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Hodkin and Huxley models



First direct (intracellular) recorded action-potential (spike) - 1939!!
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Very nice theory
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Giant Nerve Cells of Squid

(A) Diagram of a squid, showing the location of its giant nerve cells. Different colors indi-
cate the neuronal components of the escape circuitry. The first- and second-level neurons
originate in the brain, while the third-level neurons are in the stellate ganglion and inner-
vate muscle cells of the mantle. (B) Giant synapses within the stellate ganglion. The sec-
ond-level neuron forms a series of fingerlike processes, each of which makes an extraordi-
narily large synapse with a single third-level neuron. (C) Structure of a giant axon of a
third-level neuron lying within its nerve. The i
squid giant axon and a mammalian axon are shown below.
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Hodkin and Huxley experiment NOBEL 1963
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Voltage Clamp Method

One internal electrode measures
membrane potential (Vpy) and is

Voltage clamp amplifier

connected to the voltage clamp
amplifier

compares membrane
potential to the desired
(command) potential

Measure

Saline
solution

Squid

axon Current-
assin

Recording et

electrode

When Vp, s different from the command
potential, the clamp amplifier injects current
into the axon through a second electrode.
This feedback arrangement causes the
‘membrane potential to become the same
as the command potential

The current flowing back
into the axon, and thus
across its membrane,

current

can be measured here

Voltage clamp technique for studying mem-
brane currents of a squid axon.
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All or None

The “all or none” nature of the spike
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Hodgkin, Huxley and Katz, 1952



Membrane current in
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response to voltage clamp (VC)

For subthershold depolarizing voltage
clamp, the recorded membrane current
is the current that flows via the leak
(passive) conductance + a small
capacitative current (at start and end of
the VC)

For suprathershold depolarizing
voltage clamp, the recorded
membrane current (after the fast
capacitaticve current) flows first
inwards (into the axon) and later
outward (from inside to the outside)
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Separating voltage-dependent active (excitable) currents Using
pharmacological agents 2 different currents flow via the
membrane during the spike

TEA blocks the late — slow non-inactivating current
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Changing ion concentration at bath with giant axon showed that
early current is carried by Na+ ions and late one by K+ ions
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lon currents (K+ and Na+) for various depolarizing voltage clamp
(and extracting respective ion conductances)

IK = 8« (Vm_ EK); INu = 8na (Vm_ ENG)

The slow (K) current (conductance) .1
does not inactivate during VC

The K conductance rises slower .2

than it decays at end of VC

The fast (early) Na conductance .3
inactivates during VC

————Direction reversed
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Fitting an equation for the K current (K-conductance)
during/following VC

K-current in response to a step voltage
clamp of 25 mV (upstroke) — slow rise
following the VC and faster decay at the
end of the VC

Potassium conductance
(m.mho/cm?)
O = NWAWVMO N®D

Mathematically — the rising phase of K-current can be described as a power of 4
(namely as (1 — exp (-t))* and the decay as exp (-4t)

I 4
I =gxh
n represents the proportion of K-ion channels in the open state

“These equations may be given a physical basis if we assume that potassium ions can
only cross the membrane when four similar particles occupy a certain region of the
2membrane..." Hodgkin AL, Huxley AF. 1952 J Physiol (Lond) 117:500-544 13 90N



Graphical interpretation of H&H model for the K channel

Closed K channel (by 4 n gates)
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The activation function, n, and the rate functions «, and g,

g =Jgn*,
dn

$=an (1 "n)_ﬂnn’

where Jg is a constant with the dimensions of conductance/cm?, «, and B,
are rate constants which vary with voltage but not with time and have
dimensions of [time]~, n is a dimensionless variable which can vary between

0 and 1.



