Deep Learning (BEV033DLE)
Lecture 4. Backpropagation

Alexander Shekhovtsov

Czech Technical University in Prague

4 What should it do
e Geometric understanding
4+ How to compute
e Forward / backward propagation
® Implementation
e General DAG, total derivatives

o Pitfalls

What is Backpropagation?

What is Backpropagation?

A) Method to learn neural networks

What is Backpropagation?

A) Method to learn neural networks

B) Method to optimize training loss

What is Backpropagation?

A) Method to learn neural networks
B) Method to optimize training loss
C) Defines the step direction for gradient descent

What is Backpropagation?

A) Method to learn neural networks

C

)

B) Method to optimize training loss
) Defines the step direction for gradient descent
)

D) Rules for computing gradient of a composite function

What is Backpropagation?

A) Method to learn neural networks

B) Method to optimize training loss

)

)
C) Defines the step direction for gradient descent
D) Rules for computing gradient of a composite function
)

E) Computationally efficient automatic differentiation for scalar-valued
composite functions

Linear Approximation to a Function @

¢ Function f: R™ — R" 3
¢ Local linear approximation: f(x+ Ax) = f(x)+ J(x)Azx+o(||Ax||)

(o on ... on\ [Aazl\

8901 8:62 OTm

Ofs Of2 .. Ofs Ax
fla+Ax)m fla)+ [O O oo 2

0x9 Oxm,

8fn 8fn 8fn
Jacobian (matrix) i SR g

4 Linear approximation is sufficient for finding descent directions
e (Steepest) Gradient Descent, Mirror-Descent
4 For a sum of functions their linear approximations add up

e SGD, Stochastic MD

4 For a composition of functions their linear approximations compose

Remark: partial derivatives should be continuous in a neighborhood. If not (e.g. with RelLU)
usually it is not a problem, but we will see a pitfall later.

Compositions @

Linear function: f(x) = Ax,
Jr=A
Composition of linear functions: f(x) = (Ao B)x = ABx,
Jr=AB
Composition of non-linear functions: f = goh,
Jr=JgJdp
Chain Rule: approximate every function in the composition locally around its

argument and compose approximations

Example f = /log(z?): Composition: / ologo pow,

|
N

z = log(y) -

Scalar Loss @

f:R*"—=R

¢ Consider composition of functions: F'= fogoh

Compose linear approximations: Jr = J¢J,J},
(Notice the order is the same)

® Let f be ascalar loss: f: R™ — R, then

((

[of O o
e)|)|

e Matrix product is associative, we can choose how to group multiplications
e Going left-to-right is cheaper: O(Ln?) vs. O((L —1)n?+n?)
e Where is backward pass?

Gradient

¢ Consider scalar-valued function: f: R®™ - R

¢ Jacobian J is a row vector (gg

@

Length
I =1Vafl

. Direction

L, Rn

® What is the steepest descent direction for the linear approximation?
JT

min (f($)+JAm) = Azr=-—

[Az][=1

¢ Gradient Vf is the column vector of partial derivatives

of
8:137;

y

|J

A

Backpropagation on a Higher Level @

4 Summary so far: 7

e Composition of functions — forward

Variables x — J1 — Jo — f3s — L= f3(fo(fi(z))) €R

® Linear approximation L(x+ Ax)~ L(x)+ J Az
e Compose linear approximations: J; = Js0.Jy0 J;
e Transposed for the gradient: V,L =J, = J'oJ, oJ;

e Go in the backward order multiplying one matrix-vector at a time

(reverse mode automatic differentiation)

Exercise @

Let f: R™ — R™. Match concepts on the left and explanations on the right.

a) Gradient of f 1) A linear mapping approximating f locally around a
b) Derivative of f point.

c) Jacobian of f 2) Expression of the derivative in coordinates as a matrix.

3) Column vector of partial (or total) derivatives in case
f is scalar-valued, i.e. m =1.

Examples @

¢ General procedure for back-propagating one layer y = y(x)

e [= L(y) — the loss function of the layer's output (may be composite)
e Assume already computed gradient V, L

e We compute VL = (Jy)T(VyL), in components: V, L =>". (ayj) (Vij)

J \Oz;
¢ y=Wz
o V, = WTVy
x
2 Yy=x+=z . .
o V., =V, V, =V, R
. 2
¢ Yy =2 wkTjik by
o V=V, L.
¢ Vi =3, iy]jv =S 2V, 2
[Vmi L= Zj xij iji_jvyj

Various special cases of linear dependencies can be handled in O(n) instead of O(n?)
A detailed complete example will follow

Computation Graph, Forward Propagation @

4 Approach 1: 10

e Declare

torch
torch.nn nn

net = nn.Sequential(i)
nn_Linegr() Input —> Linear —* ReLU —> Linear —»| Softmax

nn.ReLU()
nn.Linear(
nn.Softmax()

Nothing is computed yet

® Execute it with some input (forward propagation)

torch. randn(748) Software already knows the graph (here sequence),

net.forward(x)

what inputs and parameters each operation has and how
to apply it,

saves the output of each operation,

may optimize the computation.

