
Deep Learning (BEV033DLE)
Lecture 2.

Czech Technical University in Prague

■ Neural networks are universal approximators

■ Testing networks & loss functions

■ Generalisation errors for neural classifiers & regressors

2/9
Neural networks as universal approximators

Neural networks are universal approximators if we do not restrict the network architecture

Boolean functions: Every boolean function f : {±1}n → {±1} can be written in
conjunctive normal form, i.e. as a conjunction over disjunctive clauses.

Theorem 1. Every boolean function can be represented by a network with binary units and
two layers.

Remark 1. Notice, that the number of neurons in such a two layer network can grow
exponentially with n. Implementing e.g. the parity function in DNF/CNF will require
O(2n−1) neurons. It can be implemented much more efficiently by a deep network e.g. with
O(n logn) neurons if we do not restrict its depth.

Real valued functions: consider real valued functions f : [0,1]n → R that are Lipshitz
continuous

|f(x)−f(x′)| ⩽ ρ∥x−x′∥ ∀x,x′ ∈ [0,1]n.

To approximate such function by a network:

■ Partition the domain : [0,1]n into sufficiently small boxes.

■ Design a network that first decides which box the input vector belongs to and then
predicts the average value of f at this box.

http://cmp.felk.cvut.cz

3/9
Neural networks as universal approximators

Theorem 2. (Cybenko, 1989) Every smooth function on [0,1]n can be approximated
arbitrarily well by a network with sigmoid units and two layers. In other words, given a
smooth function f : [0,1]n → R and an ϵ > 0, there is a sum

G(x) =

N∑
j=1

αj S(w
T
j x+ bj)

s.t. |f(x)−G(x)| ⩽ ϵ for all x ∈ [0,1]n.

Remark 2.

■ There are also “dual” universal approximation theorems that restrict the width of the
network (i.e. number of units per layer) and allow arbitrary network depth.

■ We limit the expressive power once we fix a network architecture.

http://cmp.felk.cvut.cz

4/9
Validating & testing neural networks

Given a network, we want to validate its performance on a test set. How large shall we
choose this set & what precisely shall we measure?

■ The relation between input features x ∈ X and hidden states y ∈ Y is given by a joint
probability distribution p(x,y), which is unknown.

■ The network h : X → Y predicts hidden states y, given input features x.

■ The loss ℓ(y,y′) defines the cost incurred by a wrong prediction y′ = h(x), if the true
hidden state was y. Examples:

• classification, y is categorical: 0/1 loss ℓ(y,y′) = Jy ̸= y′K

• classification, y is a sequence: Hamming distance ℓ(y,y′) =
∑

iJyi ̸= y′
iK

• regression, y ∈ Rn: L1 norm ℓ(y,y′) = ∥y −y′∥1

We want to estimate the risk, i.e. the expected loss

R(h) =
∑
x,y

p(x,y)ℓ(y,h(x)) ≈ 1

m

∑
(x,y)∈T m

ℓ(y,h(x)) = RT m(h)

where T m = {(xj,yj) | j = 1, . . . ,m} is a test set of i.i.d. examples x,y ∼ p(x,y).

http://cmp.felk.cvut.cz

5/9
Validating & testing neural networks

How large shall we choose the size m of the test set T m?

Answer: Upper bound the deviation |RT m(h)−R(h)|

T m ∼ p(x,y) ⇒ P
(

|R(h)−RT m(h)| > ε
)

<??

■ Chebyshev inequality: P
(

|R(h)−RT m(h)| > ε
)

< V[ℓ(y,h(x))]
mε2

,
converges slowly for m → ∞.

■ Hoeffding inequality: P
(

|R(h)−RT m(h)| > ε
)

< 2e
− 2mε2

(△ℓ)2 ,
where △ℓ = ℓmax − ℓmin.

