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Computational cognitive modeling

= Computational cognitive modelling
= simulations of complex mental processes in different areas of cognition

Goal is to describe, understand, model and predict observed human
behaviour

= Coghnition

= mental process of knowing, including aspects such as awareness,
perception, reasoning and judgement

Latin word cognition: -co (intensive) + nosecere (to learn)
= Modeling

Data never speak for themselves, require a model to be understood and
explained

Several alternative models -> compare -> quantitative evaluation and
intellectual judgement

Karla Stepanova, Neuroinformatics, 22.5.2024
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- Ants — path integration
- Migrating birds — compass based on sky
- Honeybees — dance to show food, internal clock to
compensate movement of the sun
Steven Pinker: How the mind works
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Motivation

Brain mass as percentage of Language
(extrapolated) body mass

Technology

Art, culture, high tech

1.5

ﬁge (mya)

Henneberg and de Miguel (2004): Variation in hominid brain size. How much is due to method?
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Motivation

Softo, E. (2007). When teaching becomes learning: A theory and practice of teaching. Bloomsbury Publishing.
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Motivation
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Motivation

Based on where you live you are less/more prone to these illusions



Motivation

Held, R., & Hein, A. (1963). Movement-produced stimulation in the development of
visually guided behavior. Journal of comparative and physiological psychology, 56(5), 872.



Motivation

Vi y v Iym v VNab

Directly affecting visual cortex development of the cat, Hubel + Wiesel



Brain

= “A human brain has about 10> synapses (10" neurons) which operate at
about 102 per second implying about 107 bit ops per second” J. Langford

= .0 franscription of 1 second of brain activity at the neural spike level would fill up about 4 000
ordinary 3 TB hard drive

w» ...and consumes 20% of body’s oxygen (2% metabolism, aprox.1.3kQ)

= |s it worth?@

Kandel, E.R., Schwartz, J.H. and Jessell, T.M. eds., 2000. Principles of neural science (Vol. 4, pp. 1227-1246). New
York: McGraw-hill.

Karla Stepanova, Neuroinformatics, 24.5.2024



Brain x LLMs

“A human brain has about 10'° synapses which operate at about 102 per
second implying about 107 bit ops per second” J. Langford

..a franscription of 1 second of brain activity at the neural spike level would fill up about 40 000

ordinary 300 Gb hard drive

..and consumes 20% of body's oxygen (aprox.1.3kg)

Release Paper 2 s G oo
-m“ To make a particular example, it is known that LLaMA used a training
2019 GPT-2 Language Models are Unsupervised Multitask dataset containing 1.4 trillion tokens with a total size of 4.6 terabytes!
: Learners
1758 Language Models are Few-Shot Learners

e Al e Dataset Sampling prop. Epochs Disk size

Gopher

Methods, Analysis & Insights from Training Gopher

2022 OPT 1758 OPT: Open Pre-trained Transformer GlthUb 4 5 %

- Language Models Wlklpedla 4 5 %
BLOOM: A 176B-Parameter Open-Access

Books 45%

2023 LLaMA LLaMA: Open and Efficient Foundation StaCkEXChange 20% -
> Language Models - = = = e e s =

Some of the popular LLMs architectures. Image by

1.10
1.06
0.64
2.45
2.23
1.06
1.03

3.31B
783 GB
328 GB
383 GB
85 GB
92 GB
78 GB

2048 GPUs x $3.93 GPU per hour x 24 hours x 21
days =

4.05 million dollars

cost of training GPT-3, and the authors got 355 GPU-years and 4.6 million

dollars.

Kandel, E.R., Schwartz, J.H. and Jessell, T.M.
eds., 2000. Principles of neural science (Vol. 4,
pp. 1227-1246). New York: McGraw-hill.


https://towardsdatascience.com/behind-the-millions-estimating-the-scale-of-large-language-models-97bd7287fb6b
https://towardsdatascience.com/behind-the-millions-estimating-the-scale-of-large-language-models-97bd7287fb6b
https://towardsdatascience.com/behind-the-millions-estimating-the-scale-of-large-language-models-97bd7287fb6b

Brain - Information processing
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Karla Stepanova, Neuroinformatics, 24.5.2024



Brain — information processing




Brain - Data processing and representation
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Cognitive models

= Traditional models of cognition
= Connectionism Adaptivity

- RU le'based (Minski 1968, a priori rules) Apriori knowledge
= Parametric model-based Adapfivity + apriori knowledge |

Y
AlIxa|dulod
puolpINdWoD

= Parametric model-based models: Parameters can capture variabilities and
uncertainties in the data (prob.density distribution)

= Physical theory of mind: apriori knowledge + adaptivity + ability of
computation in the real time

Karla Stepanova, Neuroinformatics, 25.5.2020



Cognitive models — probabilistic approach

= What makes people smart?
= Memory?
= Deduction?
= |[nduction and intuition?

