Injected Noises / Dropout

4 Injected Noises:
¢ input
e deep features
® parameters

_ Bayesian learning, robust local minima
e gradient updates

';,
'\‘
%
Q

o
X
\\§

3
Q
‘%
(X
(A
A
i/

7\
A
T X
\ /
()

\

N/
X
X

N

\/
A
(7

a
K
"
&
L/
V>

A
%

\‘\v
Q
‘:}

\)
N

(a) Standard Neural Net (b) After applying dropout.
[Hinton et al. (2012) Improving neural networks by preventing co-adaptation of feature detectors]
[Srivastava et al. (2014) Dropout: A Simple Way to Prevent Neural Networks from Overfitting]
4 During training:
e Randomly, "drop" some neurons -- set their outputs to zero

e This results in the associated weights not being used and we obtain a (random)
subnetwork

¢ \When learning, the network develops robustness to units being dropped
4 During testing:

e Use all units -- approximates ensemble of all random subnetworks

Mathematical Model

¢ How can we write dropout training mathematically?
(

e Introduce random Bernoulli variables Z; = <

\

¢ Prediction is random now?
e Denote the network output as f(x,Z;0)
e We have two choices how to make predictions:
- Randomized predictor: p(y|z,7Z) = f(x,Z;0)
- Ensemble: p(y|z) =Ez[f(z, Z;0)] = > _p(2)f(z,2;0)
4 We use randomized predictor for training (Zasier)

4 We use ensemble (or its approximation) for testing

NN

1, with probability p,

0, with probability 1 —p,

—U] e

L) e

ZEB

Z; ~ Bernoulli(0.3)

Note: Gaussian multiplicative N'(1,0°) noises work as well (Gaussian Dropout)

Training

Expected loss of randomized predictor:
e Double expectation in noises and data: E {E(%y),\,data {l(y,f(af,Z;H))H
e Same as: Kz gemoulli(q), (z,y)~data {l(y,f(a:,Z;H))}
What it means practically:
e Draw a batch of data
e For each data point 7 independently sample noises z;
e Unbiased loss estimate using a batch of size M
ﬁﬁl(yi,f@?i,zi;@))
e Compute forward and backward pass

e Will have increased variance of the stochastic gradient

Testing
¢ Use approximation (common default): Y
o E; [f(:z:,Z;H)} ~ f(x,Ez[Z];0) !
e Since Ez|Z] = p, we have —— NN FT2—
a=W(xoE|Z])=(pW)x
e i.e. need to scale down the weights _;J_:EB_

¢ Use sampling:
o K7 [f(xaz;e)} %ﬁZ?ﬁlf(:vi,zi;H)

e Generalizes slightly better than the above

e Can be used to also estimate model uncertainty

XZg

- True function
- Mean function
® Observations

Z; ~ Bernoulli(0.3)
E|Z]=p

True function

Mean of the ensemble —

Scatter of the ensemble —

[Louizos and Welling 2017]

