
1

PRG – PROGRAMMING ESSENTIALS
1

Lecture 11 – Classes & Objects continued …
https://cw.fel.cvut.cz/wiki/courses/be5b33prg/start

Michal Reinštein
Czech Technical University in Prague, 

Faculty of Electrical Engineering, Dept. of Cybernetics, 
Center for Machine Perception
http://cmp.felk.cvut.cz/~reinsmic/

reinstein.michal@fel.cvut.cz

13/12/2018 Michal Reinštein, Czech Technical University in Prague

https://cw.fel.cvut.cz/wiki/courses/be5b33prg/start
http://cmp.felk.cvut.cz/~reinsmic/
mailto:reinstein.michal@fel.cvut.cz


2

RECAP: OOP PERSPECTIVE
2

13/12/2018 Michal Reinštein, Czech Technical University in Prague

source http://openbookproject.net/thinkcs/python/english3e/classes_and_objects_I.html

OOP is about changing the perspective

• Syntax for a function call: function_name(variable)
function is the one who executes on the variable

• Syntax in OOP: object_name.function_name()
object is the one who executes its method on given data / 
attribute

http://openbookproject.net/thinkcs/python/english3e/classes_and_objects_I.html


3

RECAP: CLASS vs. TUPLE
3

13/12/2018 Michal Reinštein, Czech Technical University in Prague

source http://openbookproject.net/thinkcs/python/english3e/classes_and_objects_I.html

• Advantage of using a class (e.g. Point) rather than a tuple is 
that class methods are sensible operations for points, but 
may not be appropriate for other tuples
(e.g. calculate the distance from the origin)

• Class allows to group together sensible operations as well as 
data to apply the methods on

• Each instance of the class has its own state
• Method behaves like a function but it is invoked on a specific 

instance

http://openbookproject.net/thinkcs/python/english3e/classes_and_objects_I.html


4

RECAP: EXAMPLE – INSTANCE METHODS
4

13/12/2018 Michal Reinštein, Czech Technical University in Prague

SOURCE https://stackoverflow.com/questions/17134653/difference-between-class-and-instance-methods

https://stackoverflow.com/questions/17134653/difference-between-class-and-instance-methods


5

RECAP: EXAMPLE – CLASS METHODS
5

13/12/2018 Michal Reinštein, Czech Technical University in Prague

SOURCE https://stackoverflow.com/questions/17134653/difference-between-class-and-instance-methods

https://stackoverflow.com/questions/17134653/difference-between-class-and-instance-methods


6

RECAP: OBJECT PROPERTIES
6

13/12/2018 Michal Reinštein, Czech Technical University in Prague

SOURCE http://python-textbok.readthedocs.io/en/1.0/Classes.html# UNDER CC BY-SA 4.0 licence Revision 8e685e710775

http://python-textbok.readthedocs.io/en/1.0/Classes.html
https://creativecommons.org/licenses/by-sa/4.0/


7

RECAP: OBJECT PROPERTIES
7

13/12/2018 Michal Reinštein, Czech Technical University in Prague

SOURCE http://python-textbok.readthedocs.io/en/1.0/Classes.html# UNDER CC BY-SA 4.0 licence Revision 8e685e710775

http://python-textbok.readthedocs.io/en/1.0/Classes.html
https://creativecommons.org/licenses/by-sa/4.0/


8

RECAP: INSPECTING OBJECTS
8

13/12/2018 Michal Reinštein, Czech Technical University in Prague

EXAMPLES FROM http://python-textbok.readthedocs.io/en/1.0/Classes.html# UNDER CC BY-SA 4.0 licence Revision 8e685e710775

• Use function dir for inspecting objects: output list of the 

attributes and methods

http://python-textbok.readthedocs.io/en/1.0/Classes.html
https://creativecommons.org/licenses/by-sa/4.0/


