Nonparametric Methods for Density Estimation
Nearest Neighbour Classification

Lecturer:
Ondřej Drbohlav

Authors:
Ondřej Drbohlav, Jiří Matas

Centre for Machine Perception
Czech Technical University, Prague
http://cmp.felk.cvut.cz

Last update: Oct 2022
Probability Density Estimation

Parametric Methods for Density Estimation

- Have been dealt with in the previous lecture
- Advantage: Low number of parameters to estimate
- Disadvantage: The resulting estimated density can be arbitrarily wrong if the underlying distribution does not agree with the assumed parametric model.

Non-Parametric Methods for Density Estimation

- Histogram
- Nearest Neighbor approach
Histogram as piecewise constant density estimate:

Task formulation

Consider the following distribution \(q(x) \) on the interval \([0, 1]\), and i.i.d. sampling from it. We will fit the distribution by a 'histogram' with \(B \) bins. More precisely, we will estimate a piecewise-constant function on the interval \([0, 1]\) with \(B \) segments of the same width. For a given \(B \), the parameters of this piecewise-constant function are the heights \(d_1, d_2, ..., d_B \) of the individual bins. This function is denoted \(p(x \mid \{d_1, d_2, ..., d_B\}) \).

For the given number of bins \(B \), \(d_1, d_2, ..., d_B \) must conform to the constraint that the area under the function must sum up to one,

\[
1 = \int_{-\infty}^{\infty} p(x \mid \{d_1, d_2, ..., d_B\}) dx = \sum_{i=1}^{B} \int_{\frac{i-1}{B}}^{\frac{i}{B}} d_i \, dx = \sum_{i=1}^{B} d_i \, w = \sum_{i=1}^{B} \frac{d_i}{B}.
\] (1)
Histogram as piecewise constant density estimate: Finding d_i’s using Maximum Likelihood

Let us estimate $\{d_i, i = 1, 2, \ldots, B\}$ by Maximum Likelihood (ML) approach. Let N_i denote the number of samples which belong the i-th bin (thus clearly, $\sum_{i=1}^{B} N_i = N$). The likelihood $L(\mathcal{T})$ of observing the samples $\mathcal{T} = \{x_1, x_2, \ldots, x_N\}$ given the parameters $\theta = \{d_1, d_2, \ldots, d_B\}$ is

$$L(\mathcal{T}) = p(\mathcal{T} | \theta) = \prod_{i=1}^{N} p(x_i | \theta) = \prod_{j=1}^{B} \left(\prod_{k=1}^{N_j} d_j \right) = \prod_{j=1}^{B} d_j^{N_j}.$$ (2)

The maximization task is then

$$\ell(\mathcal{T}) = \sum_{j=1}^{B} N_j \log d_j \rightarrow \max, \quad \text{subject to } \frac{1}{B} \sum_{j=1}^{B} d_j = 1,$$ (3)

where maximization has been formulated using the log-likelihood $\ell(\mathcal{T})$. The Lagrangian of the optimization task and the conditions of optimality (using the derivative $\partial / \partial d_k$) are then:

Lagrangian: $$\sum_{j=1}^{B} N_j \log d_j + \lambda \left(\frac{1}{B} \sum_{j=1}^{B} d_j - 1 \right)$$ (4)

$$\frac{N_k}{d_k} + \lambda \frac{B}{N} = 0 \Rightarrow \frac{d_k}{N_k} = \text{const.} \Rightarrow \boxed{d_k = B \frac{N_k}{N}}.$$ (5)
Histogram as piecewise constant density estimate:

Example, different number of bins

\[d_k = B \frac{N_k}{N} \] (6)

This result is in line with the common use of histograms for approximating pdf’s. Results for different \(B’ \)s:
Histogram as piecewise constant density estimate: What number of bins produces closest pdf approximation?

