PRG — PROGRAMMING ESSENTIALS

Michal Reinstein

Czech Technical University in Prague,
Faculty of Electrical Engineering, Dept. of Cybernetics,
Center for Machine Perception

https://cw.fel.cvut.cz/wiki/courses/be5b33prg/start
http://cmp.felk.cvut.cz/~reinsmic/
mailto:reinstein.michal@fel.cvut.cz

il OOP PERSPECTIVE @

OOP is about changing the perspective

 Syntax for a function call:
function is the one who executes on the variable

* Syntax in OOP:
object is the one who executes its method on given data /
attribute

http://openbookproject.net/thinkcs/python/english3e/classes_and_objects_I.html

Ao

CLASS vs. TUPLE @

class Point:
""" Create a new Point, at coordinates x, y """

def init (self, x=0, y=0):
"" Create a new point at x, y """
self.x = x
self.y = y

def distance from origin(self):
" Compute my distance from the origin """
return ((self.x ** 2) + (self.y ** 2)) ** 0.5

Advantage of using a class (e.g. Point) rather than a tuple is
that for points, but
may not be appropriate for other tuples

(e.g. calculate the distance from the origin)

Class allows to as well as
data to apply the methods on

Each instance of the class has its

Method but it is invoked on a specific
instance

http://openbookproject.net/thinkcs/python/english3e/classes_and_objects_I.html

%é EXAMPLE - INSTANCE METHODS

class Inst:

def __init__ (self, name):
self.name = name

def introduce(self):
print("Hello, I am %s, and my name is " %(self, self.name))

myinst = Inst("Test Instance")
otherinst = Inst("An other instance")

myinst.introduce()
outputs: Hello, I am <Inst object at x>, and my name is Test Instance

otherinst.introduce()

outputs: Hello, I am <Inst object at y>, and my name is An other instance

SOURCE

https://stackoverflow.com/questions/17134653/difference-between-class-and-instance-methods

%é EXAMPLE — CLASS METHODS | (®

class Cls:

@classmethod
def introduce(cls):
print("Hello, I am %s!" %cls)

Cls.introduce() # same as Cls.introduce(Cls)
outputs: Hello, I am <class 'Cls'>

Notice that again Cls is passed hiddenly, so we could also say Cls.introduce(Inst) and get
output "Hello, I am <class 'Inst'> . This is particularly useful when we're inheriting a class
from Cls :

class SubCls(Cls):
pass

SubCls.introduce()
outputs: Hello, I am <class 'SubCls'>

SOURCE

https://stackoverflow.com/questions/17134653/difference-between-class-and-instance-methods

RECAP: OBJECT PROPERTIES @

__init__ :the initialisation method of an object, which is called when the object is created.

__str__ : the string representation method of an object, which is called when you use the str

function to convert that object to a string.

e _ class__ :an attribute which stores the the class (or type) of an object - this is what is
returned when you use the type function on the object.

e _eq__ :amethod which determines whether this object is equal to another. There are also
other methods for determining if it's not equal, less than, etc.. These methods are used in object
comparisons, for example when we use the equality operator == to check if two objects are
equal.

e add__ is a method which allows this object to be added to another object. There are
equivalent methods for all the other arithmetic operators. Not all objects support all arithemtic
operations - numbers have all of these methods defined, but other objects may only have a
subset.

e _iter__ :amethod which returns an iterator over the object - we will find it on strings, lists

and other iterables. It is executed when we use the iter function on the object.

e _1len__ :a method which calculates the length of an object - we will find it on sequences. It is
executed when we use the 1en function of an object.
__dict__ :adictionary which contains all the instance attributes of an object, with their names

as keys. It can be useful if we want to iterate over all the attributes of an object. _ dict_ does

not include any methods, class attributes or special default attributes like ciass .