=» How can we infer so much from so little evidence?

= Making concepts from examples - few shot/one-shot learning
= Prior knowledge

Karla Stepanova, Neuroinformatics, 24.5.2024



Bayesian approach

For any hypothesis h and data d,

probability l , pro bability

p(d|h)p(h)

> p(d|h)p(h)
hWeH

p(h|d)=

" Sum over space
of alternative hypotheses




Probabilistic cognitive models

. The discovery of structural form (Kemp and
Tenenbaum, 2008)

. Optimal predictions in everyday cognition

(Griffiths and Tenenbaum, 2006)

. Markov Chain Monte Carlo with people
(Sanborn and Griffiths, 2008)




Bayesian approach - structure
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Bayesian approach - structure

e Data D
 Structure S

5 featuras

uniform similarity
prior metric

* Form F B

Hierarchy

20 features

p(S,F|D)ocp(F)p(S|F)p(D|S)

joint posterior over higher when S has
structure and form fewer clusters Cylinder

110 fealures

Kemp, C., & Tenenbaum, J. B. (2008). The discovery of structural form.
Proceedings of the National Academy of Sciences, 105(31), 10687-10692.



Wovie grosses: Imagine you hear about a movie that has taken in 10
million dollars at the box office. but don’t know how long it has
been running. What would vou predict for the total amount of box

office intake for that movie?

Poem lengths: 1f your friend read you her favorite line of poetry.,
and told you it was line 5 of a poem, what would you predict for the

total length of the poem?

Life spans: Insurance agencies employ actuaries to make predie-
tions about people’s life spans—the age at which they will die—
based upon demographic information. If you were assessing an
insurance case for an 18-year-old man, what would you predict for

his life span?

Reigns of pharaohs: 1f vou n|n'un'l| a book about the history of
ancient Egypt 1o a page listing the reigns of the pharaohs, and
noticed that at 4000 BC a particular pharaoh had been ruling for

11 yvears, what would you predict for the total duration of his reign?

Lengths of marriages: A [riend is telling you about an acquaintance

whom you do not know. In passing, he happens to mention that this
person has been married for 2 years, How \ullj,' do you think this

person’s marriage will last?

Wovie run times: If vou made a surpnrise visit to a friend, and found
that they had been watching a movie for 30 minutes, what would

vou predict for the length of the movie?

Griffiths, T. L., & Tenenbaum, J. B. (2006). Optimal predictions in everyday

Bayesian approach — everyday life

Terms of U.S. representatives: If you heard a member of the House
of Representatives had served for 15 years, what would you predict

his total term in the House would he?

Baking times for cakes: Imagine you are in somebody’s kitchen and
notice that a cake is in the oven. The timer shows that it has been
|-:|Li1|j; for 35 minutes, What \\n|||||_\n|| |I|rt|in'l for the total amount

of time the cake needs to bake?

Waiting times: If you were calling a telephone box office to book
tickets and had been on hold for 3 minutes, what \\H|I|<|_\n|| |m‘r|in |

for the total time you would be on hold?

cognition. Psychological science, 17(9), 767-773.



Wovie grosses: Imagine you hear about a movie that has taken in 10
million dollars at the box office. but don’t know how long it has
been running. What would vou predict for the total amount of box

office intake for that movie?
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Reigns of pharaohs: 1f vou n|n'un'l| a book about the history of
ancient Egypt 1o a page listing the reigns of the pharaohs, and
noticed that at 4000 BC a particular pharaoh had been ruling for

11 yvears, what would you predict for the total duration of his reign?

Lengths of marriages: A [riend is telling you about an acquaintance
whom you do not know. In passing, he happens to mention that this
person has been married for 23 vears, How long do yvou think this

person’s marriage will last?

Wovie run times: If vou made a surpnrise visit to a friend, and found
that they had been watching a movie for 30 minutes, what would

vou predict for the length of the movie?

Bayesian approach — everyday life

Terms of U.S. representatives: If you heard a member of the House
of Representatives had served for 15 years, what would you predict

his total term in the House would he?

Baking times for cakes: Imagine you are in somebody’s kitchen and
notice that a cake is in the oven. The timer shows that it has been
|-:|Li1|j; for 35 minutes, What \\n|||||_\n|| |I|rt|in'l for the total amount

of time the cake needs to bake?

