
Deep Learning (BEV033DLE)
Lecture 6 Weight initialisation, batch normalisation,

Resnets
Czech Technical University in Prague

■ Weight initialisation

■ Batch normalisation

■ Residual neural networks

■ Transfer learning



2/12
Weight initialisation

(1) Initialising all weights and biases with zero is not a good idea. Why?

Side step: symmetries and gradients:

Consider a scalar function f(w) that is invariant to the linear
mapping B : Rn→ Rn, i.e. f(Bw) = f(w). Its gradient ∇f has
the property

∇f(Bw) = B−T∇f(w),

What happens if GD is started from an invariant point w0 = Bw0

and B−T = B holds?

B
[
w0−α∇f(w0)

]
= w0−α∇f(Bw0) = w0−α∇f(w0)

The new point w1 will be again invariant, i.e. Bw1 = w1.
We need to break the symmetry!

http://cmp.felk.cvut.cz


3/12
Weight initialisation

(2) Initialise all weights and biases randomly from a uniform (or normal) distribution.

■ o.k. for shallow networks,

■ not o.k. for deep networks!

0 3 6 9 12 15 18
layer

0.2

0.0

0.2

0.4

0.6

0.8

1.0

m
ea

n/
st

de
v

ReLU: layer statistics 

2 0 2
0.0

0.2

0.4

0.6

0.8

1.0
Sigmoid: vanishing gradient

2 1 0 1
0.0

0.5

1.0

1.5
ReLU: dead units

Left: node statistics for the layers of a deep FFN with ReLU units with random inputs, all weights initialised
from a normal distribution. Middle and right: this can lead to vanishing/exploding gradients and “dead units”
during learning

http://cmp.felk.cvut.cz


4/12
Weight initialisation

(3) Proper initialisation: Initialise weights/biases so that each neuron has activation
statistic (over the dataset) with certain mean and variance.
Example 1 (Glorot & Bengio, 2010). Analyse variance of neuron outputs and backprop
gradients under the following simplifying assumptions

■ Tanh activation function f(x) in linear regime, i,e, f(x)≈ x

■ Neuron outputs as well as gradient components are i.i.d.

Start from a single neuron y = wT x, x ∈ Rn. Assume

■ xi are i.i.d. with E[xi] = 0 and V[xi] = χ

■ wi are i.i.d. with E[wi] = 0 and V[wi] = ω

It follows that E[y] = 0 and V[y] = nωχ.

Consider now a feedforward network with Tanh activation and assumptions as above. For
layer k with nk nodes, denote neuron outputs by xk and gradients by ∇k. Denote the
variance of weights in layer k by ωk.

http://cmp.felk.cvut.cz


5/12
Weight initialisation

Example 1 (cont.).

■ forward: V[xk
i ] = nk−1ωkV[xk−1

j ]

We want V[xk
i ]≈ V[xk−1

j ], i.e. nk−1ωk = 1.

■ backward: V[∇k
i ] = nk+1ωk+1V[∇k+1

j ]

We want V[∇k
i ]≈ V[∇k+1

j ], i.e. nkωk = 1

■ Compromise: Set ωk = 2
nk−1+nk

. Assuming that
the inputs x0 have zero mean and unit variance,
initialise the weights randomly by wk

ij ∼N (0,ωk).

Similar considerations for ReLU activation lead to a
different scheme (He et al., 2015). Figure: Node
statistics for the layers of the same deep FFN with
ReLU units as in Slide 3. But now with a proper weight
initialisation.

0 3 6 9 12 15 18
layer

0.25

0.00

0.25

0.50

0.75

1.00

1.25

m
ea

n/
st

de
v

ReLU: layer statistics 

http://cmp.felk.cvut.cz


6/12
Batch normalisation

(Joffe & Szegedy, 2015) Motivation:
■ Keep control over neuron activation statistics during training
■ Alleviate the need of specialised initialisation variants
■ Regularise learning & pre-condition gradients

Batch normalisation: Denote by B ⊂ T m a mini-batch of training examples and by ai the
activation of a network unit ai =

∑
j wijxj. Re-parametrise it (stochastically) by using its

statistic over mini-batches

µB = EB[ai] σ2
B = VB[ai]

âi =
ai−µB√

σ2
B +ε

ai← γâi+β ≡BNγ,β(ai)

■ γi, βi are learnable parameters
■ µB and σB have to be differentiated w.r.t. network parameters
■ exponentially weighted averages of µB and σB are kept during training and used for

inference.

http://cmp.felk.cvut.cz


7/12
Batch normalisation

Technical implementation of batch normalisation in PyTorch: A layer BatchNorm1d that
■ takes a tensor x with dimension [batchsize, channels] on input and returns a

tensor y with same dimension on output,
■ has learnable parameters γ and β for each channel (init: γ = 1, β = 0)
■ keeps running averages of the batch statistic µB and σB for each channel,
■ depending on its state (train, eval) uses either the batch statistics or the saved

running averages to compute its outputs.