SOURCE http://python-textbok.readthedocs.io/en/1.0/Classes.html# UNDER CC BY-SA 4.0 licence Revision 8e685e710775

http://python-textbok.readthedocs.io/en/1.0/Classes.html
https://creativecommons.org/licenses/by-sa/4.0/

OBJECT PROPERTIES

Person:

(name
.name = name

« SUrname = surname

surname):

(other):

.name == other.name

.surname ==
(other):
.surname ==

other.surname

other.surname:
.name > other.name
.Surname > other.surnamd

other):

== other

other):
> other

other):
> other

(

other):
< other

SOURCE

Revision 8e685e710775

http://python-textbok.readthedocs.io/en/1.0/Classes.html
https://creativecommons.org/licenses/by-sa/4.0/

@% INSPECTING OBJECTS @

Person:
__init__(self, name, surname):
self.name = name
self.surname = surname

fullname(self):
"%s %s" % (self.name, self.surname)

Person("Jane", "Smith")

(dir(jane))
' _ipit__ "', '_module__', 'fullname', 'name', 'surname’]

* Use function dir for inspecting objects: output list of the
attributes and methods

EXAMPLES FROM UNDER Revision 8e685e710775

http://python-textbok.readthedocs.io/en/1.0/Classes.html
https://creativecommons.org/licenses/by-sa/4.0/

@ CLASSES, OBJECTS @

class Rectangle:
'" A class to manufacture rectangle objects """
def init (self, posn, w, h):
" Initialize rectangle at posn, with width w, height h """

self.corner = posn
self.width = w
self.height = h

def str (self):
return " ({0}, {1}, {2})"

.format(self.corner, self.width, self.height)
e EXAMPLE: assume a that is oriented either vertically

or horizontally, never at an angle;
specify the of the rectangle, and its

http://openbookproject.net/thinkcs/python/english3e/classes_and_objects_II.html

@ CLASSES, OBJECTS @

class Rectangle:
" A class to manufacture rectangle objects """

10

def init_(self, posn, w, h):
""" Initialize rectangle at posn, with width w, height h """
self.corner = posn
self.width = w
self.height = h

def str (self):
return " ({0}, {1}, {2})"
.format(self.corner, self.width, self.height)

box = Rectangle(Point(0, 0), 100, 200)
bomb = Rectangle(Point (100, 80), 5, 10) # In my video game
print("box: ", box)
print("bomb: ", bomb)

box: ((0, 0), 100, 200)

bomb: ((100, 80), 5, 10)

* To specify the upper-left corner embed a within
the new

* Create two new Rectangle objects, and then print them
producing

http://openbookproject.net/thinkcs/python/english3e/classes_and_objects_II.html

@ DOT OPERATOR COMPOSITION @

11

box = width —= 1000

cormei -

 The dot operator composes.
* The expression means:

“Go to the object that box refers to and select its attribute

named corner, then go to that object and select its attribute
named x”

http://openbookproject.net/thinkcs/python/english3e/classes_and_objects_II.html

e OBJECTS ARE MUTABLE @[

12
class Rectangle:
eeoe

def grow(self, delta width, delta height):
" Grow (or shrink) this object by the deltas """
self.width += delta width

self.height += delta height >>> r = Rectangle(Point(10,5), 100, 50)

>>> print(r)
def move(self, dx, dy): ((10, 5), 100, 50)

" Move this object by the deltas >>> r.grow(25, -10)

self.corner.x += dx >>> print(r)

self.corner.y += dy ((10, 5), 125, 40)
>>> r.move(-10, 10)
print(r)

((0, 15), 125, 40)

* Change the state of an object by making an assignment to one

. . box.width += 50
of its attributes |0} feignt += 100

* Provide a method to encapsulate this inside the class

* Provide another method to move the position of the rectangle
elsewhere

http://openbookproject.net/thinkcs/python/english3e/classes_and_objects_II.html

@ OBJECT EQUALITY @

13

>>> pl = Point(3, 4) >>> p3 = pl
>>> p2 = Point(3, 4) >>> pl is p3
>>> pl is p2 True

False

« EXAMPLE: If two objects are the same, does it mean they
contain the or that they are the ?

* The is operator was used in previous examples on the lists
when explaining aliases: it allows to find out if two references
refer to the same object

http://openbookproject.net/thinkcs/python/english3e/classes_and_objects_II.html

e

OBJECT EQUALITY @

. is defined as constructing a new collection

object and then to the child
objects found in the original, i.e. a shallow copy is
. The and

therefore will not create copies of the child objects.

. is defined as ,i.e. first
constructing a new collection object and then recursively
populating it with found in the

original. Copying an object this way walks the whole object
tree to create a fully independent clone of the original object
and all of its children.