9

CLASSES, OBJECTS
9

13/12/2018 Michal Reinštein, Czech Technical University in Prague

source http://openbookproject.net/thinkcs/python/english3e/classes_and_objects_II.html

• EXAMPLE: assume a rectangle that is oriented either vertically 
or horizontally, never at an angle;
specify the upper-left corner of the rectangle, and its size

http://openbookproject.net/thinkcs/python/english3e/classes_and_objects_II.html


10

CLASSES, OBJECTS
10

13/12/2018 Michal Reinštein, Czech Technical University in Prague

source http://openbookproject.net/thinkcs/python/english3e/classes_and_objects_II.html

• To specify the upper-left corner embed a Point object within 
the new Rectangle object

• Create two new Rectangle objects, and then print them 
producing

http://openbookproject.net/thinkcs/python/english3e/classes_and_objects_II.html


11

DOT OPERATOR COMPOSITION
11

13/12/2018 Michal Reinštein, Czech Technical University in Prague

• The dot operator composes.
• The expression box.corner.x means:

“Go to the object that box refers to and select its attribute 
named corner, then go to that object and select its attribute 
named x”

source http://openbookproject.net/thinkcs/python/english3e/classes_and_objects_II.html

http://openbookproject.net/thinkcs/python/english3e/classes_and_objects_II.html


12

OBJECTS ARE MUTABLE
12

13/12/2018 Michal Reinštein, Czech Technical University in Prague

• Change the state of an object by making an assignment to one 

of its attributes

• Provide a method to encapsulate this inside the class

• Provide another method to move the position of the rectangle 
elsewhere

source http://openbookproject.net/thinkcs/python/english3e/classes_and_objects_II.html

http://openbookproject.net/thinkcs/python/english3e/classes_and_objects_II.html


13

OBJECT EQUALITY
13

13/12/2018 Michal Reinštein, Czech Technical University in Prague

• EXAMPLE: If two objects are the same, does it mean they 
contain the same data or that they are the same object?

• The is operator was used in previous examples on the lists 
when explaining aliases: it allows to find out if two references 
refer to the same object

source http://openbookproject.net/thinkcs/python/english3e/classes_and_objects_II.html

http://openbookproject.net/thinkcs/python/english3e/classes_and_objects_II.html


14

OBJECT EQUALITY
14

13/12/2018 Michal Reinštein, Czech Technical University in Prague

• Shallow copy: is defined as constructing a new collection 

object and then populating it with references to the child 

objects found in the original, i.e. a shallow copy is only one 

level deep. The copying process does not recurse and 

therefore will not create copies of the child objects.

• Deep copy: is defined as recursive copying process, i.e. first 

constructing a new collection object and then recursively 

populating it with copies of the child objects found in the 

original. Copying an object this way walks the whole object 
tree to create a fully independent clone of the original object 
and all of its children.

source https://realpython.com/copying-python-objects/

https://realpython.com/copying-python-objects/


15

OBJECT EQUALITY
15

13/12/2018 Michal Reinštein, Czech Technical University in Prague

• Shallow equality: When is is True, this type of equality 
is shallow equality because it compares only the references
and not the contents of the objects

• Deep equality: To compare the contents of the objects a 
function like same_coordinates needs to be created

• IMPORTANT: If two variables refer to the same object, they 
have both shallow and deep equality

source http://openbookproject.net/thinkcs/python/english3e/classes_and_objects_II.html

http://openbookproject.net/thinkcs/python/english3e/classes_and_objects_II.html


16

OBJECT EQUALITY
16

13/12/2018 Michal Reinštein, Czech Technical University in Prague

• Think about shallow & deep copy when designing classes!