Waiting times: If you were calling a telephone box office to book
tickets and had been on hold for 3 minutes, what \\H|I|<|_\n|| |m‘r|in |

for the total time you would be on hold?
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cognition. Psychological science, 17(9), 767-773.
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Wovie grosses: Imagine you hear about a movie that has taken in 10
million dollars at the box office, but don’t know how long it has

been running. What would vou predict for the total amount of box

office intake for that movie? Power |OW $6O n’”Hlon

Poem r’ru;:‘.'.'m.‘ If you friend read you her favorite line of poetry.,

and told you it was line 5 of a poem, what would you predict for the

total length of the poem? Power law 17

Life spans: Insurance agencies employ actuaries to make predie-
tions about people’s life spans—the age at which they will die—
based upon demographic information. If you were assessing an

insurance case for an 18-year-old man, what would you predict for

his life span? Gaussian 78 years

Reigns of pharaohs: 1f vou n|n'un'l| a book about the history of
ancient Egypt 1o a page listing the reigns of the pharaohs, and
noticed that at 4000 BC a particular pharaoh had been ruling for

11 yvears, what would you predict for the total duration of his reign?

Lengths of marriages: A [riend is telling you about an acquaintance
whom you do not know. In passing, he happens to mention that this
person has been married for 23 vears, How long do yvou think this

person’s marriage will last?

Wovie run times: If vou made a surpnrise visit to a friend, and found

that they had been watching a movie for 30 minutes, what would

vou predict for the length of the movie? Gaussian 55 mins

Bayesian approach — everyday life

Terms of U.S. representatives: If you heard a member of the House
of Representatives had served for 15 years, what would you predict
his total term in the House would be?

Erlang 11 years
Baking times for cakes: Imagine you are in somebody’s kitchen and
notice that a cake is in the oven. The timer shows that it has been
|-:|Li1|j; for 35 minutes, What \\n|||||_\n|| |I|rt|in'l for the total amount

of time the cake needs to bake?

Waiting times: If you were calling a telephone box office to book
tickets and had been on hold for 3 minutes, what \\H|I|<|_\n|| |m‘r|in |

for the total time you would be on hold?

Gaussian prior  Power-law prior Erlang prior

_ lotal

k-1 Yij
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! /o

50 100 0 50 100 0 50 100
tiota) Values

Relative
Probability

Griffiths, T. L., & Tenenbaum, J. B. (2006). Optimal predictions in everyday
cognition. Psychological science, 17(9), 767-773.



Bayesian approach — everyday life

Life Spans Movie Runtimes Representatives

people —— empirical prior

uninformative prior —— parametric prior

Griffiths, T. L., & Tenenbaum, J. B. (2006). Optimal predictions in everyday
cognition. Psychological science, 17(9), 767-773.



Whole-object principle
.. Shape bias
Prmc1ples Taxonomic principle
Contrast principle
l Basic-level bias

Probabiltty of
generalization

Structure ; E S Superordinate level

Basic level

,a.glIli\geI £

meesEn 8

“zo0g” ‘“gazzer”

Tenenbaum, J. B., Griffiths, T. L., & Kemp, C. (2006). Theory-based Bayesian

models of inductive learning and reasoning. Trends in cognitive sciences, 10(7),
309-318.



e learning

Tenenbaum, J. B., Griff

Kemp, C. (2006). Theory-based
Bayesian models of inductive
learning and reasoning. Trends in
cognitive sciences, 10(7), 309-318.

Classes: {R, D, S} (Risks, Diseases, Symptoms) Objects can activate Machines
ws.:R—»D, DS Activation requires contact
Machines are (near) deterministic
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Patient 1: Stressful lifestyle
Chest Pain

Patient 2: Smoking
Coughing

Patient 3: Working in factory
Chest Pain




Bayesian approach — object perception

- Which object description generated
scene . the image data?

object

descriptions, S
objects

parsing graph
G

surfaces

image data, |

image, |

Bayesian solution

configuration
C

image

likelinood, p(llS), namows selection prior, p(S), further narrows selection
consistent with projection

Current Opinion in Meurobiclogy

Kersten, D., & Yuille, A. (2003). Bayesian models of object perception. Current
opinion in neurobiology, 13(2), 150-158.




Bayesian approach —object perception

== ‘,'H,

Karla Stepanova, Neuroinformatics, 24.5.2024
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Universal Grammar Hierarchical phrase structure
grammars (e.g., CFG, HPSG, TAG)
i P(grammar | UG)

S — NP VP
NP — Det [ Adj| Noun|[RelClause]
RelClause — [Rel| NPV
VP — VP NP
VP — Verb

Grammar

P(phrase structure | grammar)

S

P

P hf ase structure
/\p

P(utterance | phrase structure) |

Pronoun Article
1 1 1 |

Uttera.nce | shoot the wumpus

l P(speech | utterance)

Speech signal W WM—.WIWWWWW




Cognitive models

» People learn by modifying their belifefs about hypotheses
= How do people learn probability distributions?