-100

50

0

-50

e

0 2

Input

Effect on Features @
4 Experiment: 6

e MNIST auto encoder with 1 fully-connected hidden layer of 256 units
FEE A ™ . . T =% Fe "”f‘]
b b B t" b l: - I’- |
e N SR B B ol - - f i) b "
L] . i-‘ll' L8 S .llqt 34 [3 M l 1‘ o L PR L
: k i I i Aw #] N [.,_II N §
ol ey - % B] i =" W .= Y -
, y r —— y
1.:1-.‘ i,] 'r" 'u.---”. i E: 1Y rf_‘_~'_l'_.' L
- LF ™ T I'-.,. F = [; - | = —'-,: o, _‘_.
L 281 of €\ | WANE A= TAs) o e Py
e e e e e . i S s mer B B e S
S Y N S % L 37 M S X 5 5
CVAS . — = 2l
o8 S O U o [e) 9 Ny 2 8 T 9 T
£ wd -: 3 o il & . \.E £ f' g ‘z 'r 15_.; ‘r
% N -} e ~ il f.-l-
S 40 I N YR TS S S D Ty B G RS
e T, Rl TR PN P o b, ool PO
A] oA AT (L] Gt L7 e (20 i 61 I) 5 NS
- A r ; :'_ F‘ r"-f ; '_1 - -"_ { 4] . :_ i # =
S 1D O 2 s 'R L] T o Ve G D L) (5
- o - — =1 -~ =
% 17 a0Y e T B B :
‘= el A N 11| 2 e 1711 [l "E Vil ;"J’ e
= N PR e (B P P [I = _
al 47 &) !l ..1 ‘-'I L,_'_L ¥ .: -:: ,::j', “_ l'_.‘ . : i. " r‘: lJ" tx "_L
z 'flt- r .:' .'.-’ -I-; -I'--’rr y W) g "} 'I" “-‘. av S "‘" : |
L] = & L . .
i T,‘; . i' v !"',.l' - - £ .-- ‘- "'! ;:" = ,..:— s
B0 (P2 0 N2 e 1 A S G) 5 (Ol R
e iy o | D T o () AP el L B L
. ‘:’ L Ilr'.:" T = L =;J w-'v- S ;; el
=3 W g I._‘L.(—- ... ~r_-;-\. ‘J. ';_-\ -— Fr“ r., . -_-;_ ¥ -\ - ¥ ,_.-
- I'."* i? L ! O r'.) f- 4 'L”.I | q = Jl-. T

(a) Without dropout (b) Dropout with p = 0.5.
[Srivastava et al. (2014)]

4 Hypothehis: dropout prevents co-adaptation (learns simpler and more robust features)

4 Further interesting studies in the paper: effect on activation sparsity, connection to
ridge regression, etc.

Deep Learning (BEV033DLE)
Lecture 8
Adaptive SGD Methods

Czech Technical University in Prague

Local Minima @

4 There are several reasons for local minima 9

e Symmetries (Permutation invariances)

- Fully connected layer with n hidden units:

n! permutations

- Convolutional layer with ¢ channels:

c! permutations

- In a deep network many equivalent local minima, ; . A
. 1 A L\
but all of them are equally good -- no need to avoid -
e Loss function is a sum of many non-convex terms: LA
M ~
L(O) = Iy f(x::0)) LT e

-4 ’,_, 4"4
. X -6 -6
1 \ :

often convex non-linear

Stationary Points in High Dimensions

Let f(x): R™ — R — differentiable,
Stationary point: the gradient at x is zero

Saddle point: the gradient at x is zero but not a local extremum

1D

local max

inflection (saddle)
local min

Let f(x+ Ax)~ f(x)+ JAx+Ax" HAx

Let A have eigenvalues Aq,... A\,

Index: o« — the fraction of negative eigenvalues
a = 0 = local minimum

a =1 = local maximum

0 < a < 1= saddle point

2D
saddle point

10

Stationary Points in High Dimensions @

11

4 Insights from Theoretical Physics --- Gaussian Random Fields:

¢ |ocal minima are exponentially more rare than saddle points

e they become likely at lower energies (loss values)

Asymptotic relation for small alpha:

o 3
Index 2
13- ~ W2 E—E*|2
1.25 . . Q ~ 37 E*
- | (fraction of negative
1.15 ‘ m . '
y i eigenvalues)
,///
.""/‘
0 Lo
E—FE~

average energy of a st. point

[Bray & Dean (2007) The statistics of critical points of Gaussian fields on large-dimensional spaces]

Stationary Points in High Dimensions @

4 Experimental Confirmations in Neural Networks

0.30r

0.25]

0.20r *”

0.157

0.107

0.05¢

0.08'

[Pennington & Bahri 2017]

e 1 hidden layer

¢ =

— ¢ =273
¢ =1/2
¢ =1/3

— =14

—¢=1/8

—$=1/16

#parameters

#samples

o good agreement for small alpha (as expected)

12

Q L
< | MNIST ?
220 -
S
AL
IC_E 0,’. ‘ _

0.00 0.12 0.25

Index of critical point o

260 CIFAR-10 8
- 55 ' o |
(@)

5 50 '.\f ot
.g 45”. A

— 40 , ‘ -
0.05 0.10 0.15 0.20
Index of critical point «

[Dauphin et. al. 2017]