• EXAMPLE: even though the two lists (or tuples, etc.) are 

distinct objects with different memory addresses, for lists

the == operator tests for deep equality, while in the case of 

objects (points) it makes a shallow test

source http://openbookproject.net/thinkcs/python/english3e/classes_and_objects_II.html

http://openbookproject.net/thinkcs/python/english3e/classes_and_objects_II.html


17

OBJECT COPY
17

13/12/2018 Michal Reinštein, Czech Technical University in Prague

• Aliasing makes code difficult to read – changes made in one 
place might have unexpected effects in another place

• Copying object is an alternative to aliasing: the copy module 
contains a function copy that can duplicate any object

• EXAMPLE: import the copy module and use the copy function 

to make a new Point: p1 and p2 are not the same point, but 

they contain the same data (shallow copy)

source http://openbookproject.net/thinkcs/python/english3e/classes_and_objects_II.html

http://openbookproject.net/thinkcs/python/english3e/classes_and_objects_II.html


18

OBJECT COPY
18

13/12/2018 Michal Reinštein, Czech Technical University in Prague

• EXAMPLE: Assume Rectangle, which contains a reference to 
a Point: copy copies the reference to the Point object, so both 
the old Rectangle and the new one refer to the same Point

• invoking grow on one of the Rectangle objects would not 
affect the other, 

• invoking move on either would affect both
• The shallow copy has created an alias to the Point that 

represents the corner
• Copy module contains a function named deepcopy that 

copies not only the object but also any embedded objects
source http://openbookproject.net/thinkcs/python/english3e/classes_and_objects_II.html

http://openbookproject.net/thinkcs/python/english3e/classes_and_objects_II.html


19

OBJECT COPY
19

13/12/2018 Michal Reinštein, Czech Technical University in Prague

• Deep copy: To copy the contents of an object as well as any 

embedded objects, and any objects embedded in them, etc. 

(implemented as deepcopy function in copy module)

• Deep equality: Equality of values, or two references that point 

to objects that have the same value

• Shallow copy: To copy the contents of an object, including any 

references to embedded objects (one level copy).

(implemented by the copy function in the copy module)

• Shallow equality: Equality of references, or two references 

that point to the same object

source http://openbookproject.net/thinkcs/python/english3e/classes_and_objects_II.html

http://openbookproject.net/thinkcs/python/english3e/classes_and_objects_II.html


20

CLASSES, OBJECTS
20

13/12/2018 Michal Reinštein, Czech Technical University in Prague

source http://openbookproject.net/thinkcs/python/english3e/even_more_oop.html

• EXAMPLE: user-defined type called MyTime that records the 

time of day

• Initializer using an __init__ method to ensure that every 

instance is created with appropriate attributes

http://openbookproject.net/thinkcs/python/english3e/even_more_oop.html


21

PURE FUNCTIONS
21

14/12/2018 Michal Reinštein, Czech Technical University in Prague

EXAMPLE: create two MyTime objects:

• current_time, which contains the current time 

• bread_time, which contains the amount of time it takes for 

a breadmaker to make bread

• use add_time to figure out when the bread will be done

PROBLEM: we do not deal with cases where the number of 
seconds or minutes adds up to more than sixty. 

source http://openbookproject.net/thinkcs/python/english3e/even_more_oop.html

http://openbookproject.net/thinkcs/python/english3e/even_more_oop.html


22

PURE FUNCTIONS
22

14/12/2018 Michal Reinštein, Czech Technical University in Prague

source http://openbookproject.net/thinkcs/python/english3e/even_more_oop.html

• EXAMPLE: Two versions of a function add_time, pure & 
modifier, which calculates the sum of two MyTime objects

• Function that creates a new MyTime object and returns a 
reference to the new object is pure function because it does 
not modify any of the objects passed to it as parameters and 
it has no side effects

http://openbookproject.net/thinkcs/python/english3e/even_more_oop.html


23

PURE FUNCTIONS
23

14/12/2018 Michal Reinštein, Czech Technical University in Prague

source http://openbookproject.net/thinkcs/python/english3e/even_more_oop.html

PROBLEM: Do we now deal with cases where the number of 
seconds or minutes adds up to more than sixty?

