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Lecture 10: Decoding and Encoding



Why information theory

I quantifying information that sensory neuron convey about the
world

I how much information is spike train ti transmitting, is this
transmission large or small?

I stimulation estimate (dot) estimated by ML or Bayes



Communication channel as studied by Shanon
I (i) information depends on frequency of messages pi = P(yi ), (ii)

independent information should be additive
(f (x , y) = f (x) + f (y)): p(x , y) = p(x)p(y)

I logarithm has these characteristics: I(yi ) = −log2(pi ), how much
we can learn relative what is known a priori.

I ENTROPY: average amount of information:
S(X ) = −

∑
i pi log2(pi )

I Gaussian probability: p(x) = 1√
(2π)σ

e
(x−µ)2

2σ2 ←

S = 1
2 log2(2πeσ2), depends only on variability (ENERGY)



Example: ordering drink in restaurant
I rate coding: one hand can carry log2(6) = 2.58bits of

information, MORE ROBUST TO NOISE
I temporal coding: one hand can convey 25 = 32 distinct

messages, 5 bits of information



Entropy of Spike Train with temporal coding

I estimated in 1952 by MacKay and McCulloch, first application of
information theory to nervous system, 4 years after Shannon

I r̄ : mean rate, ∆τ : time resolution, T : length of spike,
occurrence of 1 p = r̄∆τ

I set of different strings, e.g. 1111111 . . . 111111
I counting the number of different spike trains that can be

distinguished given our time resolution



Spike Train Calculation
I total number of bins N = N/∆τ , number of 1 (spikes) N1 = pN,

of 0 N0 = (1− p)N, number of possible LARGE strings
Nstrings = N!

N1!N0!

I entropy S = log2
N!

N1!N0!
= 1

ln2 (lnN!− lnN1!− lnN0!)

I Stirling’s approximation lnx! = x(lnx −1) + . . ., ln2(x) = ln(x) ln2,
all symbols K are equal, S = −

∑K
i=1(1/K )log2(1/K ) = log2K

S =
1

ln2
(lnN!− lnN1!− lnN0!)

=
1

ln2
(NlnN − N1lnN1 − N0lnN0 − (N − N1− N0)),N = N0 + N1

= − 1
ln2

N(
N1
N

ln
N1
N

+
N0
N

ln
N0
N

)

=
N
ln2

(plnp + (1− p)ln(1− p))

= − T
∆τ ln2

(r̄∆τ ln(r̄∆τ) + (1− r̄∆τ)ln(1− r̄∆τ)) ∝ T , r̄



Entropy rate S/T approximation
I approximating the entropy of spike trains
I limiting behaviour, ∆τ is small, small bins, high resolution→

Taylor series
I entropy is lager than 1 bits, r̄ ∼ 50s−1, ∆τ ∼ 1ms, 5.76 bits per

spike ∼ log2(e/r̄∆τ), 288 bits/sec

S/T ≈ r̄ log2(
e

r̄∆τ
)



Entropy of spike rate count
I different coding scheme - before the position was relevant! Now

we want to calculate S(spikecount) = −
∑

n p(n)log2p(n)
I we are counting spikes in some large window T → measuring

rate of spiking, p(n) is probability of observing n spikes in
window of length T

I p(n) =?,
∑

n p(n) = 1, average spike count 〈n〉 = r̄T ,
MAXIMAZING spiking count ENTROPY

I p(n) ∝ exp(−λn), λ = ln(1 + (r̄T )−1), substituing
I S(spikecount) ≤ log2(1 + 〈n〉) + 〈n〉log2(1 + 1/〈n〉) bits
I capacity 1 per bit, 〈n〉 ≤ 3.4 bits



Channel capacity
I Mutual information Imutual = S(X ) + S(Y )− S(X ,Y ), model of

channel y = gs + η, where η is normal distribution and g is gain
I adding the noise to the signal itself and than transducing,

y = g(s + neff ), neff = η/g
I Example:resolution of our visual system, noise introduced by the

motor system
I information transmission can be increased by increasing

variability of the input signals. High variability of spike trains is
well suited for transmission in noisy neural systems

I =
1
2

log2

(
1 +

〈s2〉
〈η2〉/〈g2〉

)

I =
1
2

log2

(
1 +

〈s2〉
〈n2

eff 〉

)
=

1
2

log2(1 + SNR)



Summary

I measuring entropy is difficult→ estimating probability
distributions

I small events in the entropy→ large factor in entropy (log).
Realiable measurements of rare events

I overestimating entropy due to potential miss of rare events with
high information content



Entropy measured from single neuron

I 65 visual stimuli in macaques performing a visual task (23
monkey and human faces and 42 nonfaces images from real
word), 14 face-selective neurons

I how much information is available about each stimulus in the set
I measuring firing rate in poststimulus phase (100 . . . 500ms).
I defining information between stimulus S = {si} and responce

R = {ri}, I(s,R): amount of information about stimulus s, I(S,R)
-average information gain

I(s,R) =
∑

r

P(r |s)log2
P(r |s)

P(r)

E. Rolls, Information in the Neuronal Representation of Individual Stimuli in the Primate Temporal Visual Cortex, Journal of Computational
Neuroscience 4,309-333,1997



AM242 - quantitative analyses



AM242 - quantitative analyses



AM242 - quantitative analyses



AM242 - any coding at the beginning?



Population coding (encoding and decoding)

Probability of neural response for a sensory input (encoding):
P(r|s) = P(r s

1 , r
s
2 , r

s
3 , ...|s)

Decoding: P(s|r) = P(s|r s
1 , r

s
2 , r

s
3 , ...)

Stimulus estimate: ŝ = arg maxs P(s|r)

Bayes’s theorem: P(s|r) = P(r|s)P(s)
P(r)

Likelihood: P(r|s),P = f (s)



Decoding with response tuning curves
I we need at least two tuning curves ri = fi (s)to estimate the

stimulus
I responses of neurons ri are not correlated and tuning curves

have Gaussian probability
I decoding using ML estimate - equivalent to least square fit

P(r|s) =
∏

i

P(ri |s)

P(ri |s) =
1√
2πσ

e−(ri − fs(s))2/2σ2
i

ŝ = argmin
∑

i

(
ri − fi (s)

σi

)2



Population vector decoding

I e.g. Gaussian or cosine tuning curve: fi (s) = e−(s − spref
i /2σ2

RF ),
σRF is receptibe field size

I Easy implementation in brain: dot product, normalization needed

ŝ =
∑

i

ris
pref
i

r̂i =
ri − rmin

i
rmax
i

ŝpop =
∑

i

r̂i∑
j r̂j

spref
i



Population vector decoding - example



Example of coding model
I noisy model is used: ri = fi (s) + ηi , fi (s) = e−(s − spref

i /2σ2
RF )

A. Pouget, Information Processing with population Codes, Nature Reviews, Neuroscience,2000



Implementations of decoding mechanisms with DNF



Quality of decoding
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