k_i \) of the images \(x_i \) are however unknown. Instead we are given training pairs \((x_i, t_i) \) with “noisy labels” \(t_i = \pm 1 \). They might have been incorrectly assigned by the person who annotated the data. More specifically, let us assume that the label \(t_i \) is correct \((t_i = k_i) \) with probability \(1 - \varepsilon \) and incorrect \((t_i = -k_i) \) with probability \(\varepsilon \).

a) Formulate the conditional maximum likelihood learning of the parameters \(\theta \).

Hint: the conditional likelihood of the training data sample \((x_i, t_i) \) is obtained by marginalizing over the unknown true label

\[
p(t_i \mid x_i) = \sum_{k \in \{-1, 1\}} p(t_i \mid k) q(k \mid x_i; \theta),
\]

where \(p(t \mid k) \) is the labelling noise model.

b) A popular practical solution is to minimize the cross-entropy loss

\[
-\sum_i \sum_k p_i(k) \log q(k \mid x_i; \theta), \tag{1}
\]

where \(p_i(k) \) denote "softened 1-hot labels": \(p_i(k) = 1 - \varepsilon \) for \(k = t_i \) and \(\varepsilon \) otherwise. Prove that the negative cross-entropy (1) is a lower bound of the log likelihood in a). Use Jensen’s inequality for \(\log \).

Assignment 2. Let \(q(x) \) and \(p(x) \) be two factorising probability distributions for random vectors \(x \in \mathbb{R}^n \), i.e.

\[
p(x) = \prod_{i=1}^{n} p(x_i) \quad \text{and} \quad q(x) = \prod_{i=1}^{n} q(x_i).
\]

Prove that their KL-divergence decomposes into a sum of KL-divergences for the components, i.e.

\[
D_{KL}(q(x) \parallel p(x)) = \sum_{i=1}^{n} D_{KL}(q(x_i) \parallel p(x_i))
\]

Assignment 3. Compute the KL-divergence of two univariate normal distributions.
Assignment 4 (Smooth AP). Let $f(x; \theta)$ be a feature vector obtained by a neural network with input image x and parameters θ. The network should learn an embedding from a training set \mathcal{T} of image triplets. Each triplet (a, p, n) consist of an anchor image x_a, a positive match x_p and a negative match x_n. The desired property of the learned embedding f is that $d(f(x_a), f(x_p)) < d(f(x_a), f(x_n))$ holds for all such triplets, where $d(.,.)$ denotes the distance in the embedding space. Consider the loss that counts the number of triplets violating this relation:

$$L(\theta) = \sum_{(a,p,n) \in \mathcal{T}} [d(f(x_a), f(x_p)) - d(f(x_a), f(x_n)) \geq 0],$$

where $\llbracket \cdot \rrbracket$ is the indicator function (Iverson bracket).

a) Can we apply back-propagation to this loss?

b) Consider injecting independent noises $Z_{a,p,n}$ and the expected loss

$$\tilde{L}(\theta) = \mathbb{E}_Z \left[\sum_{(a,p,n) \in \mathcal{T}} [d(f(x_a), f(x_p)) - d(f(x_a), f(x_n)) + Z_{a,p,n} \geq 0] \right],$$

where $Z_{a,p,n}$ follows the logistic distribution. The logistic distribution has the cumulative distribution function $F_Z(u) = \mathbb{P}(Z \leq u) = \frac{1}{1 + e^{-u}}$. Compute the expected loss $\tilde{L}(\theta)$.

2