http://openbookproject.net/thinkcs/python/english3e/even_more_oop.html


24

MODIFIERS
24

13/12/2018 Michal Reinštein, Czech Technical University in Prague

• It can be useful for a function to modify one or more of the 

objects it gets as parameters

• Usually, the caller keeps a reference to the objects it passes, 

so any changes the function makes are visible to the caller 

(modifier function)

• Increment, which adds a given number of seconds to 

a MyTime object, is a natural example of a modifier

source http://openbookproject.net/thinkcs/python/english3e/even_more_oop.html

http://openbookproject.net/thinkcs/python/english3e/even_more_oop.html


25

MODIFIERS
25

13/12/2018 Michal Reinštein, Czech Technical University in Prague

• SOLUTION: Include functions that work with MyTime objects 

into the MyTime class (conversion of increment to a method)

• Move the definition into the class definition and change the 

name of the first parameter to self (Python convention!)

source http://openbookproject.net/thinkcs/python/english3e/even_more_oop.html

http://openbookproject.net/thinkcs/python/english3e/even_more_oop.html


26

INSIGHT
26

13/12/2018 Michal Reinštein, Czech Technical University in Prague

• INSIGHT: MyTime object is a three-digit number in base 60!

• Another approach —convert the MyTime object into a single 
number

• The above method is added to the MyTime class to convert 

any instance into a corresponding number of seconds

source http://openbookproject.net/thinkcs/python/english3e/even_more_oop.html

http://openbookproject.net/thinkcs/python/english3e/even_more_oop.html


27

INSIGHT
27

13/12/2018 Michal Reinštein, Czech Technical University in Prague

• In OOP wrap together the data and the operations 
• Solution is to rewrite the class initializer so that it can cope 

with initial values of seconds or minutes that are outside 

the normalized values

(normalized time: 3 hours 12 minutes and 20 seconds; the same 
time but not normalized 2 hours 70 minutes and 140 seconds)

source http://openbookproject.net/thinkcs/python/english3e/even_more_oop.html

http://openbookproject.net/thinkcs/python/english3e/even_more_oop.html


28

EXAMPLE
28

13/12/2018 Michal Reinštein, Czech Technical University in Prague

• EXAMPLE: The after function should compare two times and 
specify whether the first time is strictly after the second

• More complicated because it operates on two MyTime
objects not just one

source http://openbookproject.net/thinkcs/python/english3e/even_more_oop.html

http://openbookproject.net/thinkcs/python/english3e/even_more_oop.html


29

EXAMPLE
29

13/12/2018 Michal Reinštein, Czech Technical University in Prague

• Lines 11-18 will only be reached if the two hour fields are the 
same.

• The test at line 16 is only executed if both times have the 
same hours and the same minutes.

source http://openbookproject.net/thinkcs/python/english3e/even_more_oop.html

http://openbookproject.net/thinkcs/python/english3e/even_more_oop.html


30

EXAMPLE
30

13/12/2018 Michal Reinštein, Czech Technical University in Prague

• The whole example can be made easier using the previously 
discovered insight of converting the time into single integer!

• This is a great way to code this: 

If we want to tell if the first time is after the second time, turn 
them both into integers and compare the integers.

source http://openbookproject.net/thinkcs/python/english3e/even_more_oop.html

http://openbookproject.net/thinkcs/python/english3e/even_more_oop.html


31

OPERATOR OVERLOADING
31

13/12/2018 Michal Reinštein, Czech Technical University in Prague

• Operator overloading: possibility to have different meanings 
for the same operator when applied to different types

• EXAMPLE: the + in Python means quite different things for 
integers (addition) and for strings (concatenation)!