14

https://realpython.com/copying-python-objects/

Ao

OBJECT EQUALITY @

15

def same coordinates(pl, p2):
return (pl.x == p2.x) and (pl.y == p2.y)

>>> pl = Point(3, 4)

>>> p2 = Point(3, 4)

>>> same coordinates(pl, p2)
True

: When is is , this type of equality
is shallow equality because it compares only the
and not the contents of the objects

: To compare the of the objects a
function like same_coordinates needs to be created

* IMPORTANT:

http://openbookproject.net/thinkcs/python/english3e/classes_and_objects_II.html

Ao

OBJECT EQUALITY @

p = Point(4, 2)
s = Point(4, 2)
print("== on Points returns", p == s8)
By default, == on Point objects does a shallow equality test
a=1[2,3]
b=12,3]
print("== on lists returns", a == b)
But by default, == does a deep equality test on lists
== on Points returns False
== on lists returns True
* Think about & copy when designing classes!

« EXAMPLE: even though the two lists (or tuples, etc.) are
distinct objects with different memory addresses, for

the

operator tests for , While in the case of
(points) it makes a

16

http://openbookproject.net/thinkcs/python/english3e/classes_and_objects_II.html

il OBJECT COPY @

>>> import copy

>>> pl = Point(3, 4)

>>> p2 = copy.copy(pl)

>>> pl is p2

False

>>> same_coordinates(pl, p2)
True

17

* Aliasing makes code difficult to read —

* Copying object is an the
contains a function copy that can duplicate any object

« EXAMPLE: import the copy module and use the copy function
to make a new Point: p1 and p2 are , but
they (shallow copy)

http://openbookproject.net/thinkcs/python/english3e/classes_and_objects_II.html

il OBJECT COPY G
18
bi - width —= 1000 1000 == width |=—b2
height —= 2000 [, _ 5go| |2000=— height
comer ™y —= 00~ corner

EXAMPLE: Assume Rectangle, which contains a reference to

a Point: copy to the Point object, so both
the old Rectangle and the new one Point
invoking on one of the Rectangle objects would not
affect the other,

invoking on either would affect both

Copy module contains a function named that

copies not only the object but also any embedded objects

http://openbookproject.net/thinkcs/python/english3e/classes_and_objects_II.html

OBJECT COPY @

19

: To copy the contents of an object as well as any
embedded objects, and any objects embedded in them, etc.

()

: Equality of values, or two references that point
to objects that have the same value

: To copy the contents of an object, including any
references to embedded objects (one level copy).

()

. Equality of references, or two references
that point to the same object

http://openbookproject.net/thinkcs/python/english3e/classes_and_objects_II.html

/@%@g CLASSES, OBJECTS @

class MyTime:

20

def init (self, hrs=0, mins=0, secs=0):
'" Create a MyTime object initialized to hrs, mins, secs """
self.hours = hrs
self.minutes = mins
self.seconds = secs

Hml - hours —= 11

minuies —= 59
timl = MyTime(11l, 59, 30)
saconds —= 30

e EXAMPLE: user-defined type called that records the
time of day
* |nitializer using an method to ensure that every

instance is created with appropriate attributes

http://openbookproject.net/thinkcs/python/english3e/even_more_oop.html

Ao

PURE FUNCTIONS @

def add time(tl, t2):
h = tl.hours + t2.hours
m = tl.minutes + t2.minutes
s = tl.seconds + t2.seconds
sum_t = MyTime(h, m, s)
return sum_ t

EXAMPLE: create two

21

>>> current time = MyTime(9, 14, 30)

>>> bread time = MyTime(3, 35, 0)

>>> done_time = add_time(current time, bread time)
>>> print(done_time)

12:49:30

objects:

* current_time, which contains the current time

* bread_time, which contains the amount of time it takes for
a breadmaker to make bread

* use add_time to figure out when the bread will be done

PROBLEM: we do not deal with cases where the number of
seconds or minutes adds up to more than sixty.

http://openbookproject.net/thinkcs/python/english3e/even_more_oop.html

Ao

PURE FUNCTIONS @

def add

h =
m:
S:

sum_t = MyTime(h, m, s)

