Deep Learning (BEV033DLE)
Lecture 5
Convolutional Neural Networks

Czech Technical University in Prague

e QOverview and Rationales of CNN architecture design



Inspiration from Neuroscience @ 0

4 the organisation appeared to be
hierarchical: responses of ‘simple cells’

were aggregated by ‘complex cells,’

4 Hube and Wiesel (1959): Receptive
fields of single neurones in the cat's

striate cortex
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Inspiration e.g. for SIFT descriptors



Neocognitron @ o
3

K. Fukushima, Neocognitron: A self-organizing neural network model for a mechanism of
pattern recognition unaffected by shift in position (1980)

K. Fukushima

Inspired by neuroscience (Hubel and Wiesel's observation of response to local patterns and idea

of hierarchical organization, excitation-inhibition mechanism)

A T7-layer network! Local receptive files with shared weights, pooling layers, ReLU activations.

Trained in an unsupervised manner...

By using local receptive fields at each level we achieve more flexibility to geometric

variations



Convolutional Neural Networks @ o
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Non-NN Hierarchy of Parts Models @

4 [Fidler and Leonardis (2007): “Towards Scalable Representations of Object
Categories: Learning a Hierarchy of Parts']

Learning layer-by-layer based on statistics and selection




Convolutional Neural Networks
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VGG ®

[Simonyan and Zisserman (2014): Very Deep Convolutional Networks for
Large-Scale Image Recognition]
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@ convolution+ReLLU

@ max pooling
fully connected+ReLLU

“~~(] softmax

 S— '

il [VGG network, Image: Davi Frossard|

4 Goal: understand building blocks and design principles



https://www.cs.toronto.edu/frossard/post/vgg16/

Convolution and Cross-Correlation @

¢ Convolution and Correlation (1D) 8
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e Convolution Yy=wkr Y= ., WETj g|= D, W_pTjik

k=—h AN
h . . .
e Cross-correlation y=w*x: y; = > wWipTjik flip of the weight matrix
- [ k=—h f N
/ !
weight .
output kernel Input

Easily convertible, more convenient to consider cross-correlation in Deep Learning
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¢ Translation equivariance by design new value (dest. pixels)



Examples (Cross-Correlation)
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Examples (Cross-Correlation)
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Examples (Cross-Correlation)
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Multi-Channel Convolution ®

4 Extension:

e color input images -> convolution kernel needs to have 3 channels

e stack of filters -> channels of the output feature map

/ height height
I m uidth

channel channel

©® Multi-channel cross-correlation:
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input channel filter spatial dimensions output channel

e input is 3D tensor, weight is 4D tensor, output is 3D tensor

e Essentially: a cross-correlation on spatial dims and fully-connected on channel dims
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Invariance and Equivariance @

13

Classification

— "Baloon"

Invariant to shift
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Segmentation Segmentation
v \/

shift

sky — sky

Equivariant to shift (commutes with shift)

Would be hard to achieve if the image was given as a general vector — we are using 2D grid
structure and require that all locations are treated equally



Geometric Deep Learning @

14

[M. Bronstein et al.: "Geometric Deep Learning"]

4 Concept: systematization of geometries as study of equivariances

e Apply this principle to systematize the zoo of NN architectures

Grids Groups Graphs Geodesics & Gauges

4 Key message: neural networks for processing geometric data should respect the structure
of the domain



Convolution as a Linear Operator

4 Convolutic}zn:

® Yj= ). WkTj—k
k=—h

¢ As matrix-vector product:
o Denote: i=j—k,thenk=j7—dand y; =>  w;_;x;
e Denote W, ; = w;_;
e Theny=Wzx

4 Convolution is a linear transform of a special structure:
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¢ Cross-correlation has flipped w, resulting in transposed W

e Backprop of convolution is cross-correlation and vice-versa
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Convolution from Equivariance @
Grid
Shift operator (1D)

| e

y S x y ST x

¢ Characterize linear transforms which are equivariant to shift:
o let S: R™ — R" be a shift matrix: S; ; =[j =i+1]
o let A: R" - R"
e equivariance: ASx = SAx for all x
e implies AS=S5A

e implies A; j11 = A;+1, for all 4,5 — "circulant" matrix (convolution)
4 Conclusion: a matrix is circulant if and only if it commutes with shift

¢ Further properties:
e Matrices satisfying AS = S A will have same eigenvectors
e Eigenvectors of shift S are the Fourier basis functions ®
e All convolutions can be represented as A = ®A(w)®", where A(w) = diag(®'w)
e Convolution Theorem: Ax = <I>((<I>Tw) ® (CIDTx))




Learned vs Engineered Filters

4 Gabor Filters (and generalizations) - mathematical model for V1 cells:

Equivariance to transformations + more design principles w.r.t. scale-space
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Active research on symmetry as a guiding principle in artificial and brain neural networks