For convolutional networks: use the layer BatchNorm2d, which computes statistics over
batchsize and spatial dimensions.

Batch normalisation:
■ alleviates the need of special weight initialisation since it implements the scheme (3)

discussed above for the first mini batch,
■ the neuron outputs for a particular training example depend on the outputs of the other

examples in the mini-batch, which in turn is stochastic.
■ can be seen as stochastic re-parametrisation of weights and gradient preconditioning

w→ γ
w

σB
b→ γ

(b−µB)

σB
+β

http://cmp.felk.cvut.cz


8/12
Sidestep (biology): Neural Adaptation

Spike frequency range of a biological neuron: 0–500 Hz

Examples of neural adaptation and spike frequency adaptation

■ Sensor adaptation: human eye can function over 9 orders of magnitude of light
brightness levels

■ Cortical adaptation: neurons in the somatosensory cortex of rodents adapt to periodic
stimulation of whiskers (spike frequency decreases over the duration of the stimulus).

Possible mechanisms for spike frequency adaptation:

■ short-term synaptic depression: depletion of synaptic vesicles in the pre-synaptic button

■ increased spiking threshold: activation of ion channels in the post-synaptic neuron
raises the spiking threshold

■ lateral and feedback inhibition: diminishes the impact of excitatory inputs over time

http://cmp.felk.cvut.cz


9/12
Residual Networks

By using proper weight initialisation/batch normalisation we can learn deep networks with
up to 20-30 layers. Can we go for even deeper networks?

Training error and test error on CIFAR-10 with 20-layer and 56-layer “plain” networks.

He et al., CVPR 2016: Yes, by using the architecture of residual networks. They introduce
skip connections.

http://cmp.felk.cvut.cz


10/12
Residual Networks

Let us have a different view on residual networks. We have two
linked networks:

■ a “highway” network with few layers,

■ a very deep network which adds “corrections” the former.
This improves trainability of the network. It becomes possible to
train networks with 100 and more layers.
Attempts for theoretical explanation:

■ analyse the gradients statistic. Resnets have rather uniform
distribution of gradients,

■ interpret resnets as compositions of “near to identity”
mappings and model them by kernels.

http://cmp.felk.cvut.cz


11/12
Transfer Learning: pre-training & fine-tuning

Transfer learning: pre-training + fine-tuning

■ You want to train a predictor for a complex recognition task, but suffer from lack of
training data.

■ A predictor for a different task has been successfully trained on a large dataset.

■ The domains of the two tasks are similar.

We can use the following approach

■ Use the first layers of the network that implements the predictor for the other task.

■ Add your layers on top

■ Learn the network on your data, if necessary apply early stopping to prevent overfitting.
This can be done in two ways

(1) freeze the parameters of the transferred layers

(2) fine-tuning: learn parameters of all layers

http://cmp.felk.cvut.cz


12/12
Transfer Learning: pre-training & fine-tuning

Example 2 (Yosinski et al., NIPS 2014). Randomly split the 1000 Image-Net classes into
two groups with 500 classes: datasets A and B. Learn BnB, BnB+, AnB and AnB+

networks. Here: letters indicate the task of the pre-trained/transfer network; n is the
number of transferred layers and + indicates the fine-tuning variant.

blue: BnB, BnB+ red: AnB, AnB+

http://cmp.felk.cvut.cz

	First page
	cmporange Weight initialisation
	cmporange Weight initialisation
	cmporange Weight initialisation
	cmporange Weight initialisation
	cmporange Batch normalisation
	cmporange Batch normalisation
	cmporange Sidestep (biology): Neural Adaptation
	cmporange Residual Networks
	cmporange Residual Networks
	cmporange Transfer Learning: pre-training & fine-tuning
	cmporange Transfer Learning: pre-training & fine-tuning
	Last page