• To override the addition operator + provide a method 
named __add__

source http://openbookproject.net/thinkcs/python/english3e/even_more_oop.html

http://openbookproject.net/thinkcs/python/english3e/even_more_oop.html


32

OPERATOR OVERLOADING
32

13/12/2018 Michal Reinštein, Czech Technical University in Prague

• First parameter is the object on which the method is invoked
• Second parameter is named other to distinguish it from self
• To add two MyTime objects create and return a 

new MyTime object that contains their sum

• The expression t1 + t2 is equivalent to t1.__add__(t2)

source http://openbookproject.net/thinkcs/python/english3e/even_more_oop.html

http://openbookproject.net/thinkcs/python/english3e/even_more_oop.html


33

OPERATOR OVERLOADING
33

13/12/2018 Michal Reinštein, Czech Technical University in Prague

• EXAMPLE: back to the Point class – adding two points adds 
their respective (x, y) coordinates

• EXAMPLE: several ways to override the behavior of the 
multiplication operator by defining a method named __mul__
or __rmul__ or both

source http://openbookproject.net/thinkcs/python/english3e/even_more_oop.html

http://openbookproject.net/thinkcs/python/english3e/even_more_oop.html


34

OPERATOR OVERLOADING
34

13/12/2018 Michal Reinštein, Czech Technical University in Prague

• If the left operand of * is a Point, Python invokes __mul__, 
which assumes that the other operand is also a Point
(this computes the dot product of the two Points)

• If the left operand of * is a primitive type and the right 
operand is a Point, Python invokes __rmul__, which 
performs scalar multiplication

• The result is always a new Point whose coordinates are a 
multiple of the original coordinates

source http://openbookproject.net/thinkcs/python/english3e/even_more_oop.html

http://openbookproject.net/thinkcs/python/english3e/even_more_oop.html


35

OPERATOR OVERLOADING
35

13/12/2018 Michal Reinštein, Czech Technical University in Prague

PROBLEM: How is p2 * 2 evaluated? 

source http://openbookproject.net/thinkcs/python/english3e/even_more_oop.html

http://openbookproject.net/thinkcs/python/english3e/even_more_oop.html


36

OPERATOR OVERLOADING
36

13/12/2018 Michal Reinštein, Czech Technical University in Prague

• PROBLEM: How is p2 * 2 evaluated?

• Since the first parameter is a Point, Python invokes __mul__
with 2 as the second argument

• Inside __mul__, the program tries to access the x coordinate 

of other, which fails because an integer has no attributes

source http://openbookproject.net/thinkcs/python/english3e/even_more_oop.html

http://openbookproject.net/thinkcs/python/english3e/even_more_oop.html


37

POLYMORPHISM
37

13/12/2018 Michal Reinštein, Czech Technical University in Prague

• EXAMPLE: front_and_back – consider a function which prints 

a list twice, forward and backward

• The reverse method is a modifier therefore a copy needs to 

be made before applying it (this way we prevent to modify the 

list the function gets as a parameter!)

• Function that can take arguments with different types and

handles them accordingly is called polymorphic

source http://openbookproject.net/thinkcs/python/english3e/even_more_oop.html

http://openbookproject.net/thinkcs/python/english3e/even_more_oop.html


38

POLYMORPHISM
38

13/12/2018 Michal Reinštein, Czech Technical University in Prague

• Polymorphism == ability to process objects differently based 
on data type

• There are certain operations that can be applied to many 
types, such as the arithmetic operations …

• EXAMPLE: multadd operation takes three parameters: 
multiplies the first two and then adds the third

• The first case: the Point is multiplied by a scalar and then 
added to another Point. 

• The second case: the dot product yields a numeric value, so 
the third parameter also has to be a numeric value

source http://openbookproject.net/thinkcs/python/english3e/even_more_oop.html

http://openbookproject.net/thinkcs/python/english3e/even_more_oop.html


39

POLYMORPHISM
39

13/12/2018 Michal Reinštein, Czech Technical University in Prague

• Python’s fundamental rule of polymorphism is called 
the duck typing rule: If all of the operations inside the 
function can be applied to the type, the function can be 
applied to the type.