Example 1. Consider a classifier with 0/1 loss. What test set size m ensures that
RT m(h)−0.01 < R(h) < RT m(h)+0.01 with probability 95%?
Answer: By using Hoeffding inequality, we get m ≈ 2 ·104.

http://cmp.felk.cvut.cz

6/9
Learning neural networks: generalisation & overfitting

Given an i.i.d. training set T m = {(xj,yj) | j = 1, . . . ,m}, we want to train a network
y = h(x,w) by minimising its empirical risk, i.e. expected loss on the training set

1

m

∑
(x,y)∈T m

ℓ
(
y,h(x,w)

)
→ min

w

Often we can not minimise this objective by gradient descent: e.g. classification with 0/1
loss. Let us make a virtue of necessity and consider another learning criterion: the negative
log-likelihood.

■ last layer of the network: class scores + softmax, its outputs hk(x,w) are interpreted as
conditional class probabilities hk(x,w) = pw(y = k |x)

■ the learning criterion (NLL) reads

− 1

m

∑
(x,y)∈T m

logpw(y |x) = − 1

m

∑
(x,y)∈T m

loghy(x,w) → min
w

and is differentiable in w.

Advantage: we can estimate the prediction uncertainty.

http://cmp.felk.cvut.cz

7/9
Learning neural networks: generalisation & overfitting

Generalisation error (bounds) We fix a network architecture. This defines an infinite
network class H. We choose the network hm ∈ H with the best performance on a training
set T m. For this we minimise the learning criterion by stochastic gradient descent (SGD).

We would expect the following behaviour for training sets T m with fixed size m.

R
is
k

Training risk

Test risk

Capacity of H

sweet spot

under-fitting over-fitting

Can we bound the generalisation error of the network hm = argminh∈H RT m(h)?

T m ∼ p(x,y) ⇒ P
(

|R(hm)−RT m(hm)| > ε
)

<??

■ We can not apply the Hoeffding inequality here (why?)

http://cmp.felk.cvut.cz

8/9
Learning neural networks: generalisation & overfitting

ML theory provides generalisation bounds assuming that we can uniformly bound the
deviation between risk and empirical risk, i.e. suph∈H|R(h)−RT m(h)|

Finite H: We train a network and keep several checkpoints with best training accuracy.
Then we want to choose the best network from this set H by comparing their performance
on some validation set T m. How large shall we choose m?
Answer: use the generalised Hoeffding inequality for a finite set of predictors

P
(
max
h∈H

|R(h)−RT m(h)| > ε
)

< 2|H|e− 2mε2

(△ℓ)2

Infinite H: Vapnik-Cervonenkis theory provides such a uniform bound in terms of
VC-dimension, i.e. the size of the largest set of data points x that can be classified by
predictors from H in any possible way (the set is shattered by H)

These bounds are however not tight enough for deep networks. Large networks with > 106

parameters would require billions of training examples. Neural networks in typical
applications are in an over-parametrised regime outside of the plot in the previous slide.

http://cmp.felk.cvut.cz

9/9
Learning neural networks: generalisation & overfitting

Example 2 (Zhang et al., ICLR, 2018). Image classification
on CIFAR (10 classes, ∼ 5 · 104 training examples, tackled
by networks with ∼ 105 parameters. The networks learned
by SGD and additional regularisers (e.g. data augmentation,
dropout, etc.) Achieved accuracy > 95%, generalisation
error < 5%. Such networks can learn data with random
labels! I.e. the training set is shattered by H.

Double descent phenomenon: Current ongoing research seems to indicate that SGD,
when used for training over-parametrised networks, is choosing smooth predictors with small
norm. This leads to the following unexpected behaviour:

R
is
k

Training risk

Test risk

Capacity of H

under-parameterized

“modern”

interpolating regime

interpolation threshold

over-parameterized

“classical”

regime

Belkin et al., PNAS, 2019: network with a single hidden layer learned on MNIST

http://cmp.felk.cvut.cz

	First page
	cmporange Neural networks as universal approximators
	cmporange Neural networks as universal approximators
	cmporange Validating & testing neural networks
	cmporange Validating & testing neural networks
	cmporange Learning neural networks: generalisation & overfitting
	cmporange Learning neural networks: generalisation & overfitting
	cmporange Learning neural networks: generalisation & overfitting
	cmporange Learning neural networks: generalisation & overfitting
	Last page

