Neuroinformatics

May 10, 2018

Lecture 10: Decoding and Encoding

Why information theory

- quantifying information that sensory neuron convey about the world
- how much information is spike train t_itransmitting, is this transmission large or small?
- stimulation estimate (dot) estimated by ML or Bayes

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Communication channel as studied by Shanon

- (i) information depends on frequency of messages p_i = P(y_i), (ii) independent information should be additive (f(x, y) = f(x) + f(y)): p(x, y) = p(x)p(y)
- ► logarithm has these characteristics: $I(y_i) = -log_2(p_i)$, how much we can learn relative what is known a priori.
- ENTROPY: average amount of information: $S(X) = -\sum_{i} p_i log_2(p_i)$
- Gaussian probability: $p(x) = \frac{1}{\sqrt{(2\pi)\sigma}} e^{\frac{(x-\mu)^2}{2\sigma^2}} \leftarrow$

 $S = \frac{1}{2} \log_2(2\pi e\sigma^2)$, depends only on variability (ENERGY)

Fig. 5.6 The communication channel as studied by Shannon. A message x is converted into a signal s = f(x) by a transmitter that sends this signal subsequently to the receiver. The receiver generally receives a distorted signal r consisting of the sent signal s convoluted by noise η . The received signal is then converted into a message y = g(r) [adapted from C. Shannon, *The Bell System Technical Journal* 27: 379–423 (1948)].

Example: ordering drink in restaurant

- rate coding: one hand can carry log₂(6) = 2.58bits of information, MORE ROBUST TO NOISE
- temporal coding: one hand can convey 2⁵ = 32 distinct messages, 5 bits of information

Entropy of Spike Train with temporal coding

- estimated in 1952 by MacKay and McCulloch, first application of information theory to nervous system, 4 years after Shannon
- ► \bar{r} : mean rate, $\Delta \tau$: time resolution, T : length of spike, occurrence of 1 $p = \bar{r} \Delta \tau$
- set of different strings, e.g. 1111111...111111
- counting the number of different spike trains that can be distinguished given our time resolution

Spike Train Calculation

- ► total number of bins $N = N/\Delta \tau$, number of 1 (spikes) $N_1 = pN$, of 0 $N_0 = (1 - p)N$, number of possible LARGE strings $N_{strings} = \frac{N!}{N_1!N_0!}$
- entropy $S = log_2 \frac{N!}{N_1!N_0!} = \frac{1}{ln^2} (lnN! lnN_1! lnN_0!)$
- ► Stirling's approximation $lnx! = x(lnx 1) + ..., ln_2(x) = ln(x) ln^2$, all symbols K are equal, $S = -\sum_{i=1}^{K} (1/K) log_2(1/K) = log_2 K$

$$S = \frac{1}{ln2}(lnN! - lnN_{1}! - lnN_{0}!)$$

= $\frac{1}{ln2}(NlnN - N_{1}lnN_{1} - N_{0}lnN_{0} - (N - N1 - N_{0})), N = N_{0} + N_{1}$
= $-\frac{1}{ln2}N(\frac{N1}{N}ln\frac{N1}{N} + \frac{N0}{N}ln\frac{N0}{N})$
= $\frac{N}{ln2}(plnp + (1 - p)ln(1 - p))$
= $-\frac{T}{\Delta\tau ln2}(\bar{r}\Delta\tau ln(\bar{r}\Delta\tau) + (1 - \bar{r}\Delta\tau)ln(1 - \bar{r}\Delta\tau)) \propto T, \bar{r}$

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Entropy rate S/T approximation

- approximating the entropy of spike trains
- \blacktriangleright limiting behaviour, $\Delta \tau$ is small, small bins, high resolution \rightarrow Taylor series
- entropy is lager than 1 bits, r̄ ~ 50s⁻¹, Δτ ~ 1ms, 5.76 bits per spike ~ log₂(e/r̄Δτ), 288 bits/sec

$$S/T pprox ar{r} \log_2(rac{e}{ar{r}\Delta au})$$

Entropy of spike rate count

- ► different coding scheme before the position was relevant! Now we want to calculate $S(spikecount) = -\sum_{n} p(n) log_2 p(n)$
- ▶ we are counting spikes in some large window T → measuring rate of spiking, p(n) is probability of observing n spikes in window of length T
- ► p(n) =?, $\sum_{n} p(n) = 1$, average spike count $\langle n \rangle = \overline{r}T$, MAXIMAZING spiking count ENTROPY
- ▶ $p(n) \propto \exp(-\lambda n), \lambda = \ln(1 + (\overline{r}T)^{-1})$, substituing
- $S(spikecount) \leq log_2(1 + \langle n \rangle) + \langle n \rangle log_2(1 + 1/\langle n \rangle)$ bits
- capacity 1 per bit, $\langle n \rangle \leq$ 3.4 bits