= Markov Chain Monte Carlo: Markov chain that has the target distribution as
stationary distribution

= |nitialize with any state, guaranteed to converge after many iterations

Karla Stepanova, Neuroinformatics, 24.5.2024



Cognitive models

Examined distributions for four natural categories:
giraffes, horses, cats, and dogs

Wy
head angle

tallangle
)y 9

body tilt

(A)

Presented stimuli with nine-parameter stick figures
(Olman & Kersten, 2004)

Sanborn, A., & Griffiths, T. L. (2008). Markov chain Monte Carlo with people. In
Advances in neural information processing systems (pp. 1265-1272).



Cognitive models

A Bayesian analysis of the task

hi : xq 1s from p(x|c); 2 1s from g(x)

ho @ 2o 1s from p(x|c); 21 1s from g(x)

i """I"] |( (]("'I'" 5 )[)U) )
p(aq|e)g(x ))p(hl) + p(a2|c)g(xq1)p(hs)

p(hi) = p(hs)
g(xy) = g(x2)

Sanborn, A., & Griffiths, T. L. (2008). Markov chain Monte Carlo with people. In
Advances in neural information processing systems (pp. 1265-1272).

Assume:




Cognitive models

Choice task

Which animal is a giraffe?

Button 1 Button 2

1 trials remaining.

Sanborn, A., & Griffiths, T. L. (2008). Markov chain Monte Carlo with people. In
Advances in neural information processing systems (pp. 1265-1272).



Cognitive models

Samples from Subject 3

(projected onto a plane)

giraffe
horse
cat
dog

Sanborn, A., & Griffiths, T. L. (2008). Markov chain Monte Carlo with people. In
Advances in neural information processing systems (pp. 1265-1272).



Cognitive models

Mean animals by subject
}x A% \1 n \w b \w \w
By T o wom w

Moo A W Y n e

T \T x4 ht Nariffiths

Sanborn, A., & Griffiths, T. L. (2008). Markov chain Monte Carlo with people. In
Advances in neural information processing systems (pp. 1265-1272).




Cognitive models

Metropolis-Hastings algorithm

(Metropolis et al., 1953; Hastings, 1970)

Step 1: propose a state (we assume symmetrically)

Q(X(“'l) Ix(f)) = Q(X(f)) |x(f+1))

Step 2: decide whether to accept, with probability

(1) .
A (....-}-.{:f+1 ) T () ) — min ( 1 ]-)(._'-L " ) Metropolis acceptance
Al ) = min (1L =y function

p (1)
. Barker acceptance

At g0y ALY
(‘ " ) p(__i]j? t+1) ) + p(? l-f}__) function

Sanborn, A., & Griffiths, T. L. (2008). Markov chain Monte Carlo with people. In
Advances in neural information processing systems (pp. 1265-1272).




Cognitive models

= Probabilistic models can guide the design of experiments to measure
psychological variables

= Markov Chain Monte Carlo can be used to sample from subjective
probability distributions

= Category distributions (Metropolis-Hastings)
= Prior distributions (Gibbs sampling)

= Effective for exploring large stimulus spaces, with distributions on a small part
of the space

Sanborn, A., & Griffiths, T. L. (2008). Markov chain Monte Carlo with people. In

Advances in neural information processing systems (pp. 1265-1272).
Karla Stepanova, Neuroinformatics, 24.5.2024



Priors and posteriors

about the world can be used to interpret data in situation of uncertainty.

Prediction:

The priors should reflect the

>
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e
®
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e
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Coin flipping example

Comparing two simple hypotheses

P(H,[D) _ P(D\H) , P(H)

P(H,|D) P(D|H,) P(H)

D: HHTHT

H, H: “fair coin”, “always heads”
P(DIH)= 1/2° P(H;) = 999/1000
P(D|H,)= 0 P(H,) = 1/1000

P(H,|D) / P(H,|D) = infinity




Coin flipping example

Comparing two simple hypotheses

PUH,D) _ P(D|H) . PUH)
PU,D)  P(D|H) ~  P(H,)

D: HHHHH

H,, H,: “fair coin”, “always heads”

P(DIH)= 1/2° P(H;))=  999/1000
P(D|Hy) = 1 P(H,) = 1/1000

P(H,|D) | P(H,|D) = 30




Coin flipping example

Model selection

* Assume hypothesis space of possible models:

Fair coin: P(H) =0.5 P(H)=4 Hidden Markov model:
S; e {Fair coin, Trick coin}

* Which model generated the data?
— requires summing out hidden variables

— requires some form of Occam’s razor to trade off
complexity with fit to the data.