4 CNN first layer filters (learned) 4 PCA of Image Patches

equivariance + learning Data statistics + regularization




Geometric Deep Learning on other Domains @

4 Popular architectures as instances of GDL blueprint

Architecture

CNN

Spherical CNN
Intrinsic | Mesh CNN

GNN
Deep Sets

Transformer
LSTM

Domain ()
Grid

Sphere / SO(3)
Manifold

Graph
Set

Complete Graph
1D Grid
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Symmetry Group ®
Translation
Rotation SO(3)

[sometry Iso(Q) /
Gauge Symmetry SO(2)

Permutation X,
Permutation X,
Permutation XZ,,

Time warping

[M. Bronstein et al.: "Geometric Deep Learning"]



Geometric Deep Learning: Graphs @ o

19

Graph G = (V,E) Node features X () functions T(X(Q))

Permutation group 2, Permutation matrix P Message passing
PX = (x,-1(;) ) F(PX,PAP') = PF(X,A)
Convolutional Attentional Message-passing
h; =¢ Xi»@ cij(x;) h; =¢ Xi»@ a(x;,x; ) (x;) h; = ¢| x;, ®¢(Xi»xj)
JEN JEN; JEN;

[M. Bronstein et al.: "Geometric Deep Learning"]



Pooling

Spatial size of the input image

l channels

224 x224x3 224 x224x64

i
Bl

112 x 128

H56[x 56 X 256

28 X 28 X 512 7
14 x14x 512

X 1000

|
/

@ convolution+ReLU

@ max pooling
fully connected+ReLLU

“~~1 softmax

— ' 4

conv(3x3, 64—64)
Result of conv(K x K, 3—64) followed by RelLU

4 Eventually want to classify -> need to reduce spatial dimensions

20



Pooling

4 Following approaches are used to reduce the spatial resolution: 21

e max pooling
e average pooling

e subsampling -> convolution with stride 13 | 23

max _ B
3 | 13 [Bazeid - 178

average 6 | 13 |
> | Inear
7 14 2 3 9 I2.5 ( )
1o 17 ] 4 '
subsample (linear)

4 max and average pooling are invariant to
permutations of responses within a cell

4 Once spacial resolution has been decreased, we
can afford to increase the number of channels




Pooling: Convolution with Stride ®

4 Full convolution + subsampling is equivalent to calculating the 29

result at the required locations only, stepping with a stride

Stride 1 | oy (24| @5 |

Y| Y1l Y21 Y| Ya| Ys

W
Stride2 : o | X1 | L2 | L3 | T4 | L5 : . "0
5 — = 5 _— o d _
- B B
I
- B B a’;
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. & B
- - i ]
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Yo (931

All variants and detail: [Dumoulin, Visin (2018): A guide to convolution arithmetic for deep learning]



Hierarchy of Parts Phenomenon

4 In networks trained for different complex problems many intermediate layers
activations correspond object parts

23



Hierarchy of Parts Phenomenon @

4 In networks trained for different complex problems many intermediate layers
activations correspond object parts

lamps in places net wheels in object net people in video net
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~~~~~~~~
~~~~~~~

~~

.......

1 h ---------------------------------------------- e Channel #43 in layer 4




Classification CNN: 1x1 and Structured Conv @

25

224 x 224 x3 224 x224x64

112 x 128

/ 28x28x512 . (X7x512
e T % 1x1x4096 1x1x1000

@ convolution+ReLU

max pooling
fully connected#ReLU

_ﬂ softmax

too many weights here -- 1x1 convolution for input of size 1x1

could use structured convolution is equivalent to fully connected



1x1 and Structured Convolutions @
¢ Kernel size 1x1: 26

Yo,i,j — SJ SJ SJ Wo,c,Ai,Aj Lc,i+Ai,j+Aj

c A1=0Aj5=0
— : :w07c7070 xc7i7j
c

¢ For all 4,5 a linear transformation on channels with a matrix w, 0.0

channels

Example 3x3, 256—256,
vector of weights is too expensive, simplify:
per output channel Input: WxHx256

conv(1x1,256 — 64)

conv(3x3,64 — 64)

conv(1x1,64 — 256)

l

Output: W'xH'x256

¢ Useful to perform operations along channels dimension:
e Increase /decrease number of channels

e |n combination with purely spatial convolution = separable transform



Deconvolution for Segmentation

Semantic segmentation architectures need unpooling / upsampling

Convolutional Encoder-Decoder

Pooling Indices

I Conv + Batch Normalisation + RelU
B Pooling  Upsampling Softmax

RGB Image

Output

Segmentation

We will look at up-sampling with “transposed” convolution (“deconvolution”)

27



Transposed Convolution

4 Deconvolution = Transposed strided convolution = backprop of strided convolution

Stride 2 Convolution

Stride 2 Deconvolution

Lo | L1 | L2 | L3 | L4 | Ts
Yo 0 Y2
X X1 )
- 1
Y| Y1 | Y2 | Ys | Ya | YUs .

28



Sparse & Deformable Convolutions @

4 Want to increase receptive field size 29

e without decreasing spatial resolution and having too many layers
e (Can increase kernel size, but it was also costly

e (Can use a sparse mask for the kernel

Dilated convolutions Can even learn sparse locations —
deformable convolutions
Output
T T e
. |
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