Similar procedure is used to extract the activation (m) and
inactivation (h) parameters for the Na current

(mv)

: izi 9INa =m3tha ’
R dm
O dr = %m (1—m)—Bpm,
Ina | ~40mV dk
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Fitting Na current for different VC depolarizing values
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Graphical interpretation of H&H model for the Na channel

Na channel (by 3 activated m
gates and 1 inactivated h gate)

3 (fast) m (activated) gates
open with depolarization

1 (slow) h (inactivated) gate
closes with depolarization

Open Na channel
Na outside

N
~— | A




Overlay of the action potential (voltage) and underlying Na and K
conductances
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Fig. 17. Numerical solution of egn. (31) showing comp ts of b conduct: (g) during
propagated action potential (- V). Details of the analysis are as in Fig. 15.




Hodgkin—Huxley model

Resting state
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Figure: Typical form of an action potential; redrawn from an oscilloscope
picture from Hodgkin and Huxley (1939).



The minimal mechanisms

Depolarization

Resting potential
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HH stucture

> /ion = giAon( V- Eion)
» voltage and time dependent variables n(V, t),m(V, t),h(V,t)

gAK(Va t) = gKn4
gna(V, t) = gnam®h

R 8
Capacitor _—— C ‘ ‘ S SEIELEE Resistance of ion channels
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Hodgkin—Huxley equations and simulation

dv
Cyp = —gkn*(V = Ex) — gnam®A(V — Exa) — gi(V — EL) + lex(1)

dn
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lon channels resistance
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Matlab implementation

3% Integration of Hodgkin--Huxley equations with Euler method
clear; figure;iclf;

%% Setting parameters
% Maximal conductances (in units of mS/cm*2); 1=K, 2=Na, 3=R
g(1)=36; g(2)=120; g(3)=0.3
% Battery voltage ( in mV); l=n, 2=m, 3=h
E(1l)=-12; E(2)=115; E(3)=10.613;
% Initialization of some variables
I ext=0; V=-10; x=zeros(1,3); x(3)=1; t _rec=0;
% Time step for integration
dt=0.01;

%% Integration with Euler method

for t=-30:dt:500
if t==10; I_ext=6; end % turns external current on at t=10
if t==200; I ext=0; end % turns external current off at t=40
alpha functions used by Hodgkin-and Huxley
Alpha(l)=(10-V)/(100*(exp({(10-V)/10)-1});
Alpha(2)=(25-V)/(10*(exp((25-V)/10)-1));
Alpha(3)=0.07*exp(-V/20);
% beta functions used by Hodgkin-and Huxley

Beta(1)=0.125*exp(-V/80);

Beta(2)=d4*exp(-V/18);

Beta(3)=1/(exp((30-V)/10)+1);

a*

4 tau x and x_0 (x=1,2,3) are defined with alpha and beta
tau=1./(Alpha+Beta);
x_0=Rlpha.*tau;
% leaky integration with Euler method
x=(1l-dt./tau).*x+dt./tau.*x_0; % x is m,n,h
% calculate actual conductances g with given n, m, h
gnmh(1)=g(L)=x(1)"4;
gnmh(2)=g{(2)*x(2)"3*x(3);
gnmh (3)=g(3);
% Ohm's law
I=gnmh.*(V-E);
% update voltage of membrane
VeVedt s (I_ext=sum(I));
3

record some variables for plotting after equilibration
if t>=0;

t_rec=t_rec+l;

x_plot(t_rec)=t;

¥_plot(t_rec)=v;

end

N



Refractory period

waiting for inactivation of sodium channels about 1 ms
absolute refractory period limiting firing rate to 1000Hz
hyperpolarizing activity further limits the neuron’s rate

relative refractory period

brainstem neurons 600Hz, cortical neurons 3Hz

vV v.v. v Yy



Propagation of action potentials

vV v v v v Yy

action potentials=spikes travel about 10 m/s.
non-loss signal transfer - SLOW

myelin = FAST lossy signal transfer in axon
Ranvier nodes = AP regeneration

myelination happens after second year of age
Alzheimer deased - DESmyelination!