Clustering - Gaussian distribution

w» Classical categorization — necessity and suficiency

We easily recognise all
these belonging to a
category of “birds”, but
they aren’t in any obvious
sense “the same” as each
other

Karla Stepanova, Neuroinformatics, 24.5.2024



Clustering - Gaussian distribution

Classical categorization — necessity and sufficiency
Graded membership - likelihood

Graded membership

led membership: category members vary widely in
terms of typicality

typical ——m—"—7—— . atypical

§, whale iguana dog «cat bird spider




(Gaussian distribution

How do we evaluate between
these hypotheses?




(Gaussian distribution

Multivariate Gaussians

p(x | po)= \/%0‘ exp{—(x — 3‘ /.

mean variance/covariance matrix

px|p2)= ﬁ exp {~(x ~|f [T (x = 1) /2;

(1 0 )
N

“lo 025,




(Gaussian distribution

Bayesian inference
P(x|c)P(c)

e P IOPE
S or©

=
=
<)
©
o
o
e
o




(Gaussian distribution

Mixture distributions

mixture distribution

p(x;[6)= Zp(xg ¢;,0)

mixture
weights

==
=
o

©
el

o

=

o




(Gaussian distribution

2, M-step: choose the parameters which maximizes log-likelihood when the probabilities
fi(xi) are known:

N
E fie(xi )
=1

N ..

1=1

my =

AT
L)

Y fiolxi) (% — my)(x; — my

i=1

)T

AT
W

3 frl(x))

=1




Clustering - Gaussian distribution

*  Dynamic creation of the relationships between internal representations and the world

® o
®

—

Deterministic concepts

Low uncertainity about class
membership

Models with fixed parameter
values

Fuzzy forms

Class membership with high fuzziness
A priori models with very uncertain
parameters




Clustering - Gaussian distribution

*  Dynamic creation of the relationships between internal representations and the world

® o
®

—

Deterministic concepts

Low uncertainity about class
membership

Models with fixed parameter
values

Fuzzy forms

Class membership with high fuzziness
A priori models with very uncertain
parameters

* Heterohierarchical structure—many interative loops whichinclude different levels of

processing
* In each moment, many concepts (agents, objects) compete for their evidence




Clustering - Gaussian distribution

* Asociation(segmentation) ® array of input data x with objects= division of
inputs to subsets which are related to the given objects

I(n] k) — partial similarity of the point n with
model k
f(k| n) — membership of point n to model k

2

I(x,]1)=0.9

I(x,]2)=0.2
I(x,|1)=0.01 (al2)

I(x,]2)=0.3

f(1]x,)=0.9/(0.9+0.01)=1
f(2]x,)=0.3/(0.3+0.2)=0.6




Clustering - Gaussian distribution

* Asociation(segmentation) ® array of input data x with objects= division of
inputs to subsets which are related to the given objects

I(n] k) — partial similarity of the point n with

model k

f(k| n) — membership of point n to model k

Maximalization of complete

Z conditional log-fuzzy similarity:

AZ-LL=maxg 2 In [Z, f(k|n)]

I(x,]1)=0.9

I(x,]2)=0.2
I(x,|1)=0.01 (al2)

I(x,]2)=0.3

f(1]x,)=0.9/(0.9+0.01)=1
f(2]x,)=0.3/(0.3+0.2)=0.6




Clustering - Gaussian distribution




Clustering - Gaussian distribution

1. Initialization of parameters (a priori knowledge)

2. E —step: compute similarities I(n] k) and class
memberships f(k|n)

f(1]x,), f(1]x,),
f(2]x,),8(2]x,)

1/2 -
exp[—0.5(F; — ;)

—mi;)] (5)




Clustering - Gaussian distribution

1. Initialization of parameters (a priori knowledge)

2. E —step: compute similarities |(n| k) and class
memberships f(k|n)

=]
—

f(1]x.), f(1]x,),
f21x,),f(2]x;)

o o

o

o T
exp[—0.5(F — 12;)

(5)

» dS,/dt(means, covariances, priors)
. SL(t+dt)=SL(t)+ dSL/dt




Clustering - Gaussian distribution

1. Initialization of parameters (a priori knowledge)

2. E —step: compute similarities I(n| k) and class
memberships f(k|n)

f(1]x,), f(1]x5),
f(2]%,).f(2]x,)

/* exp|—0.5(F; — 1 )T
» ds,/dt(means, covariances, priors)
. SL(t+dt)=SL(t)+ dSL/dt

4, LL(t)-LL(t-dt) < threshold ?

n K
LL [E’—] = Z 111[:'2: rili (23 |m;, H_ ))

i=1 =1




Clustering - Gaussian distribution




Cognitive architecture - mapping

Visual input Language input
ay "Middle dotted erozs"

Sentence [W{Wa...Wj]

ARAW DATA

Features clustering Word recognition Sentence processing

Each visual feature modeled by a Each word wj modeled by Sentence modeled by
mixture of Gaussians: I(npiIK||,'l HMM: I{wjlLg) HMM: P(LiIState)

