
DEEP LEARNING (SS2022)
SEMINAR 4

Assignment 1 (Weight initialization for ReLU networks). When weights are initialized
with a fixed standard deviation (e.g., 0.01), deep models (e.g., >8 conv layers) have diffi-
culties to converge. In this assignment we derive a proper weight initialization for ReLU
networks, following He et al. (2015). For networks with ReLU activations the linearity
assumption (Glorot and Bengion’s analysis in the lecture) does not hold. The goal is to
achieve that variance of preactivations stay close to standardized in a deep network so that
input is not magnified (up or down) exponentially in the number of layers K.

We will assume that the components of all vectors are statistically independent and iden-
tically distributed for tractability of analysis (weights are indeed independent i.i.d. at
initialization).

a) Let us consider a single neuron with weight vector w and input vector x. Its pre-
activation is a = wTx. Let us assume

E[xi] = µ, E[x2
i ] = χ, E[wi] = 0, and V[wi] = v.

Prove that E[a] = 0 and V[a] = nvχ, where n is the dimension of the vectors x and w.

b) Show that the distribution of a is symmetric about zero if so is the distribution of w.

c) Consider the neuron output y = g(a), where g denotes the ReLU function. Conclude
that E[y2] = 1

2
V[a].

d) Let us denote V[a] = α and consider a ReLU network with layers k = 1, . . . , K with
nk units in each. Collect the previous steps to show the following recursive relation for
the variance of pre-activations in the layer k:

αk =
1

2
nk−1vkαk−1.

Obtain the initialization of He et al. (2015): initialize the weights with zero mean and
variance

V[wk
ij] =

2

nk−1

.

Assignment 2 (Batch Normalization). Consider a single coordinate of a linear layer given
by a = wTx + b, where w is the weight vector, b is a scalar bias. Batch normalization
after this layer takes the form:

y =
a− µB

σB
β + γ, (1)

where µB and σB denote the sample mean and standard deviation of a taken over the
batch:

µB =
1

n

n∑
i=1

ai; σ2
B =

1

n

n∑
i=1

(ai − µB)
2, (2)

where ai are the layer outputs for the i’th instance in the batch.

1



a) Show that batch-normalized output can be explicitly written as

y =
wT(x− x̄)

∥w∥X
β + γ, (3)

where x̄ is the sample mean of the batch data, X is the batch covariance matrix: X =
1
n

∑
i(xi − x̄)(xi − x̄)T and ∥w∥X is the Mahalanobis norm: ∥w∥X = (wTXw)

1
2 . Cf.

layer normalization which does not subtract mean and uses plain ∥w∥.

Conclude that the output of batch normalization does not depend on the bias b and also
does not change when the weight vector w is scaled by a positive constant.

b) What is the mini-batch sample mean and standard deviation of the BN-normalized
layer, if we initialize β = 1, γ = 0? Assume, we decided to apply BN after each linear
layer. Has the weight initialization from Assignment 1 still an effect for the forward pass?

c) Consider a network without BN. Let µB and σB be the statistics of layer output a =
Wx + b. We want to introduce a BN layer at this place so that it does not change the
network predictions. How shall we initialize β and γ?

Assignment 3 (SGD + L2). Consider a regularized loss function L̃(θ) = L(θ) + λ
2
∥θ∥2.

Let g be a stochastic gradient estimate of L (original loss) at θ. Notice that the regular-
ization part of the objective, λ

2
∥θ∥2, is known in a closed form and so its gradient gr is

non-stochastic.

• Design an SGD algorithm that applies momentum (exponentially weighted averaging)
to g only but not to gr.

• Is it equivalent to an SGD with the momentum applied to both g and gr, possibly with
a different settings of λ, momentum and learning rate?

Assignment 4 (Mixup). The mixup data augmentation draws (x1, y1) and (x2, y2) at ran-
dom from data distribution p∗, where y1 and y2 are one-hot encoded target labels, and
constructs

x̃λ = λx1 + (1− λ)x2 (4a)
ỹλ = λy1 + (1− λ)y2. (4b)

The value of λ is drawn at random from Beta distribution Be(α, α) with α fixed (e.g.,
0.1). The training objective is the expected loss over all such mixup examples:

E(x1,y1)∼p∗E(x2,y2)∼p∗Eλ∼Be(α,α)l(x̃λ, ỹλ), (5)

where l(x, y) is the loss function of neural network predictions with input x with respect
to the target y. We will show that in the case of cross-entropy loss l, it can be reformulated
without using label y2, i.e., not mixing labels. Therefore, even unlabeled data may be used
for x2 in the reformulation.

2



a) Show that the expected mixup loss (5) equals

2E(x1,y1)∼p∗E(x2)∼p∗Eλ∼Be(α,α)λl(x̃λ, y1). (6)

Hint: you will need:

- Linearity of the cross-entropy function to show that l(x, y) is linear in y;

- Symmetry of Beta distribution: λ ∼ Be(α, α) ⇒ (1− λ) ∼ Be(α, α);
- Symmetry of the expected loss with respect to swapping (renaming) (x1, y1) and (x2, y2).

b) Prove that 2λpBe(α,α)(λ) = pBe(α+1,α)(λ) and use it to simplify the result. Hint: you
will need:

- Density of Beta distribution: pBe(α,β)(λ) = λα−1(1− λ)β−1 Γ(α+β)
Γ(α)Γ(β)

;

- One of the defining properties of Gamma function: Γ(α + 1) = αΓ(α).

3


