Deep Learning (BEV033DLE) Lecture 4. Backpropagation

Alexander Shekhovtsov

Czech Technical University in Prague

- ♦ What should it do
 - Geometric understanding
- ✦ How to compute
 - Forward / backward propagation
 - Implementation
 - General DAG, total derivatives
 - Pitfalls

What is Backpropagation?

What is Backpropagation?

)

A) Method to learn neural networks

What is Backpropagation?

- A) Method to learn neural networks
- B) Method to optimize training loss

- A) Method to learn neural networks
- B) Method to optimize training loss
- C) Defines the step direction for gradient descent

- A) Method to learn neural networks
- B) Method to optimize training loss
- C) Defines the step direction for gradient descent
- D) Rules for computing gradient of a composite function

- A) Method to learn neural networks
- B) Method to optimize training loss
- C) Defines the step direction for gradient descent
- D) Rules for computing gradient of a composite function
- E) Computationally efficient automatic differentiation for scalar-valued composite functions

Linear Approximation to a Function

- Function $f: \mathbb{R}^m \to \mathbb{R}^n$
- Local linear approximation: $f(x + \Delta x) = f(x) + J(x)\Delta x + o(\|\Delta x\|)$

- Linear approximation is sufficient for finding descent directions
 - (Steepest) Gradient Descent, Mirror-Descent
- For a sum of functions their linear approximations add up
 - SGD, Stochastic MD
- → For a composition of functions their linear approximations compose

Remark: partial derivatives should be continuous in a neighborhood. If not (e.g. with ReLU) usually it is not a problem, but we will see a pitfall later.

Compositions

• Linear function: f(x) = Ax,

$$J_f = A$$

- Composition of linear functions: $f(x) = (A \circ B)x = ABx$, $J_f = AB$
- Composition of non-linear functions: $f = g \circ h$, $J_f = J_a J_h$
- Chain Rule: approximate every function in the composition locally around its argument and compose approximations

Example $f = \sqrt{\log(x^2)}$: Composition: $\sqrt{\circ \log \circ pow_2}$

$$J_f = \left(\frac{\partial\sqrt{z}}{\partial z}\right)_{z=\log(x^2)} \left(\frac{\partial\log y}{\partial y}\right)_{y=x^2} \left(\frac{\partial x^2}{\partial x}\right)_x \qquad J_f = \left(z^{-1/2}\right) \left(y^{-1}\right) \left(2x\right)$$

- Consider composition of functions: $F = f \circ g \circ h$ Compose linear approximations: $J_F = J_f J_q J_h$ (Notice the order is the same)
- Let f be a scalar loss: $f: \mathbb{R}^n \to \mathbb{R}$, then

$$J_F = \left(\frac{\partial f}{\partial g_1} \ \frac{\partial f}{\partial g_2} \ \dots \ \frac{\partial f}{\partial g_n}\right) \left(\qquad J_g \qquad \right)$$

- Matrix product is associative, we can choose how to group multiplications
- Going left-to-right is cheaper: $O(Ln^2)$ vs. $O((L-1)n^3+n^2)$
- Where is backward pass?

- lacktriangle Jacobian J is a *row* vector $\left(\cdots \frac{\partial f}{\partial x_i}\cdots\right)$
- What is the steepest descent direction for the linear approximation?

$$\min_{\|\Delta x\|=1} \left(f(x) + J\Delta x \right) \quad \Rightarrow \quad \Delta x = -\frac{J^{\mathsf{T}}}{\|J\|}$$

Gradient $\nabla_x f$ is the *column* vector of partial derivatives $\left(\frac{\partial f}{\partial x_i}\right) = J^{\mathsf{T}}$

m

- ♦ Summary so far:
 - Composition of functions forward

- Linear approximation $L(x + \Delta x) \approx L(x) + J_L \Delta x$
- Compose linear approximations: $J_L = J_3 \circ J_2 \circ J_1$
- Transposed for the gradient: $\nabla_x L = J_L^\mathsf{T} = J_1^\mathsf{T} \circ J_2^\mathsf{T} \circ J_3^\mathsf{T}$
- Go in the **backward** order multiplying one matrix-vector at a time (reverse mode automatic differentiation)

Exercise

Let $f: \mathbb{R}^n \to \mathbb{R}^m$. Match concepts on the left and explanations on the right.

- a) Gradient of f
- b) Derivative of f
- c) Jacobian of f

- 1) A linear mapping approximating f locally around a point.
- 2) Expression of the derivative in coordinates as a matrix.
- 3) Column vector of partial (or total) derivatives in case f is scalar-valued, i.e. m=1.

- Examp
- General procedure for back-propagating one layer y = y(x)
 - L = L(y) the loss function of the layer's output (may be composite)
 - ullet Assume already computed gradient $abla_y L$
 - We compute $\nabla_x L := (J_y)^\mathsf{T} (\nabla_y L)$, in components: $\nabla_{x_i} L = \sum_j \left(\frac{\partial y_j}{\partial x_i}\right) (\nabla_{y_j} L)$
 - \bullet y = Wx
 - $\bullet \ \nabla_x := W^\mathsf{T} \nabla_y$
 - - ullet $\nabla_x := \nabla_y$, $\nabla_z := \nabla_y$
 - - ullet $\nabla_b := \nabla_y$
 - $\nabla_{w_k} := \sum_j \frac{\partial y_j}{w_k} \nabla_{y_j} = \sum_j x_{j+k} \nabla_{y_j}$
 - $\nabla_{x_i} := \sum_j \frac{\partial y_j}{x_i} \nabla_{y_j} = \sum_j w_{i-j} \nabla_{y_j}$

Various special cases of linear dependencies can be handled in O(n) instead of $O(n^2)$ A detailed complete example will follow

→ Approach 1:

Declare

```
import torch
import torch.nn as nn

net = nn.Sequential(
    nn.Linear(748, 200),
    nn.ReLU(),
    nn.Linear(200, 10),
    nn.Softmax(),
)
```


Nothing is computed yet

Execute it with some input (forward propagation)

```
x = torch.randn(748)
y = net.forward(x)
```

Software already knows the graph (here sequence), what inputs and parameters each operation has and how to apply it,

saves the output of each operation, may optimize the computation.