• Operations in the front_and_back : copy, reverse, print

• EXAMPLE: What about our Point class?
The copy method works on any object; already written 
a __str__ method for Point objects for the str() conversion, 
only the reverse method for the Point class is needed!

source http://openbookproject.net/thinkcs/python/english3e/even_more_oop.html

http://openbookproject.net/thinkcs/python/english3e/even_more_oop.html


40

EXAMPLES
40

13/12/2018 Michal Reinštein, Czech Technical University in Prague

EXAMPLES FROM http://python-textbok.readthedocs.io/en/1.0/Classes.html# UNDER CC BY-SA 4.0 licence Revision 8e685e710775

http://python-textbok.readthedocs.io/en/1.0/Classes.html
https://creativecommons.org/licenses/by-sa/4.0/


41

EXAMPLES
41

13/12/2018 Michal Reinštein, Czech Technical University in Prague

EXAMPLES FROM http://python-textbok.readthedocs.io/en/1.0/Classes.html# UNDER CC BY-SA 4.0 licence Revision 8e685e710775

http://python-textbok.readthedocs.io/en/1.0/Classes.html
https://creativecommons.org/licenses/by-sa/4.0/


42

EXAMPLES
42

13/12/2018 Michal Reinštein, Czech Technical University in Prague

EXAMPLES FROM http://python-textbok.readthedocs.io/en/1.0/Classes.html# UNDER CC BY-SA 4.0 licence Revision 8e685e710775

http://python-textbok.readthedocs.io/en/1.0/Classes.html
https://creativecommons.org/licenses/by-sa/4.0/


43

EXAMPLES
43

13/12/2018 Michal Reinštein, Czech Technical University in Prague

EXAMPLES FROM http://python-textbok.readthedocs.io/en/1.0/Classes.html# UNDER CC BY-SA 4.0 licence Revision 8e685e710775

http://python-textbok.readthedocs.io/en/1.0/Classes.html
https://creativecommons.org/licenses/by-sa/4.0/


44

EXAMPLES
44

13/12/2018 Michal Reinštein, Czech Technical University in Prague

EXAMPLES FROM http://python-textbok.readthedocs.io/en/1.0/Classes.html# UNDER CC BY-SA 4.0 licence Revision 8e685e710775

http://python-textbok.readthedocs.io/en/1.0/Classes.html
https://creativecommons.org/licenses/by-sa/4.0/


45

EXAMPLES
45

13/12/2018 Michal Reinštein, Czech Technical University in Prague

EXAMPLES FROM http://python-textbok.readthedocs.io/en/1.0/Classes.html# UNDER CC BY-SA 4.0 licence Revision 8e685e710775

http://python-textbok.readthedocs.io/en/1.0/Classes.html
https://creativecommons.org/licenses/by-sa/4.0/


46

EXAMPLES
46

13/12/2018 Michal Reinštein, Czech Technical University in Prague

EXAMPLES FROM http://python-textbok.readthedocs.io/en/1.0/Classes.html# UNDER CC BY-SA 4.0 licence Revision 8e685e710775

http://python-textbok.readthedocs.io/en/1.0/Classes.html
https://creativecommons.org/licenses/by-sa/4.0/


47

EXAMPLES
47

13/12/2018 Michal Reinštein, Czech Technical University in Prague

EXAMPLES FROM http://python-textbok.readthedocs.io/en/1.0/Classes.html# UNDER CC BY-SA 4.0 licence Revision 8e685e710775

http://python-textbok.readthedocs.io/en/1.0/Classes.html
https://creativecommons.org/licenses/by-sa/4.0/


