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Lecture 6: Synaptic plasticity and Hebb’s rule



Learning what is is?



Learning what is is?



Action-perception loop



Types of plasticity

I Structural plasticity is the mechanism describing the
generation of new connections and thereby redefining the
topology of the network.

I Functional plasticity is the mechanism of changing the strength
values of existing connections.



Hebbian plasticity

”When an axon of a cell A is near enough to excite
cell B or repeatedly or persistently takes part in firing it,
some growth or metabolic change takes place in both
cells such that A’s efficiency, as one of the cells firing B,
is increased.”

Donald O. Hebb, The organization of behavior, 1949
See also Sigmund Freud, Law of association by simultaneity, 1888
Santiago Ramn y Cajal - memories might instead be formed by
strengthening the connections between existing neurons to improve
the effectiveness of their communication, 1894



Possible neuronal mechanisms sub-serving learning and memory



Synaptic mechanism



Long term potentiaition



Hebbian model



Association
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Neuron model: In each time step the model neurons fires if∑
i wi r in

i > 1.5
Learning rule: Increase the strength of the synapses by a value
∆w = 0.1 if a presynaptic firing is paired with a postsynaptic firing.



Associative learning
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D.Before learning,
only adour cue

Before learning,
only visual cue

After 1 learning 
step, both cues

After 6 learning steps,
only visual cue



Features of associators and Hebbian learning

I Pattern completion and generalization, recall from partial input,
overlap between input and trained pattern (recognition of noisy
numbers)

I Prototypes and extraction of central tendencies, training on many
similar but not equivalent examples (individual face, many
common features in all faces)

I Graceful degradation and fault tolerance (loss of synapses or
whole neurons)



Hippocampus

I Hippocampus: centre of memory storage, The dentate gyrus is
thought to contribute to the formation of new memories. It is
notable as being one of a select few brainstructures currently
known to have high rates of neurogenesis in adult rats

I Neurons must be plastic
I Experiment: isolated slices of hippocampal tissue placed in

dishes



LTP experiment
I EXPERIMENTAL confirmation of Hebb’s rule (1949)
I i) single pulse is presented ii) stimulation with burst of pulses:

100 pulses/sec ii) After LTP induced, single pulse stimulation
I Postsynaptic cells must be depolarized to LTP be produced AND

receiving excitatory input - see Associative learning slide.



Original LTP by Bliss and Lomo, 1973

I Long-lasting changes of synaptic response characteristics
I High frequency-stimulus is applied (plasticity-induced tetanus)→

long-term potentiation(to strengthen, make more potent) (LTP)
average amplitude of EPSP increased

I Long frequency stimulus→ long-term depression (LTD)



Classical LTP and LTD

A.  Long term potentiation
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B.  Long term depression



Spike timing dependent plasticity (STDP)
I Bi-Poo experiments: voltage clamp for hippocamal cells in vitro,
→ Excitatory PostSynaptic Current (EPSP)→ critical time
window ∆t = 40ms

I critical window width is much larger, asymmetrical and
symmetrical (for bursting neurons) form of Hebbian plasticity,
inverse correlation in Purkinje cells (inhibitory) in the cerebellum
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Morris Water Maze - spatial memory

I i) mice training ii) Chemical blocking of LTP by AP5 impair spatial
learning, keep control group iii) AP5-treated mice significantly
impaired

I i) slices of the hippocampus were taken from both groups ii) LTP
was easily induced in controls, but could not be induced in the
brains of APV-treated rats

I Alzheimer’s disease→ cognitive decline seen in individuals with
AD may result from impaired LTP ??



Mathematical formulation of Hebbian plasticity - spiking models

wij (t + ∆t) = wij (t) + ∆wij (t f
i , t

f
j ,∆t ; wij ).

∆w±
ij = ε±(w)K±(tpost − tpre)

Spike Timing Dependent Plasticity (SPDP)¿ (i) Exponential plasticity
curve, (ii) Repeated spike pairings induced w UNBOUNDED growth
→ a weight dependent learning rate ε±

∆w±
ij = ε±(w)e∓

tpost−tpre

τ± Θ(±[tpost − tpre]).

Additive rule with hard (absorbing) boundaries:

ε± =

{
a± for wmin

ij ≤ wij ≤ wmax
ij

0 otherwise
,

Multiplicative rule (soft boundaries):

ε+ = a+(wmax − wij )

ε− = a−(wij − wmin). (1)



The LIF-neuron noise simulation I

I real neuron with 5000 presynaptic neuron
I 10 % simulation→ 500 Poisson-distributed spike trains (??) with

refractory corrections
I mean firing rate = 20 Hz, after correction 19.3 Hz, refractory

constant 2 ms.
I each presynaptic spike→ EPSP in form of α function (??)
I ω = 0.5→ regular firing, CV = 0.12, average rate 118 Hz.
I ω = 0.25→ irregular firing, CV = 0.58, average rate 16 Hz. The

CV > lower bound found in experiments



The LIF-neuron noise simulation II
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Synaptic scaling and weight distributions
I IF neuron with 1000 excitatory synapses driven by presynaptic

Poisson spike trains with average firing rate of 20 Hz,
∆w±

ij = ε±(w)K±(tpost − tpre) applying additive rule and
asymmetrical Gaussian plasticity windows

I (i) weights set to large values (ii) large frequency firing (see lec4)
(iii) apply additive STDP rule with marginally stronger LTD than
LTP

I increased CV, firing rate reduction, weight BINOMICAL
distribution after 5 mins
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Cross-correlation function
I s(∆t), s = 1 if a spike occurs in ∆t
I star line:C(n) = 0 for regular IF firing 270 Hz, w = 0.015, LTP

occurs as much as LTD
I square line:after Hebb’s learning, IF firing 18 Hz, some

presynaptic spikes elicits post-synaptic spikes
I C < 0, if presynaptic spikes reduce postsynaptic

(anti-correlation) and vice-versa

C(n) = 〈spre(t)spost (t + nδt)〉 − 〈sprespost〉
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