Let us measure the differences between the (actual) source distribution \(q(x) \) and the piecewise-constant density estimate \(p(x) = p(x|\{d_1, d_2, \ldots, d_B\}) \) from the \(N = 1000 \) samples, using \(B \) bins.

Measures used:

Kullback-Leibler divergence \(D_{\text{KL}} \):

\[
D_{\text{KL}}(p\|q) = \int_{-\infty}^{\infty} p(x) \log \frac{p(x)}{q(x)} \, dx.
\]

(Note that KL div. is not a metric.)

Sum of squared differences \(D_{\text{SSD}} \):

\[
D_{\text{SSD}}(p, q) = \int_{-\infty}^{\infty} (p(x) - q(x))^2 \, dx.
\]
Histogram as piecewise constant density estimate: Choosing the number of bins B by ML

How can we find the optimal number of bins B? Let us try to employ the ML approach again: find the B which maximizes the likelihood. Recall that:

- **Parameters** d_j: $$d_j = B \frac{N_j}{N} \quad \text{(ML estimate)}$$ (9)

- **Likelihood** $L(T)$: $$L(T) = p(T | \{d_1, d_2, \ldots, d_B\}) = \prod_{j=1}^{B} d_j^{N_j} = \prod_{j=1}^{B} \left(\frac{B N_j}{N}\right)^{N_j}$$ (10)

- **Log-likelihood** $\ell(T)$: $$\ell(T) = \sum_{j=1}^{B} N_j \log d_j = \sum_{j=1}^{B} N_j \log \frac{B N_j}{N}$$ (11)

For $B = 4000$, the log-likelihood ℓ is the highest. But the pdf estimate with this B is poor, and very different from the source distribution as measured by D_{KL} or D_{SSD}. For $B = 10^5$, $\ell(T) \sim 4600$. What went wrong?
Histogram, choosing the number of bins B: ML overfits and produces $B = \infty$

When B grows, eventually it will reach a number \hat{B} such that there is either no or one point in every bin (assuming no two points in the data are identical), and this will stay true for any $B > \hat{B}$.

In such cases,

$$d_j = \begin{cases} \frac{B}{N} & \text{if the bin is populated by a point,} \\ 0 & \text{if the bin is not populated.} \end{cases} \quad (12)$$

As the number of bins B grows, the widths of occupied bins get narrower and the heights d_j’s higher. If $B \to \infty$ then also $d_j \to \infty$ for the occupied bins, and therefore also $\ell(T) \to \infty$. Thus, such an approach cannot produce a “reasonable” answer to choosing B, as the solution it provides is $B = \infty$.

The problem is that the log-likelihood ℓ is computed using the same data used for fitting the model (computing d_i’s). This is a similar concept to training a classifier on certain data and testing on the same data, which is prone to over-fitting and poor generalization.
Histogram, choosing the number of bins B:

Employing cross-validation

Let us compute the log likelihood using the following procedure: remove a given point from
the dataset for computing d_i's and evaluate its contribution to the log-likelihood. Do this for
all the points. This approach is related to cross-validation technique (leave-one-out) for
choosing parameters of a classifier.

Let the point in question belong to the j-th bin. The ML estimate for d_j, after removing
this point from the dataset, is

$$d_j = B \frac{N_j - 1}{N - 1}, \quad (N_j \geq 1),$$

(13)

where the subtractions of 1 reflect the fact that the considered point is not used for
estimating d_j. Computing the log likelihood ℓ this way produces the following result:

$$\ell = \sum_{j=1}^{B} N_j \log d_j,$$

with $d_j = B \frac{N_j - 1}{N - 1}$

The 'failure' for $B > 7$ is caused by singly-occupied bins ($N_j = 1$) for which the modified
ML estimate for d_j becomes zero. This will be fixed by using different estimates for d_j's.
Histogram, choosing the number of bins B
More suitable estimates for d_j’s

The problem of d_i being estimated as 0 is similar to the one encountered previously: Recall the example of tossing a coin three times, always getting *heads* ($\mathcal{T} = \{H, H, H\}$). The ML estimate is a fully unfair coin (probability of getting *heads* is 1, $\pi_{\text{head}} = 1$), thus making the likelihood of any sequence containing *tails* zero. We have seen before that employing the prior for the parameters to be estimated can mitigate this problem.