1
UNIMODAL LAYER

Multimodal mapping

Find aseignment between visual
models K and lang. models Ly for
each k,j,

Conjunction of visual and language layer
II:ﬂpilK“-m)J} A [l(wILpy)*P(Ly|State))* P(Statej| State). )]
evaluate for each m (j is known)

Object recognition
choose best m and assign word wyto
lang. cluster Ly, and visual property npl

to visual cluster K,(m]i{nﬂ
MULTIMODAL LAYER




Cognitive architecture - mapping

Visual input

Feature extraction
cone ORECTION T

|
|
I
I
1
1
1
1
1
1

RAW DATA :

HOIK; 522 101K} {OIK, BriEnty O e,
O K52 - I{OKerY
1101 ™) 1K ey Tl ]

1
1
1
1
1
1
1
1
1
1
1
1

UNIMODAL LAYER

LANGUAGE
LAYER

Conjunction of visual and language layer

Object recognition




Cognitive architecture - mapping

feature1 featu re 2:__%:__ 52

Vision Language



Cognitive architecture - mapping

Vision Language



Cognitive architecture - mapping

Vision Language



Cognitive architecture - mapping

Vision Language



Cognitive architecture - mapping

Vision Language



Cognitive architecture - mapping

N N
I ¢ 1 T P
p(i) = N Z} Iim f;(x;,) (2, k) = N z_:] hm f;(zn) fi(zn)

-
<
8]
L
D
—
)
o

Referent

20 25 30 35
Noise in language data [%]




Cognitive architecture - mapping

Language Language (multiplied by TM) | vision [ Multimodal layer

Al lIII Il II LT

Likelihood

(2,1} (1.2} (33) 4,10 (1.2} (23} (64} (3,5 (56) (T B} (B9) (3,1 (2.2 (13) (511 (1.2) (33} (24) (4.5) (81} 152 (73} (94} (25) (46) (67} (3.8} (109 (1,10}

Orientation Texture Shape




Multimodal autoencoders and conditioning

Command: Observable variable x sampled from the
(a] ‘Al 1) (th d bl 1l bj balls/... :
(Cluster/Align) (all) (the) (red/green/blue/yellow) (cans/objects/balls/...) latent Space (mean, Varlance)

Inputs Encoders Outputs

Action } 2 . MVAE - g
A
Final RGB Image » .

Expectation of a random variable Elf()] = [xf(x)dx

sampled latent
vector

Chain rule of probability P(x,y) = P(x|y)P(y)

Bayes’ Theorem P(ylx)P(x)

Centroids, Color
' Pxly) =
=309

seqﬂénce of X, y, z points X, Y, Z coordinates and color
of hand histogram for each object

Similar concepts in diffusion models



Multimodal autoencoders and conditioning

Command: Observable variable x sampled from the
(a] ‘Al 1) (th d bl 1l bj balls/... :
(Cluster/Align) (all) (the) (red/green/blue/yellow) (cans/objects/balls/...) latent Space (mean, Varlance)

Inputs Encoders Outputs

Action } 2 . MVAE - g
A
Final RGB Image » .

Expectation of a random variable Eff(x)] = fxf(x)dx

sampled latent
vector

Chain rule of probability P(x,y) = P(x|y)P(y)

Bayes’ Theorem P(y|x)P(x)
P(x Se—
(x|y) 20

Centroids, Color

Kullback-Leiber divergence
measures distance between
two probability distributions

D (PIIQ) = f oo (%) dx

seqﬂénce of X, y, z points X, Y, Z coordinates and color
of hand histogram for each object

Similar concepts in diffusion models



Multimodal autoencoders and conditioning

Observable variable x sampled from the
latent space (mean, variance)

We can define the likelihood of our data as the marginalization over the joint probability with respect to the latent variable

p (x) - f p(x Z) dz Is intractable because we would need to
)

evaluate this integral over all latent variables Z.

Expectation of a random variable Eff(x)] = fxf(x)dx

... or we can use the Chain rule of probability

p (x' Z) We don’t have a ground truth p(z|x)

Chain rule of probability P(x,y) = P(xly)P(y)
p(zlx) ... which is also what we're trying to find!

Bayes’ Theorem P(y|x)P(x)
P(x Se—
(x|y) 20

Intractable problem = a problem that can be solved in theory (e.g. given large but finite resources

especially time), but for which in practice any solution takes too many resources to be useful, is
known as an intractable problem.

