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Computational cognitive modeling

Computational cognitive modelling

= simulations of complex mental processes in different areas of cognition

Goal is to describe, understand, model and predict observed human 
behaviour

Cognition

= mental process of knowing, including aspects such as awareness, 
perception, reasoning and judgement

Latin word cognition: -co (intensive) + nosecere (to learn)

Modeling

Data never speak for themselves, require a model to be understood and 
explained

Several alternative models -> compare -> quantitative evaluation and 
intellectual judgement

Karla Stepanova, Neuroinformatics, 22.5.2024



Motivation

Brain-to-body mass ratio,

Encephalization Quotient

Treeshrew (squirrel)
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The environment and lifestyle 
shape how the brain looks like

- Ants – path integration
- Migrating birds – compass based on sky
- Honeybees – dance to show food, internal clock to 
compensate movement of the sun

Steven Pinker: How the mind works



Motivation
Language

Technology

Art, culture, high tech

Henneberg and de Miguel (2004): Variation in hominid brain size. How much is due to method? 
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Motivation

Held, R., & Hein, A. (1963). Movement-produced stimulation in the development of 

visually guided behavior. Journal of comparative and physiological psychology, 56(5), 872.
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Motivation

Directly affecting visual cortex development of the cat, Hubel + Wiesel Karla Stepanova, Neuroinformatics, 24.5.2024



Brain

“A human brain has about 1015 synapses (1011 neurons) which operate at 
about 102 per second implying about 1017 bit ops per second” J. Langford

 …a transcription of 1 second of brain activity at the neural spike level would fill up about 4 000 
ordinary 3 TB hard drive

…and consumes 20% of body’s oxygen (2% metabolism, aprox.1.3kg)

 Is it worth?

Kandel, E.R., Schwartz, J.H. and Jessell, T.M. eds., 2000. Principles of neural science (Vol. 4, pp. 1227-1246). New 

York: McGraw-hill.
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Brain x LLMs

“A human brain has about 1015 synapses which operate at about 102 per 
second implying about 1017 bit ops per second” J. Langford

 …a transcription of 1 second of brain activity at the neural spike level would fill up about 40 000 
ordinary 300 Gb hard drive

…and consumes 20% of body’s oxygen (aprox.1.3kg)

 Is it worth?

Kandel, E.R., Schwartz, J.H. and Jessell, T.M. 

eds., 2000. Principles of neural science (Vol. 4, 

pp. 1227-1246). New York: McGraw-hill.
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https://towardsdatascience.com/behind-the-millions-
estimating-the-scale-of-large-language-models-
97bd7287fb6b 

https://towardsdatascience.com/behind-the-millions-estimating-the-scale-of-large-language-models-97bd7287fb6b
https://towardsdatascience.com/behind-the-millions-estimating-the-scale-of-large-language-models-97bd7287fb6b
https://towardsdatascience.com/behind-the-millions-estimating-the-scale-of-large-language-models-97bd7287fb6b


Brain - Information processing

Single 

units

Networks,

Unimodal areas
Association

Evolution in time, reasoning, 

induction
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Brain – information processing
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Brain - Data processing and representation
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Cognitive models

Traditional models of cognition

Connectionism
Rule-based (Minski 1968, a priori rules)
Parametric model-based

Parametric model-based models: Parameters can capture variabilities and 
uncertainties in the data (prob.density distribution)

Physical theory of mind: apriori knowledge + adaptivity + ability of 
computation in the real time

Karla Stepanova, Neuroinformatics, 25.5.2020
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Adaptivity + apriori knowledge
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Cognitive models – probabilistic approach

What makes people smart?

Memory?
Deduction?
Induction and intuition?

How can we infer so much from so little evidence?

Making concepts from examples - few shot/one-shot learning
Prior knowledge

Karla Stepanova, Neuroinformatics, 24.5.2024



Bayesian approach
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Probabilistic cognitive models

Karla Stepanova, Neuroinformatics, 24.5.2024



Bayesian approach - structure
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Kemp, C., & Tenenbaum, J. B. (2008). The discovery of structural form. 

Proceedings of the National Academy of Sciences, 105(31), 10687-10692.
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Bayesian approach – everyday life
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Griffiths, T. L., & Tenenbaum, J. B. (2006). Optimal predictions in everyday 

cognition. Psychological science, 17(9), 767-773.

