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Assignment 1 (Receptive fields). Consider a convolutional network consisting of convo-
lution layers and max-pooling layers. Each of them is characterized by a kernel size k`
and a stride s`. The receptive field of a neuron in layer ` is the bounding box of all nodes
in the input layer that can influence its output. Let us define the stride of the receptive
field as the shift in pixels between receptive fields of two neighboring neurons in layer `.
Knowing the receptive field size S` and receptive field stride T` of neurons in layer ` and
the kernel size k and stride s of the next operation (convolution or max pooling), find the
receptive field size and stride of neurons in layer `+ 1.

Note: This relation will be needed for the lab on CNN visualization & adversarial patterns.

Assignment 2 (Trust Region Problems, FGSM).
Let us consider a loss function L(θ) and denote its gradient at θt by gt = ∇θL(θt). In this
exercise θ can represent parameters of neural network, relevant for learning, or a given
input image, relevant for adversarial attack. Solve the following trust region problems.

a) arg min
θ

[
L(θt) + 〈gt, θ − θt〉

]
,

s.t. ‖θ − θt‖2 ≤ ε.

Hints: Make a simplifying substitution of variables ∆θ = θ − θt. Use the method of
Lagrange multipliers. The constraint can be squared to make it easier to differentiate. The
linear function on a convex set attains its minimum at the boundary, so that the constraint
can be replaced with equality.

b) arg min
θ

[
L(θt) + 〈gt, θ − θt〉

]
,

s.t. |θi − θti | ≤ ε ∀i.

Hint: Observe that the minimization decouples over individual coordinates. Solve for
a single coordinate graphically.

Assignment 3 (BN with Weight Decay).
In the previous seminar, we have discussed that the output of BN layer after a linear layer
is invariant to the scale of the weight vector. It would seem that applying weight decay
regularization makes no sense. Nevertheless it is applied in some papers and receipts.
Let’s study the effect it has on optimization.

We will consider a simplified scenario for a single neuron and weight normalization. Its
output is given by y = wTx

‖w‖ , where x is the input. The regularized loss function is given

by L̃(w) = L(y(w)) +R(w), where R(w) = λ
2
‖w‖2 and λ > 0.

a) Suppose that w0 is optimal for the non-regularized loss L. What will the gradient
descent on L̃ do if started at w0?
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b) Consider a point w0 on the unit sphere for which the gradient g = ∇wL(y(w0)) is non-
zero. Show that g is orthogonal to w0 and hence also to ∇wR(w0). Draw these vectors
and the sphere ‖w‖ = 1 in a plane.

c) In the drawing above, let ‖g‖ = a and ‖∇wR(w0)‖ = λ atw0 with ‖w0‖ = 1. Consider
a single step of the gradient descent for L̃ with step length α > 0. Give a condition on α
that ensures a decreasing norm ‖w‖.
Hint: the problem can be solved in 2D given a, λ and α.

Assignment 4 (Mirror Descent for Box Constraints).
Sometimes we need to optimize a non-linear objective f(x) over box constraints x ∈
(0, 1), we consider 1D case for simplicity. This is relevant for learning with constrained
parameters, in a multi-step adversarial attack or adversarially robust training. In such
cases it is beneficial to use gradient descent with the steps found from solving the proximal
step problem

min
x
〈∇f(x0), x− x0〉+

1

ε
D(x, x0),

where x0 ∈ (0, 1) and the divergence D is designed to respect constraints. For example,
a suitable choice is1:

D(x, x0) = x log
x

x0
+ (1− x) log

1− x
1− x0

,

which is convex in x, has minimum at x0 and its derivatives approach infinity at the edges
of the interval (0, 1).

a) Find the solution to the proximal step problem and express it using the sigmoid function
σ(x) = 1

1+e−x and the logit function: logit(p) = log p
1−p , which is the inverse of sigmoid.

b) Let x0 = sigmoid(η0). Rewrite the algorithm iterations such that xt = sigmoid(ηt)
and ηt is updated using ηt−1.

1Kullback-Leibler divergence of Bernoulli distributions with probabilities x and x0.
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