Kullback-Leiber divergence

measures distance between Dy (PIIQ) = fp(x) log (%) dx
two probability distributions




Multimodal autoencoders and conditioning

A chicken cmd egdg problem Observable variable x sampled from the
latent space (mean, variance)

Expectation of a random variable Eff(x)] = fxf(x)dx

In order to have a tractable p(x) we need a tractable p(z|x) J Chain rule of prObablhty P(xr y) = P(xly)P(y)
—_

_rx2) p(x, 2)

p(x) p(z|x) =

p(z|x) p(x) Bayes’ Theorem P(y|x)P(x)

P(x|y) = 20

In order to have a tractable p(z|x) we need a tractable p(x)

Kullback-Leiber divergence
measures distance between
two probability distributions

D (PIIQ) = f oo (%

-> Need to approximate



Multimodal autoencoders and conditioning

| =] .
PEREE) I0EEe ) Observable variable x sampled from the

= logpg (x Multiply by 1 latent space (mean, variance)

Expectation of a random variable Eff(x)] = fxf(x)dx
- f logpg (x) q,(2z|x)dz Bring inside the integral

= Eq,p(ZII) [logpe (x)] Definition of expectation Chain rule of probability P(x,y) = P(x|y)P(y)

po (%, 2) Po (X, 2)

=E log Apply the equation  pg(x) =
10 E0 | 7E g (2]2) po(zlx)

Bayes’ Theorem _PIx)P()
PIY) =—F0y

_ Po(x,2),(z1)
|8 e @lx)q, (2I7)

= qu,(2|x) Multiply by 1
Kullback-Leiber divergence -
X
Split the expectation measures distance between RZAWIIES fp(x) log (%) dx
two probability distributions

r

q,(2]x)
= Eq,zix) |log .

po(z|x)

pﬂ(x! Z) [

e R
p&(x! Z) ]
qe(z|x) |

= Eq,zix) |108 + Dy, (q(p(zlx)Hpg (zlx)) Definition of KL divergence




Multimodal autoencoders and conditioning

Observable variable x sampled from the
p— latent space (mean, variance)
log P (x) = Eq,(zix " dozin) | T Pre 90 (Z1X)|Pe (Z1x - We want z-space to be multivariate
gaussian
- Learning to improve the reconstruction
quality of x given the z space

ELBO = Evidence Lower Bound

2 pe(x,2)
? qo(z]x)

kL p(2)

=E, (; logpe(x12)] + E, log———
qU,MIX)["I»,Iﬁ( I )] (lw(llx) O(Dfl(p(llx)

M Chain rule of probability

logpe(x) = Eg lo
g Po(x) qe(Z|1X) (I(y(zlx) z-space

—

= Equzix)|!

Split the expectation

H <
Encoder: q,(z|x) Decoder: pe(x|z)

= Eq, 2z [10g po(x12)] — Dy, (qq,(zlx)”pg(z)) Definition of KL divergence

~he W

X-space

Maximizing the ELBO means: _

1. Maximizing the first term: maximizing the reconstruction likelihood of the decoder
2. Minimizing the second term: minimizing the distance between the learned distribution and the
prior belief we have over the latent variable.



Multimodal autoencoders and conditioning

Observable variable x sampled from the

o , latent space (mean, variance)
How to maximize something that has a - We want z-space to be multivariate
stochastic variable inside? (ELBO) gaussian

- Learning to improve the reconstruction
quality of x given the z space

pe(x, 2)

L@, ¢, x) = [logm = Eq,(z1x[10g pe(x|2)] — Dy, (%(Z|x)|lpe(l))

When we have a function we want to maximize, we usually take the gradient and adjust the weights of the model so that they move along the gradient direction.

When we have a function we want to minimize, we usually take the gradient, and adjust the weights of the model so that they move against the gradient direction.

Stochastic Gradient Descent

When used to minimize the above function, a standard (or "batch") gradient descent method would perform the following iterations:
7) n
w:=w—nVQ((w) =w— — L VQ;(w),
L=

where 7) is a step size (sometimes called the /earning rate in machine learning).



https://www.youtube.com/watch?v=iwEzwTTalbg

Multimodal autoencoders and conditioning

How to maximize something that has a Observable variable x sampled from the
stochastic variable inside? (ELBO) latent space (mean, variance)

-  We want z-space to be multivariate
+ Cannot run backpropagation on gaussian
stochastic variable — need to sample from - Learning to improve the reconstruction
Z space...reparametrization trick quality of x given the z space

pe(x, 2)

L@, ¢, x) = [logm = Eq,(z1x[10g pe(x|2)] — Dy, (%(Z|x)|lpe(l))

When we have a function we want to maximize, we usually take the gradient and adjust the weights of the model so that they move along the gradient direction.

When we have a function we want to minimize, we usually take the gradient, and adjust the weights of the model so that they move against the gradient direction.