Channel capacity

- Mutual information I_{mutual} = S(X) + S(Y) − S(X, Y), model of channel y = gs + η, where η is normal distribution and g is gain
- Adding the noise to the signal itself and than transducing, y = g(s + n_{eff}), n_{eff} = η/g
- Example:resolution of our visual system, noise introduced by the motor system
- information transmission can be increased by increasing variability of the input signals. High variability of spike trains is well suited for transmission in noisy neural systems

$$I = \frac{1}{2} log_2 \left(1 + \frac{\langle s^2 \rangle}{\langle \eta^2 \rangle / \langle g^2 \rangle} \right)$$
$$I = \frac{1}{2} log_2 \left(1 + \frac{\langle s^2 \rangle}{\langle n_{eff}^2 \rangle} \right) = \frac{1}{2} log_2 (1 + SNR)$$

Summary

- \blacktriangleright measuring entropy is difficult \rightarrow estimating probability distributions
- ► small events in the entropy → large factor in entropy (log). Realiable measurements of rare events
- overestimating entropy due to potential miss of rare events with high information content

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Entropy measured from single neuron

- 65 visual stimuli in macaques performing a visual task (23 monkey and human faces and 42 nonfaces images from real word), 14 face-selective neurons
- how much information is available about each stimulus in the set
- measuring firing rate in poststimulus phase (100 ... 500ms).
- ▶ defining information between stimulus S = {s_i} and responce R = {r_i}, I(s,R): amount of information about stimulus s, I(S,R) -average information gain

$$I(s,R) = \sum_{r} P(r|s) log_2 \frac{P(r|s)}{P(r)}$$

E. Rolls, Information in the Neuronal Representation of Individual Stimuli in the Primate Temporal Visual Cortex, Journal of Computational Neuroscience 4,309-333,1997

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

AM242 - quantitative analyses

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへ(?)

AM242 - quantitative analyses

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

AM242 - quantitative analyses

AM242 - any coding at the beginning?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 「臣」のへ(?)

Population coding (encoding and decoding)

Probability of neural response for a sensory input (encoding): $P(\mathbf{r}|s) = P(r_1^s, r_2^s, r_3^s, ...|s)$

A D F A 同 F A E F A E F A Q A

Decoding: $P(s|\mathbf{r}) = P(s|r_1^s, r_2^s, r_3^s, ...)$

Stimulus estimate: $\hat{s} = \arg \max_{s} P(s|\mathbf{r})$

Bayes's theorem: $P(s|\mathbf{r}) = \frac{P(\mathbf{r}|s)P(s)}{P(\mathbf{r})}$

Likelihood: $P(\mathbf{r}|s), P = f(s)$

Decoding with response tuning curves

- ► we need at least two tuning curves r_i = f_i(s) to estimate the stimulus
- responses of neurons r_i are not correlated and tuning curves have Gaussian probability
- decoding using ML estimate equivalent to least square fit

$$P(\mathbf{r}|\mathbf{s}) = \prod_{i} P(r_{i}|\mathbf{s})$$

$$P(r_{i}|\mathbf{s}) = \frac{1}{\sqrt{2\pi\sigma}} e^{-} (r_{i} - f_{\mathbf{s}}(\mathbf{s}))^{2} / 2\sigma_{i}^{2}$$

$$\hat{\mathbf{s}} = \operatorname{argmin} \sum_{i} \left(\frac{r_{i} - f_{i}(\mathbf{s})}{\sigma_{i}} \right)^{2}$$

Population vector decoding

- e.g. Gaussian or cosine tuning curve: $f_i(s) = e^{-}(s s_i^{pref}/2\sigma_{RF}^2)$, $\sigma_R F$ is receptibe field size
- Easy implementation in brain: dot product, normalization needed

$$\hat{s} = \sum_{i} r_{i} s_{i}^{\text{pref}}$$

$$\hat{r}_{i} = \frac{r_{i} - r_{i}^{\min}}{r_{i}^{\max}}$$

$$\hat{s}_{\text{pop}} = \sum_{i} \frac{\hat{r}_{i}}{\sum_{j} \hat{r}_{j}} s_{i}^{\text{pref}}$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Population vector decoding - example

Example of coding model

• noisy model is used: $r_i = f_i(s) + \eta_i$, $f_i(s) = e^-(s - s_i^{\text{pref}}/2\sigma_{RF}^2)$

A. Pouget, Information Processing with population Codes, Nature Reviews, Neuroscience, 2000

🛯 ୬ବ୍ଚ

Implementations of decoding mechanisms with DNF

イロト 不得 トイヨト イヨト

Quality of decoding

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

Fred Rieke (1995), **Spikes, exploring the neural code**, The MIT Press, 3st edition.

- E. Rolls, Information in the Neuronal Representation of Individual Stimuli in the Primate Temporal Visual Cortex, Journal of Computational Neuroscience 4,309-333,1997
- S. Funahashi, C.J. Bruce and P.S. Goldman-Rakic, Mnemonic coding of visual space in the monkeys dorsolateral prefrontal cortex, J Neurophysiol 61:331349, 1989

(ロ) (同) (三) (三) (三) (○) (○)

A. Pouget, Information Processing with population Codes, Nature Reviews, Neuroscience,2000