NON-LOSS transfer

response o stimulus, generating
an action potential here
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LOSSY transfer

(A) Myelinated ax

Node of
Ranvier

Oligodendrocyte

(B} Action potential propagation

t=15




Stimulation of neuron
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HH - simplification: Hugh Wilson model for neocortical neurons

h=1-n
h = 1 no inactivation of the fast Na™ channel combining leakage
and Na channel, only for cortical neurons

R describes recovery of membrane potential
2 differential equations

v

v

v

v

v

av
CE = —gkR(V — Ex) — gna(V)(V — ENa) + lex(t)

dR

g = ~[R-F(V)]



Wilson model

» more realistic mammalian neocortical neurons

» two more channels types — more diverse firing

» cation C2* described by gating variable T

» slow hyperpolarizing current Ca?>*-mediated K+ described by
gating variable H

av
dt
dR

THE

ar

T gt

@

TH gt

gNa( V)
Ro(V)

To(V)

C

—9Na(V — Ena) — gk R(V — Ex) — 97(V — ET) — gnH(V — Ep -
—[R— Ro(V)]
—[T = To(V)]

—[H=3T(V)]
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Wilson model:results

» RS: regular spiking neuron

» FS: fast spiking neuron

» CS: continously spiking neuron
» IB: bursting neuron

A. Fast spiking neuron
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Matlab implementation

%% Integration of Wilson model with the Euler method
clear; clf;

%% Parameters of the model: 1=K,R Z=Ca,T 3=KCa,H 4=Na
g(1)=26; 9(2)=2.25; g(3)=9.5; g(4)=1;

E(1)=-.95; E(2)=1.20; E(3)=E(1); E(4)=.50;

%% Initial values
dt=.081; I_ext=0; V=-1; x=zeros(1,4);
tau(l)=dt./4.2; tau(2)=dt./14; tau(3)=dt./45; tau(4)=1;

%% Integration
t_rec=0;

for t=-100:dt: 200
switch t;
case @; I_ext=1;
end

XO(1)=1.24 + 3.7*V + 3.2*VAZ;
X0(2)=4.205 + 11.6*V + 8 *VAZ;
X0(3)=3"x(2);

X0(4)=17.8 + 47.6%V +33.8%VAZ;

x=x-tau.*(x-x@); %rem x(4)=x@(4) because tau(4)=1
=g.*%. *(V-ED;
V=V+dt*(I_ext-sum(I));

if t>=0;
t_rec=t_rec+l;
x_plot(t_rec)=t;
y_plot(t_rec)=\
end
end % time loop

%% Plotting reults
plot(x_plot,1@@*y_plot); xlabel('Time'); ylabel('Membrane potential');




Physiology versus Neurons Models

Histological Neurons
A

Rall (1964)

Hlstologlcal Vs. Schmetic Neurons
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Physiology versus Neurons Models

Understand experimental synaptic potentials recorded at the soma

1. Most of the input current flows into the dendrites (not directly to soma)
2. Dendrites are non-isopotential electrical devices

(i) voltage attenuates from synapse to soma;
(ii) it takes time (delay) for the PSP to reach the soma;
(iii) somatic EPSP/IPSP shape is expected to change with synaptic location




Dendrit Cable Theory

Rall Cable Theory for Dendrites

Understanding (mathematically) the impact of
(remote) dendritic synapses (the input)
on the soma/axon (output) region

Wilfrid Rall




Cylindric model

A. Physiologically & morphologically caharacterized neuron

1.2 038 0.4

B. Cable model
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Voltage attenuation

Synaptic potentials attenuate from the synapse origin
towards other regions of the dendrites
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Axial and membrane current

synapse

Membrane current (lost via membrane resistance)
A A 4

.

> >

Axial current (originated from the synapse)




Passive cable equations

2=tV &)



Compartmental models

A. Chain of compartments C. Compartmental reconstruction

SNER SN

B. Branching compartments




Cable theory

» discretization - compartments like branching j, j+ 1, j + 1
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Steady state condition

(“Sealed-end” boundary) dV/dX = 0; x=L

2
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Simulating voltage attenuation

3
Input branch
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i 0 5 05 0% Rall and Rinzel, 1973



Simulators
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