A (conjugate) prior for the histogram bin counts is the Dirichlet Distribution, with the pdf $p(d_1, d_2, ... , d_B \mid \alpha_1, \alpha_2, ... , \alpha_B) \sim \prod d_i^{\alpha_i - 1}$.

MAP Estimate:

$$d_i = B \frac{N_i + \alpha_i - 1}{N + \sum_{i=1}^{B} \alpha_i - B} \quad (14)$$

Bayes Estimate:

$$d_i = B \frac{N_i + \alpha_i}{N + \sum_{i=1}^{B} \alpha_i} \quad (15)$$

Interpretation: The parameters α_i’s can be interpreted as 'virtual' observations, as if α_k points have already been assigned to the k-th bin.

Example: The Bayes estimate using $\alpha_i = 1$ for all $i = 1, 2, ... , B$ is

$$d_i = B \frac{N_i + 1}{N + B}. \quad (16)$$

Using this estimate will enable us to make reasonable computation of likelihood for all B’s.
Histogram, choosing the number of bins B:
ML to find B, cross-validation, Bayes estimate for d_j’s

Let us now return to the previous task. Compute the log likelihood using the following procedure: remove a given point from the dataset for computing d_i’s and evaluate its contribution to the log-likelihood. Do this for all the points.

Use the Bayes estimate for d_j from the previous example, $d_j = B^{N_j+1}_{N+B}$. The modified estimation of d_j (omitting the point in question) will become

$$d_j = B \frac{N_j}{N - 1 + B}. \quad (17)$$

This leads to the following result:

This result is in agreement with distribution differences as measured by D_{KL} or D_{SSD}.

In particular, $B = 30$ is identified as the best-approximating number of bins.
K-Nearest Neighbor Approach to Density Estimation

Find K neighbors, the density estimate is then $p \sim 1/V$ where V is the volume of a minimum cell containing K NNs. Example ($p \sim$ inverse distance to K-th NN, same 1000 samples as before):
K-Nearest Neighbor Approach to Classification

Outline:

- Definition
- Properties
- Asymptotic error of NN classifier
- Error reduction by edit operation on the training class
- Fast NN search
K-NN Classification Definition

Assumption:

- Training set $\mathcal{T} = \{(x_1, k_1), (x_2, k_2), \ldots, (x_N, k_N)\}$. There are R classes (letter K is reserved for K-NN in this lecture)

- A distance function $d : X \times X \mapsto \mathbb{R}_0^+$

Algorithm:

1. Given x, find K points $S = \{(x'_1, k'_1), (x'_2, k'_2), \ldots, (x'_K, k'_K)\}$ from the training set \mathcal{T} which are closest to x in the metric d:

$$S = \{(x'_1, k'_1), (x'_2, k'_2), \ldots, (x'_K, k'_K)\} \equiv \{(x_{r_1}, k_{r_1}), (x_{r_2}, k_{r_2}), \ldots, (x_{r_K}, k_{r_K})\}$$

 $$r_i : \text{the rank of } (x_i, k_i) \in \mathcal{T} \text{ as given by the ordering } d(x, x_i)$$

2. Classify x to the class k which has majority in S:

$$k = \arg\max_{l \in R} \sum_{i=1}^{K} \left[k'_i = l\right] \quad (x'_i, k'_i) \in S$$

(20)
Consider the two distributions shown. The priors are assumed to be the same,

\[p(1) = p(2) = 0.5. \]

Bayesian optimal decision boundary is shown by the black circle.