Computation Graph, Forward Propagation @

4 Approach 2:

11

e Compute what we need

Higher level model graph

Declare and initialize variables

torch.nn Parameter
torch.nn.functional

Input —> Linear —>| Softmax —> loss
Parameter(torch. randn())
Parameter(torch.randn(10))

Perform some operations

a = W.matmul(x) + b
y = F.softmax(a)

loss = —(t * y.log()).sum()

Computation graph defined by the operations performed

®—> matmul —> + —>@—> softmax —>@—> log I * —> sum —> -

Tensor (array)
size [10]
grad_ fn=<AddBackward0>

4+ Wow! Any computation can be made a part of a neural network

Backward Propagation @

r N N
4 A 4 4
@-* matmul — + —>® > softmax —>@ > log > * > sum
_ /AN AN
a = linear(x, W,b) y = softmax(a) L= —t"log(y)
a = F.linear(x,W,b) y = F.softmax(a)

4 For the purpose of example we will propagate these larger blocks

Backward Propagation @ 0

13
@don’t need grad
~ ™
4
matmul — + —>@—> softmax —>@:: log > * —*sum[—> -
Vy& J
L= —t"log(y)

matmul

()
—>@:_softmax —>@:: log > * > sum— -
Y“ J Vy

Backward Propagation @ 0
14

don’'t need grad

j
Vo= Diag(y) —yy')Vy =90V, —y(y'V,)

(need to know either input a or directly the output y)

Backward Propagation

OO
VWT VbT

! I h

@:_matmul — + @:_softmax

—(—

\V/R Jva

Recall: a; = Zz W]zmz + b
vb — va

oa.;

V.=W'V,

oa;
_ J S)
; Wji_zjawji;% = TiVa,

J

CAm ¢

15

don’'t need grad

—> sum > -

Vw = (Vo)x" — outer (column-row) product

Backward Propagation @ 0
16

don’'t need grad
é)

@—> matmul — :_softmax —>@: log > * —*sum[—> -

fﬁ
-
@<] | v

Recall: y; = ==
Vo = (Diag(y) —

MySoftmax(torch.autograd.Function):
@staticmethod
forward(ctx, a):
y = a.exp()
y /= y.sum()

ctx.save_for_backward(y)
y

@staticmethod
backward(ctx, dy):
y = ctx.saved_tensors
da =y xdy — vy x (y * dy).sum()
da

Backward Propagation @ 0
17

don’'t need grad
é)

@—> matmul — :_softmax —>@:

eJ

Recall: y; = ST
V. = (Diag(y) —

log > * —>sum—* -

’§
\-
@<] | v

MySoftmax:
forward (
y = a.exp()
y /= y.sum()
Yy =y
y

backward (dy):

Y = Y

da =y xdy — y x (y *x dy).sum()
o

cleanup (
-y

General DAG

4 Consider the case when some of the inputs are used in several places

)=
7

O

Il

<

4 The total derivative rule emerges:
d
—f(b,y(b

4 Follows from the composition:

f(b) = f(0',y (%))

We can say then:

e Jacobian of composition = “total Jacobian”

softmax >@—> /
~9f L of df dy
T 0b | Oydb
A
b2
V=V + Vi

e Gradient of a composition = “total gradient”

18

General DAG

4 Need to find the order of processing
¢ a node may be processed when all its parents are ready
® some operations can be executed in parallel

e for the backward pass we reverse the edges

G@@ () 0'0 L))

v

19

General DAG

4 Any directed acyclic graph can be topologically ordered

e Equivalent to a layered network with skip connections

e Equivalent to a layered network with extended layer outputs

\

(v
e Dl Lo AN

20

General DAG @

4 Any directed acyclic graph can be topologically ordered

e Equivalent to a layered network with skip connections

e Equivalent to a layered network with extended layer outputs

O@O 0'0 L)

D——@

Can be made a total order, but here we do not see what can be executed in parallel

Pitfalls ®

4 Discontinuous Gradients Example 29

A nice smooth function: y = min(e”,1) +max(x+1,1)
Suppose we initialized with £ =0
Why the gradient is zero?

-10 -5 0 S

¢ Exponents e.g. in the softmax(z) = s~ will overflow when z; > 88.7

e may be cancelled in the numerator and denominator in advance

(%) logsoftmax is a more friendly function with bounded derivatives

Advanced Variants

4 Derivatives of implicit functions

4 Derivatives of optimization problems