Stochastic Gradient Descent

When used to minimize the above function, a standard (or "batch") gradient descent method would perform the following iterations:
7) n
w:=w—nVQ((w) =w— — L VQ;(w),
L=

where 7) is a step size (sometimes called the /earning rate in machine learning).



https://www.youtube.com/watch?v=iwEzwTTalbg

Multimodal autoencoders and conditioning

Command:
(Cluster/Align) (all) (the) (red/green/blue/yellow) (cans/objects/balls/...)

Inputs Encoders Outputs

=]

rrarcemess & .. IR : ; " .
| = : el e s Xu, Xiaogang, et al. "Conditional temporal variational
~ -

Action-Conditional Batch Normalization (AC

vector

| autoencoder for action video prediction." /International Journal
——""——" . o of Computer Vision 131.10 (2023): 2699-2722.
Final Centroids } £ i 55 z

Action

G. Sejnova and K. Stepanova, "Feedback-
Driven Incremental Imitation Learning
Using Sequential VAE," 2022 IEEE
International Conference on
Development and Learning (ICDL),
London, United Kingdom, 2022, pp. 238-
243.

seqhence of X, y, z points X, Y, Z coordinates and color
of hand histogram for each object

Decoder

J1 conditional sampling

Karla Stepanova, Neuroinformatics, 24.5.2024



Mapping gestures to robot action given the
context of the situation

g
|

Random Scene 1 Random Scene 2 Random Scene 3
Target intent + Target object

(open, drawer 1) (move left, object 1)  (put_into, drawer)

Fig. 5: Random scene example generation.

Gesture vector g s top, u
gesture  scene  target object user
+ context vector 7 3 probs

Classification vector
Vanc, Petr, Jan Kristof Behrens, and Karla Stepanova. "Context-aware robot

Probabilistic neural net control using gesture episodes." 2023 |EEE International Conference on
Q 20 Robotics and Automation (ICRA). IEEE, 2023.

Fig. 1: Proposed system diagram displays the whole pipeline
from hand observations all the way to robotic actions.




Mapping language and gestures

,Jﬂ Feasibility S M *
% | model SA\[ > a
sentence command to

correctlon
robotic actions

SEaHE Scene

observations properties

Fig. 1. Human-Robot Interaction experimental setup. The user’s speech is
captured by the microphone and the hand is captured by a hand detection
device (e.g. Leap Motion Controller [8]).

¢ merge belief
adjustment
with entropy
penalization

a penalization

Action signature check

B penalization <

R pe —>Query ¥ Vanc, Petr, Radoslav Skoviera, and Karla Stepanova. "Tell and show: Combining
P Thresholding multiple modalities to communicate manipulation tasks to a robot." arXiv
Execute preprint arXiv:2404.01702 (2024).

Property check oUtpur " a CUD"
Fig. 2. Diagram of the proposed modc] tm the case of two modalities
(hand gestures and natural la S j on with one parameter
(target ﬂb]E‘(.U Heard sentence “Unglue : is correctly resolved into
“Pick a cup” based on a fusion of data from both modalities and task and
scene context”.




IChores and Mirracle project

7\ 1 WP1 Multimodal representation

red r;_,q a_nd '_t .
there on the sheftf‘

mul actions, non a of robotic

Multimodal

Demonstration S"';‘::"“‘ ] Encoders

./~ PRIORS
representation ‘{expert knowledge)

ommand  [— Command |—>

»|  "Push’ P
[ EEF position }—ﬂ T

of action

For Sampled latent
vects

z

Demonstration Sensorical input

Linguistic
instructions
DRAW lines 5 cm from the end...and here...CUT the wood Speech to ]

along the lines... (1) DRILL holes here, here and here....
MOUNT pi ether... INSERT d e emer— [Tagging and tokenization |

nguage processing

Semantic ]

(
UP shelf and PUSH it inside th irobe.... () PAINT the
obe... Finished"” Templates detection

Gestures S ra— Recognized gestures
ion, type of action. size, duration, etc...

2 ; ; [ Gestu )
j EEF Pose and |
i L ition, orientation arar

Task demonstration

iggered OR automalic)

Forceftorque data
Tactile data (each fi

Mapping representation "

Detection of
actions and their
parameters.

Action 1
(part, par2,..)
Action 2
(part, par2,...)|
Action 3

(part, par2

Action 4
(part, par2,..)|

Actions relations.

Real robot environment

secases
tion

Predefined robotic actions and th rparamglars‘
Push(). Move(). MakeLine(). GluePaint(). Drill)..

[ Robot control

List of
grounded
robotic
actions and
their
relations

Transfer to robotic
environment



mailto:Karla.Stepanova@cvut.cz
http://imitrob.ciirc.cvut.cz/
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Imitrob team
http://imitrob.ciirc.cvut.cz
Contact:

Karla Stepanova
karla.stepanova@cvut.cz
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