Bayesian error is \(\epsilon_B = 0.026 \).
K-NN Example (2)

$K = 1$, error $\epsilon = 0.044$

$K = 3$, error $\epsilon = 0.034$

$K = 5$, error $\epsilon = 0.032$

$K = 7$, error $\epsilon = 0.030$

$K = 9$, error $\epsilon = 0.031$

$K = 11$, error $\epsilon = 0.032$

$N = 100$ samples for each class. Bayes error $\epsilon_B = 0.026$.

K-NN Example (3)

<table>
<thead>
<tr>
<th>\mathcal{T}_1</th>
<th>\mathcal{T}_2</th>
<th>\mathcal{T}_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>$K = 1$, error $\epsilon = 0.044$</td>
<td>$K = 1$, error $\epsilon = 0.038$</td>
<td>$K = 1$, error $\epsilon = 0.043$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$K = 7$, error $\epsilon = 0.030$</td>
<td>$K = 7$, error $\epsilon = 0.031$</td>
<td>$K = 7$, error $\epsilon = 0.036$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The results depend on the training set (result of a random process.) Each of the training sets \mathcal{T}_1, \mathcal{T}_2, \mathcal{T}_3 contain 100 points for each class.
K-NN Example (4)

K-NN error for different K and different sizes of the training set (N samples per class). 10 training sets have been generated randomly for each setting of K and N. Average error and its std is shown. Minimum average error is highlighted for each N. Bayes err. $\epsilon_B = 2.58\%$.
K-NN Properties

- Trivial implementation (→ good baseline method)
- 1-NN: Bayes error ϵ_B is the lower bound on error of classification ϵ_{NN} (in the asymptotic case $N \to \infty$.) Upper bounds can also be constructed, e.g. $\epsilon_{NN} \leq 2\epsilon_B$
- Slow when implemented naively, but can be sped up (Voronoi, k-D trees)
- High computer memory requirements (but training set can be edited and its cardinality decreased)
- How to construct the metric d? (problem of scales in different axes)
K-NN: Speeding Up the Classification

- Sophisticated algorithms for NN search:
 - Classical problem in Comp. Geometry
 - k-D trees

- Removing the samples from the training class \(T \) which do not change the result of classification
 - Exactly: using Voronoi diagram
 - Approximately: E.g. use Gabriel graph instead of Voronoi
 - Condensation algorithm: iterative, also approximate.
K-d Tree

k-d tree decomposition for the point set (2,3), (5,4), (9,6), (4,7), (8,1), (7,2)
Condensation Algorithm

Input: The training set \mathcal{T}.

Algorithm

1. Create two lists, A and B. Insert a randomly selected sample from \mathcal{T} to A. Insert the rest of the training samples to B.

2. Classify samples from B using 1NN with training set A. If an $x \in B$ is mis-classified, move it from B to A.

3. If a move has been triggered in Step 2., goto Step 2.

Output: A (the condensed training set for 1NN classification)
Condensation Algorithm, Example

The training dataset

The dataset after the condensation. Shown with the new decision boundary.
1-NN Classification Error

Recall that a classification error $\bar{\epsilon}$ for strategy $q: X \rightarrow R$ is computed as

$$\bar{\epsilon} = \int \sum_{k:q(x) \neq k} p(x, k)dx = \int \sum_{k:q(x) \neq k} p(k|x) p(x)dx = \int \epsilon(x)p(x)dx. \quad (21)$$