Power law $60 million

Power law 17

Gaussian 78 years

Gaussian 55 mins

Erlang 11 years
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Bayesian approach – inductive learning
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Tenenbaum, J. B., Griffiths, T. L., & Kemp, C. (2006). Theory-based Bayesian 

models of inductive learning and reasoning. Trends in cognitive sciences, 10(7), 

309-318.
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Tenenbaum, J. B., Griffiths, T. L., & 

Kemp, C. (2006). Theory-based 

Bayesian models of inductive 

learning and reasoning. Trends in 

cognitive sciences, 10(7), 309-318.



Bayesian approach – object perception
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Kersten, D., & Yuille, A. (2003). Bayesian models of object perception. Current 

opinion in neurobiology, 13(2), 150-158.



Bayesian approach – object perception
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Bayesian approach – motorics
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Bayesian approach – language
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Cognitive models

People learn by modifying their belifefs about hypotheses

How do people learn probability distributions?

Markov Chain Monte Carlo: Markov chain that has the target distribution as 
stationary distribution

 Initialize with any state, guaranteed to converge after many iterations

Karla Stepanova, Neuroinformatics, 24.5.2024
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Sanborn, A., & Griffiths, T. L. (2008). Markov chain Monte Carlo with people. In 

Advances in neural information processing systems (pp. 1265-1272).
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Cognitive models

Probabilistic models can guide the design of experiments to measure 
psychological variables

Markov Chain Monte Carlo can be used to sample from subjective 
probability distributions

Category distributions (Metropolis-Hastings)
Prior distributions (Gibbs sampling)

Effective for exploring large stimulus spaces, with distributions on a small part 
of the space

Sanborn, A., & Griffiths, T. L. (2008). Markov chain Monte Carlo with people. In 

Advances in neural information processing systems (pp. 1265-1272).
Karla Stepanova, Neuroinformatics, 24.5.2024



Priors and posteriors

 Prior knowledge about the world can be used to interpret data in situation of uncertainty.

 Prediction: the more uncertain the data, the more the prior should influence the interpretation.

 The priors should reflect the statistics of the sensory world

Karla Stepanova, Neuroinformatics, 24.5.2024



Coin flipping example
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Clustering - Gaussian distribution

Classical categorization – necessity and suficiency
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Clustering - Gaussian distribution

Classical categorization – necessity and sufficiency

Graded membership - likelihood

Karla Stepanova, Neuroinformatics, 24.5.2024



Gaussian distribution
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Clustering - Gaussian distribution

Karla Stepanova, Neuroinformatics, 24.5.2024



Cognitive architecture - mapping
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Multimodal autoencoders and conditioning
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Kullback-Leiber divergence 
measures distance between 
two probability distributions

-> Need to approximate
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quality of x given the z space
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Observable variable x sampled from the 
latent space (mean, variance)
- We want z-space to be multivariate 

gaussian
- Learning to improve the reconstruction 

quality of x given the z space

How to maximize something that has a 
stochastic variable inside? (ELBO)

https://www.youtube.com/watch?v=iwEzwTTalbg 
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Observable variable x sampled from the 
latent space (mean, variance)
- We want z-space to be multivariate 

gaussian
- Learning to improve the reconstruction 

quality of x given the z space

How to maximize something that has a 
stochastic variable inside? (ELBO)

+ Cannot run backpropagation on 
stochastic variable – need to sample from 
z space…reparametrization trick

https://www.youtube.com/watch?v=iwEzwTTalbg 

https://www.youtube.com/watch?v=iwEzwTTalbg


Multimodal autoencoders and conditioning
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Xu, Xiaogang, et al. "Conditional temporal variational 
autoencoder for action video prediction." International Journal 
of Computer Vision 131.10 (2023): 2699-2722.

G. Sejnova and K. Stepanova, "Feedback-
Driven Incremental Imitation Learning 
Using Sequential VAE," 2022 IEEE 
International Conference on 
Development and Learning (ICDL), 
London, United Kingdom, 2022, pp. 238-
243.



Mapping gestures to robot action given the  
context of the situation
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Vanc, Petr, Jan Kristof Behrens, and Karla Stepanova. "Context-aware robot 
control using gesture episodes." 2023 IEEE International Conference on 
Robotics and Automation (ICRA). IEEE, 2023.



Mapping language and gestures

Karla Stepanova, Neuroinformatics, 24.5.2024

Vanc, Petr, Radoslav Skoviera, and Karla Stepanova. "Tell and show: Combining 
multiple modalities to communicate manipulation tasks to a robot." arXiv 
preprint arXiv:2404.01702 (2024).



iChores and Mirracle project

Karla.Stepanova@cvut.cz 
http://imitrob.ciirc.cvut.cz 
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