[Pennington & Bahri (2017) Geometry of Neural Network Loss Surfaces via Random Matrix Theory]

[Dauphin et. al. (2017) ldentifying and attacking the saddle point problem in high-dimensional non-

convex optimization]

High Dimensionality Helps Optimization

Achieve 0 training error
with sufficiently large networks

0.7_' T T — T
—Training
0.6\ —Test (at convergence) 60 -
051 \-
40 -
5 0.4/ | -
4 s
Wos 3
0.2t | .
0.1

4 8 16 32 64 128 256 512 1K 2K 4K , ,
Hidden Units 0.08 0.09

loss
[Neyshabur (2015)]

[Choromanska et al. (2015):

Histogram of SGD trials (MNIST)

13

nhidden

The Loss Surfaces of Multilayer Networks]

4 Summary:

e Local minima are rare and appear to be good enough

e But we need (highly) over-parameterized models to have this easy training

e \We hope that over-parameterized models will still generalize well

e Maybe, optimization should worry a bit about efficiency around saddle points

Problem: Gradient Descent Depends on Parameterization

Gradient Descent under Reparameterization

¢ Basic Example
e Want to minimize f(x)
By gradient descent: x'™! = 2! — o f’(2?), starting from z"
e Make a change of variables: y =2«
0 = 240
9(y) = f(y/2)
9'(y) =1/2f"(y/2) =1/2f(z)

e Perform gradient descent on g:

y =y —ag'(y)

e Express back in x:
t+1 _ ot 1 t
20" =2zt — a5 f'(x")
t+1 _ ot 1 t
o' =2 —agf(z").
¢ Substitution preserved the forward pass (equivalent initialization, same output)
¢ Substitution resulted in a different gradient

¢ We have many parameters, whose scales are chosen by architecture design and
initialization

15

Gradient Descent under Reparameterization @

® Lot £ R7 . . _ df(x) 16
et f: R™ — R and its derivative J(x) = .
Gradient descent:
o T 1 =x;—aJ(xy)
¢ Make a substitution: z = Ay (change of coordinate) and consider GD in y:

e Problem in new coordinates: m%{{n f(Ay)
yeR™

¢ GD: yr1 =y —a(J(Ay:)A)'
¢ Substitute back y = A2
e Almy 1= Aty —aAT T (xy)

o Obtained: z;.1 =z — a(AA") T (24)

. 1 =Y yzﬂ
’ Lo = Y2

¢ Similar for non-linear change of coordinates, e.g. normalization

Gradient Descent under Reparameterization

4 In ReLU networks we can rescale the weights without affecting the output:

e RelU units are 1-homogenous:

for s > 0: ReLU(sx)

(channels in conv networks)
_ 8f(A’w) 0f (w)
= f(w), but 7 5w

4 Can lead to completely different SGD behavior

f(Aw)

@
w341
\4 é)
w2ﬁ1
U o
W1 A1

o

Rescaling

NN/
N/

100

= max(0, sx) = smax(0,x)

e Can rescale inputs and outputs of each unit

4 Importance of weight initialization:

RN

(& "@e~

Obijective

&

—Balanced

2 —Unbalanced|
1.5

1
0.5

A |

0 100 200 300
Epoch
(a) Training on MNIST

e controls forward statistics (prevent activations from saturating)

e controls effective local learning rate

17

4 Another good example is BN: forward is invariant to weight scale, but backward is not

Approach 1: Steepest Descent in Invariance-Preserving Norm

Proximal Problem

¢ Let's revisit how do we find the step Ax for SGD
e Approximate: f(xzo+ Ax)~ f(xg)+JAx. This

¢ Find the step by solving Proximal Problem:

min (f(xo) + JAx#—%HAxH%)

19

approximation is local.