We know that the Bayesian strategy q_B decides for the highest posterior probability $q(x) = \arg\max_k p(k|x)$, thus the partial error $\epsilon_B(x)$ for a given x is

$$\epsilon_B(x) = 1 - \max_k p(k|x). \quad (22)$$

Assume the asymptotic case. We will show that the following bounds hold for the partial error $\epsilon_{NN}(x)$ and classification error $\bar{\epsilon}_{NN}$ in the 1-NN classification,

$$\epsilon_B(x) \leq \epsilon_{NN}(x) \leq 2\epsilon_B(x) - \frac{R}{R-1}\epsilon_B^2(x), \quad (23)$$

$$\bar{\epsilon}_B \leq \bar{\epsilon}_{NN} \leq 2\bar{\epsilon}_B - \frac{R}{R-1}\bar{\epsilon}_B^2, \quad (24)$$

where $\bar{\epsilon}_B$ is the Bayes classification error and R is the number of classes.
Consider two distributions as shown, a small interval δ on an x-axis, and a point $s \in \delta$. Let the class priors be $p(1) = p(2) = 0.5$. Assume $\delta \to 0$ and number of samples $N \to \infty$.

Observe the following:

\begin{align}
 p(1|s) &= 0.8, \quad p(2|s) = 0.2, \tag{25} \\
 p(\text{NN}=1|s) &= p(1|s) = 0.8, \quad p(\text{NN}=2|s) = p(2|s) = 0.2, \tag{26}
\end{align}

where $p(\text{NN}=k|s)$ is the probability that the 1-NN of s is from class k ($k = 1, 2$) and thus s is classified as k.
The error $\epsilon_{NN}(s)$ at s is

$$
\epsilon_{NN}(s) = p(1|s) p(NN = 2|s) + p(2|s) p(NN = 1|s)
$$

(27)

$$
= 1 - p(1|s) p(NN = 1|s) - p(2|s) p(NN = 2|s)
$$

(28)

$$
= 1 - p^2(1|s) - p^2(2|s)
$$

(29)

Generally, for R classes, the error will be

$$
\epsilon_{NN}(s) = 1 - \sum_{k \in R} p^2(k|s)
$$

(30)
The two distributions and the partial errors (the Bayesian error $\epsilon_B(x)$ and the 1-NN error $\epsilon_{NN}(x)$)
1-NN Classification Error Bounds (1)

Let us now return to the inequalities and prove them:

\[
\epsilon_B(x) \leq \epsilon_{NN}(x) \leq 2\epsilon_B(x) - \frac{R}{R-1}\epsilon_B^2(x),
\]

(31)

The first inequality follows from the fact that Bayes strategies are optimal.

To prove the second inequality, let \(P(x) \) denote the maximum posterior for \(x \):

\[
P(x) = \max_k p(k|x)
\]

(32)

\[
\Rightarrow \epsilon_B(x) = 1 - P(x).
\]

(33)

Let us rewrite the partial error \(\epsilon_{NN}(x) \) using the Bayesian entities \(P(x) \) and \(q(x) \):

\[
\epsilon_{NN}(x) = 1 - \sum_{k \in R} p^2(k|x) = 1 - P^2(x) - \sum_{k \neq q(x)} p^2(k|x).
\]

(34)

We know that \(p(q(x)|x) = P(x) \), but the remaining posteriors can be arbitrary. Let us consider the worst case. i.e. set \(p(k|x) \) for \(k \neq q(x) \) such that Eq. (34) is maximized. This will provide the upper bound.
1-NN Classification Error Bounds (2)

There are the following constraints on $p(k|x) \ (k \neq q(x))$:

\[
\sum_{k \neq q(x)} p(k|x) + P(x) = 1 \quad \text{(posteriors sum to 1)} \quad (35)
\]

\[
\sum_{k \neq q(x)} p^2(k|x) \rightarrow \min \quad (36)
\]

It is easy to show that this optimization problem is solved by setting all the posteriors to the same number. Thus,

\[
p(k|x) = \frac{1 - P(x)}{R - 1} = \frac{\epsilon_B(x)}{R - 1} \quad (k \neq q(x)) \quad (37)
\]