→ Approach 2:

Compute what we need

Declare and initialize variables

```
from torch.nn import Parameter
import torch.nn.functional as F
W = Parameter(torch.randn(10, 748))
 = Parameter(torch.randn(10))
```

Higher level model graph

Perform some operations

```
a = W_matmul(x) + b
 = F.softmax(a)
loss = -(t * y.log()).sum()
```

Computation graph defined by the operations performed

Wow! Any computation can be made a part of a neural network

Backward Propagation

12

♦ For the purpose of example we will propagate these larger blocks

$$L = -t^{\mathsf{T}} \log(y)$$

$$\nabla_{y_i} = \frac{\partial L}{\partial y_i} = -\frac{\partial}{\partial y_i} \sum_j t_j \log(y_j) = -\frac{1}{y_i} t_i$$

m

14

Recall:
$$y_j = \frac{e^{a_j}}{\sum_i e^{a_i}}$$

$$\nabla_{a_i} = \sum_{j} \frac{\partial y_j}{\partial a_i} \nabla_{y_j}$$

$$= \sum_{j} (y_i [i=j] - y_i y_j) \nabla_{y_j} = y_i (\nabla_{y_i} - \sum_{j} y_j \nabla_{y_j})$$

 $\nabla_a = (\mathrm{Diag}(y) - yy^\mathsf{T}) \nabla_y = y \odot \nabla_y - y(y^\mathsf{T} \nabla_y)$

(need to know either input a or directly the output y)

Backward Propagation

Recall:
$$a_j = \sum_i W_{ji} x_i + b$$

$$\nabla_b = \nabla_a$$

$$\begin{aligned} \nabla_{x_i} &= \sum_j \frac{\partial a_j}{\partial x_i} \nabla_{a_j} = \sum_j W_{ij} \nabla_{a_j} \\ \nabla_x &= W^\mathsf{T} \nabla_a \end{aligned}$$

$$\begin{split} \nabla_{W_{ji}} &= \sum_{j} \frac{\partial a_{j}}{\partial W_{ji}} \nabla_{a_{j}} = x_{i} \nabla_{a_{j}} \\ \nabla_{W} &= (\nabla_{a}) x^{\mathsf{T}} - \mathsf{outer} \; (\mathsf{column-row}) \; \mathsf{product} \end{split}$$

Recall: $y_j = \frac{e^{a_j}}{\sum_i e^{a_i}}$

$$\nabla_a = (\mathrm{Diag}(y) - yy^\mathsf{T}) \nabla_y = y \odot \nabla_y - y(y^\mathsf{T} \nabla_y)$$

```
class MySoftmax(torch.autograd.Function):
    @staticmethod
    def forward(ctx, a):
        y = a.exp()
        y /= y.sum()
        ctx.save_for_backward(y)
        return y

    @staticmethod
    def backward(ctx, dy):
        y = ctx.saved_tensors
        da = y * dy - y * (y * dy).sum()
        return da
```


Recall: $y_j = \frac{e^{a_j}}{\sum_i e^{a_i}}$ $\nabla_a = (\text{Diag}(y) - yy^\mathsf{T})\nabla_y = y \odot \nabla_y - y(y^\mathsf{T}\nabla_y)$

```
class MySoftmax:
    def forward(self, a):
        y = a.exp()
        y /= y.sum()
        self.y = y
        return y

def backward(self, dy):
        y = self.y
        da = y * dy - y * (y * dy).sum()
        return da

def cleanup(self):
    del self.y
```

Consider the case when some of the inputs are used in several places

The total derivative rule emerges:

$$\frac{\mathrm{d}}{\mathrm{d}b}f(b,y(b)) = \frac{\partial f}{\partial b} + \frac{\partial f}{\partial y}\frac{\mathrm{d}y}{\mathrm{d}b}$$

→ Follows from the composition:

$$f(\bar{b}) = f(\bar{b}^1, y(\bar{b}^2))$$

We can say then:

- Jacobian of composition = "total Jacobian"
- Gradient of a composition = "total gradient"

$$\nabla_b = \nabla_{\bar{b}^1} + \nabla_{\bar{b}^2}$$

- ◆ Need to find the order of processing
 - a node may be processed when all its parents are ready
 - some operations can be executed in parallel
 - for the backward pass we reverse the edges

General DAG

- ◆ Any directed acyclic graph can be topologically ordered
 - Equivalent to a layered network with skip connections
 - Equivalent to a layered network with extended layer outputs

General DAG

- ◆ Any directed acyclic graph can be topologically ordered
 - Equivalent to a layered network with skip connections
 - Equivalent to a layered network with extended layer outputs

Can be made a total order, but here we do not see what can be executed in parallel

Pitfalls

Discontinuous Gradients Example

A nice smooth function: $y=\min(e^x,1)+\max(x+1,1)$ Suppose we initialized with x=0 Why the gradient is zero?

- Exponents e.g. in the $\operatorname{softmax}(x) = \frac{e_i^x}{\sum_i e^{x_i}}$ will overflow when $x_i > 88.7$
 - may be cancelled in the numerator and denominator in advance
 - (\star) logsoftmax is a more friendly function with bounded derivatives

Advanced Variants

- Derivatives of implicit functions
- Derivatives of optimization problems