Ax x2 4
Vo e = >
Ar=—all L —
Tip1 = ¢ —aJ(xy)] — common SGD ; x|l <€
L1

¢ p-norm SGD, p > 1:
mina, (f(z0) +J Az + L[| Az?)
Ax,; = —ozsign(Jz')Uz'|ﬁ

©® Machalanobis distance SGD:
° nfn(f(x@—kJAx#—%HAwHM)

1
o ||Az|y; = (Ax"MAx)2 — Mahalanobis distance

Ax=—aM1JT

-- achieves different implicit regularization

-- can compensate uneven curvature,

but how do we choose M7

Path-SGD ®

4 In ReLU networks we can rescale the weights without affecting the output: 20

BN 2,

. *\
' .
\
'
'
'
.
\\ Lo
'a'--~s\
' .
X :
'
—> '
2 :
.
\\ Lo
'¢""~\
' .
|
; i '
'

4+ Path-SGD considers metric invariant to equivalent transformations
2/p

p
Prox. problem: argrrtijn n <VL(w(t)),w> - Z (H We, — H w(t))

vm[z]—lmlivg —d>’l)out[j]
[Neyshabur et al. (2015) Path-SGD: Path-Normalized Optimization in Deep Neural Networks]

o An efficient approximate solution is found

4 Outcomes:
o Invariant (robust due to approximation) to all inner rescaling
e Specialized for ReLU networks

e Probably no substantial advantage in case the initialization is good

Approach 2: Normalize

Trust Region Problem @

22

¢ Similar to proximal problem, but constrained optimization form:

min (f(zo)+ JAz)

[Az]l2<e

Equivalent to:

max min (JAx+)\(||Aa;H§ —52))
A>0 Ax

Step direction: Az = —%JT

|AzT|? = = A=]|

:C2 A

.
Trust region step: Ax = —5”‘§”2

e We can choose the metric / trust region differently from Euclidean

e The step length is controlled explicitly and is invariant to gradient magnitude

Differences of Convex vs. Non-Convex @ o

Why to step proportionally to the gradient: Why to normalize: 23

Strictly Convex Non-Convex

accelerate here

\\\../ be careful here

® No other stationary points than global ¢ Gradient carries no global information
minima e Need bigger steps where gradient and
¢ The further we are from the optimum, curvature are low
the larger is the gradient: du >0 e Need smaller steps when gradient and
o |[Vf(x)||*>pu(f(x)—f*) curvature are high
o |Vf(z)|>plz—2ar ¢ Makes sense to use trust region steps:
® Negative gradient points towards the) Aa::—%
optimum: e |f the trust region is ok, should guarantee
o (—Vfx*—z)>f—f"+illz—a*]? a steady progress

e Optimization need not be monotone in f

Box Trust Regions @

="

Trust region ||z]|cc <€
> T

¢ This time solve for step as:

e min (f(x)+JAx)

| Az;|[<e Vi

(In overparametrized models expect many parameters to have independent effect)

e Equivalent to:

maxmin (JAQC +> Ai([| Az ||* — 52))

A>0 Ax
2)\1sz — —Ji
Step direction: Az; = —2§i(Vf(at))7;

Trust region step: Az; = —elggﬁggfl

24

Adaptive Methods @

¢ Practical Solution: approximate expectations with running averages: 25
_ _ . E[V/f]
AT = —ETET]

Furhter approximate ||E[V f]|| = v/ (E[V f])2 < /(E[(Vf)?])

¢ Adagrad: ¢ RMSProp: ¢ Adam:

~

Gt i Gt i EWAg, (§1:t,z’)

_ 3 _
9t+1,z‘ — 9t,z' i 9t+1,z‘ — 91&,7; —c 9t+1,7; = 9t,z‘ — &
\/Mean (g%zt,z’) \/EWA (g%:t,i)

Jewns, (3,)

e In Adagrad:

\/i% guarantees convergence. Other methods would also need this in theory but are
typically presented and used with constant ¢

The flat average appears not very practical
e In Adam:
EWA with 8, = 0.9 works as common momentum (20 batches averaging)

EWA with 85 =0.999 (2000 batches averaging) makes the normalization smooth
enough

Conclusions @
4 Two views: 26

e Proximal problem with a metric respecting some invariances --> path SGD,
natural Gradient. Computation complexity vs approximation.

e Trust region problem: achieving invariance to local scaling via normalization.
4 Practical adaptive methods:

e Proposed empirically, not optimal in some good sense. But achieve some desired
properties like above, approximately.

e There is a space for alternative choices, like normalizing per layer / tensor of
parameters seems like a good idea.