The upper bound can then be rewritten in terms of the Bayes partial error $\epsilon_B(x) = 1 - P(x)$:

\[
\epsilon_{NN}(x) \leq 1 - P^2(x) - \sum_{k \neq q(x)} p^2(k|x) = 1 - (1 - \epsilon_B(x))^2 - (R - 1) \frac{\epsilon^2_B(x)}{(R - 1)^2} \quad (38)
\]
1-NN Classification Error Bounds (3)

\[\epsilon_{NN}(x) \leq 1 - P^2(x) - \sum_{k \neq q(x)} p^2(k \mid x) = 1 - (1 - \epsilon_B(x))^2 - \frac{\epsilon_B^2(x)}{R - 1}. \]

(39)

After expanding this, we get

\[\epsilon_{NN}(x) \leq 1 - (1 - \epsilon_B(x))^2 - \frac{\epsilon_B^2(x)}{R - 1} \]

(40)

\[= 1 - 1 + 2\epsilon_B(x) - \epsilon_B^2(x) - \epsilon_B^2(x) \frac{R}{R - 1} \]

(41)

\[= 2\epsilon_B(x) - \epsilon_B^2(x) \frac{R}{R - 1} \]

(42)

Note that for \(R = 2 \), the bound is tight because using \(\epsilon_B(x) = 1 - P(x) \) in Eq. (39) gives

\[\epsilon_{NN}(x) \leq 1 - P^2(x) - \frac{(1 - P(x))^2}{1} = \epsilon_{NN}(x). \]

(43)
1-NN Classification Error Bounds (4)

The inequality for the local errors has been proven:

\[
\epsilon_{NN}(x) \leq 2\epsilon_B(x) - \epsilon_B^2(x) \frac{R}{R-1} \tag{44}
\]

Is there a similar upper bound for the classification error \(\bar{\epsilon}_{NN} = \int \epsilon_{NN}(x)p(x)\,dx\), based on the Bayes error \(\bar{\epsilon}_B = \int \epsilon_B(x)p(x)\,dx\)?

Multiplying Eq. (45) by \(p(x)\), and integrating, gives

\[
\bar{\epsilon}_{NN} \leq 2\bar{\epsilon}_B(x) - \frac{R}{R-1} \int \epsilon_B^2(x)p(x)\,dx \tag{45}
\]

Let us use the known identity and inequality (where \(E(\cdot)\) is the expectation operator)

\[
\text{var}(x) = E(x^2) - E^2(x), \quad \text{var}(x) \geq 0 \quad \Rightarrow \quad E(x^2) \geq E^2(x) \tag{46}
\]

Thus, \(\int \epsilon_B^2(x)p(x)\,dx \geq (\int \epsilon_B(x)p(x)\,dx)^2\), and

\[
\bar{\epsilon}_{NN} \leq 2\bar{\epsilon}_B(x) - \frac{R}{R-1} \int \epsilon_B^2(x)p(x)\,dx \leq 2\bar{\epsilon}_B(x) - \frac{R}{R-1}\epsilon_B^2. \tag{47}
\]
K-NN Classification Error Bound

It can be shown that for K-NN, the following inequality holds:

$$
\bar{\epsilon}_{KNN} \leq \bar{\epsilon}_B + \bar{\epsilon}_{1NN} / \sqrt{K \text{ const}}
$$

(48)
Edit algorithm

The primary goal of this method is to reduce the classification error (not the speed-up of classification.)

Input: The training set \mathcal{T}.

Algorithm

1. Partition \mathcal{T} to two sets, A and B ($\mathcal{T} = A \cup B$, $A \cap B = \emptyset$).
2. Classify samples in B using K-NN with training set A. Remove all samples from B which have been mis-classified.

Output: B the training set for 1-NN classification.

Asymptotic property:

$$
\bar{\epsilon}_{edit} = \bar{\epsilon}_B \left(1 - \bar{\epsilon}_B \right) \frac{1 - \bar{\epsilon}_B}{1 - \bar{\epsilon}_{KNN}} \tag{49}
$$

If $\bar{\epsilon}_{KNN}$ is small (e.g. 0.05) then the edited 1NN is quasi-Bayes (almost the same performance as Bayesian Classification.)