48

EXAMPLES
48

13/12/2018 Michal Reinštein, Czech Technical University in Prague

EXAMPLES FROM http://python-textbok.readthedocs.io/en/1.0/Classes.html# UNDER CC BY-SA 4.0 licence Revision 8e685e710775

http://python-textbok.readthedocs.io/en/1.0/Classes.html
https://creativecommons.org/licenses/by-sa/4.0/


49

EXAMPLES
49

13/12/2018 Michal Reinštein, Czech Technical University in Prague

EXAMPLES FROM http://python-textbok.readthedocs.io/en/1.0/Classes.html# UNDER CC BY-SA 4.0 licence Revision 8e685e710775

http://python-textbok.readthedocs.io/en/1.0/Classes.html
https://creativecommons.org/licenses/by-sa/4.0/


50

INSPECTING OBJECTS
50

13/12/2018 Michal Reinštein, Czech Technical University in Prague

EXAMPLES FROM http://python-textbok.readthedocs.io/en/1.0/Classes.html# UNDER CC BY-SA 4.0 licence Revision 8e685e710775

• Use function dir for inspecting objects: output list of the 
attributes and methods

http://python-textbok.readthedocs.io/en/1.0/Classes.html
https://creativecommons.org/licenses/by-sa/4.0/


51

EXAMPLES
51

13/12/2018 Michal Reinštein, Czech Technical University in Prague

EXAMPLES FROM http://python-textbok.readthedocs.io/en/1.0/Classes.html# UNDER CC BY-SA 4.0 licence Revision 8e685e710775

http://python-textbok.readthedocs.io/en/1.0/Classes.html
https://creativecommons.org/licenses/by-sa/4.0/


52

EXAMPLES
52

13/12/2018 Michal Reinštein, Czech Technical University in Prague

EXAMPLES FROM http://python-textbok.readthedocs.io/en/1.0/Classes.html# UNDER CC BY-SA 4.0 licence Revision 8e685e710775

http://python-textbok.readthedocs.io/en/1.0/Classes.html
https://creativecommons.org/licenses/by-sa/4.0/


53

EXAMPLES
53

13/12/2018 Michal Reinštein, Czech Technical University in Prague

EXAMPLES FROM http://python-textbok.readthedocs.io/en/1.0/Classes.html# UNDER CC BY-SA 4.0 licence Revision 8e685e710775

http://python-textbok.readthedocs.io/en/1.0/Classes.html
https://creativecommons.org/licenses/by-sa/4.0/


54

REFERENCES
54

13/12/2018 Michal Reinštein, Czech Technical University in Prague

This lecture re-uses selected parts of the OPEN BOOK PROJECT
Learning with Python 3 (RLE)

http://openbookproject.net/thinkcs/python/english3e/index.html
available under GNU Free Documentation License Version 1.3)

• Version date: October 2012
• by Peter Wentworth, Jeffrey Elkner, Allen B. Downey, and Chris Meyers

(based on 2nd edition by Jeffrey Elkner, Allen B. Downey, and Chris Meyers) 
• Source repository is at https://code.launchpad.net/~thinkcspy-rle-

team/thinkcspy/thinkcspy3-rle
• For offline use, download a zip file of the html or a pdf version 

from http://www.ict.ru.ac.za/Resources/cspw/thinkcspy3/

This lecture re-uses selected parts of the PYTHON TEXTBOOK
Object-Oriented Programming in Python

http://python-textbok.readthedocs.io/en/1.0/Classes.html#
(released under CC BY-SA 4.0 licence Revision 8e685e710775)

http://openbookproject.net/thinkcs/python/english3e/index.html
http://openbookproject.net/thinkcs/python/english3e/copyright.html
https://www.gnu.org/licenses/fdl-1.3.en.html
https://code.launchpad.net/~thinkcspy-rle-team/thinkcspy/thinkcspy3-rle
http://www.ict.ru.ac.za/Resources/cspw/thinkcspy3/
http://python-textbok.readthedocs.io/en/1.0/Classes.html
https://creativecommons.org/licenses/by-sa/4.0/