22

time(tl, t2):

tl.hours + t2.hours
tl.minutes + t2.minutes
tl.seconds + t2.seconds

>>> current time = MyTime(9, 14, 30)

>>> bread time = MyTime(3, 35, 0)

>>> done_time = add_time(current time, bread time)
>>> print(done_time)

12:49:30

return sum_ t

« EXAMPLE: Two versions of a function , pure &
modifier, which calculates the sum of two MyTime objects

* Function that creates a new MyTime object and returns a
reference to the new object is because

it

any of the objects passed to it as parameters and

http://openbookproject.net/thinkcs/python/english3e/even_more_oop.html

PURE FUNCTIONS @

def add time(tl, t2):

h = tl.hours + t2.hours
m = tl.minutes + t2.minutes
s = tl.seconds + t2.seconds
if s >= 60:

s -= 60

m+= 1

if m >= 60:
60
1

m
h +

o

sum_t = MyTime(h, m, s)
return sum t

PROBLEM: Do we now deal with cases where the number of
seconds or minutes adds up to more than sixty?

http://openbookproject.net/thinkcs/python/english3e/even_more_oop.html

@ MODIFIERS

def increment(t, secs): def increment(t, seconds):

t.seconds += secs t.seconds += seconds

if t.seconds >= 60: while t.seconds >= 60:
t.seconds -= 60 t.seconds -= 60
t.minutes += 1 t.minutes += 1

if t.minutes >= 60: while t.minutes >= 60:
t.minutes -= 60 t.minutes -= 60
t.hours += 1 t.hours += 1

e |t can be useful for a function to one or more of the

objects it gets as parameters

e Usually, the to the objects it passes,

so any changes the function makes are visible to the caller

(modifier function)

* Increment, which adds a given number of seconds to

a MyTime object, is a natural example of a

24

http://openbookproject.net/thinkcs/python/english3e/even_more_oop.html

/@é MODIFIERS @

class MyTime:
Previous method definitions here...

25

def increment(self, seconds):
self.seconds += seconds

while self.seconds >= 60:

self.sgconds -= 60 current time.increment(500)
self.minutes += 1 -

while self.minutes >= 60:

self.minutes -= 60
self.hours += 1

 SOLUTION: Include functions that work with MyTime objects

into the MyTime class)
* Move the definition into the class definition and change the
(Python convention!)

http://openbookproject.net/thinkcs/python/english3e/even_more_oop.html

Ao

INSIGHT @

26

class MyTime:

e
def to seconds(self):
" Return the number of seconds represented

by this instance

return self.hours * 3600 + self.minutes * 60 + self.seconds

hrs = tsecs // 3600
leftoversecs = tsecs % 3600
mins = leftoversecs // 60
secs = leftoversecs % 60

INSIGHT: MyTime object is a !
Another approach —convert the MyTime object into a single

number
The above method is added to the MyTime class to convert

any instance into a corresponding number of seconds

http://openbookproject.net/thinkcs/python/english3e/even_more_oop.html

%@é INSIGHT @

class MyTime:
oo

def init (self, hrs=0, mins=0, secs=0):
"" Create a new MyTime object initialized to hrs, mins, secs.
The values of mins and secs may be outside the range 0-59,
but the resulting MyTime object will be normalized.

Calculate total seconds to represent

totalsecs = hrs*3600 + mins*60 + secs

self.hours = totalsecs // 3600 # Split in h, m, s
leftoversecs = totalsecs % 3600

self.minutes leftoversecs // 60

self.seconds leftoversecs % 60

nn ol

 In OOP
* Solution is to rewrite the class initializer so that it can cope
with initial values of seconds or minutes that are

(normalized time: 3 hours 12 minutes and 20 seconds; the same
time but not normalized 2 hours 70 minutes and 140 seconds)

27

http://openbookproject.net/thinkcs/python/english3e/even_more_oop.html

EXAMPLE @

>>> tl1 = MyTime(10, 55, 12)
>>> t2 = MyTime (10, 48, 22)

>>> after(tl, t2)
True

e EXAMPLE: The
specify whether

Is tl after t2°?

function should compare two times and

* More complicated because it operates on

not just one

28

http://openbookproject.net/thinkcs/python/english3e/even_more_oop.html

@ EXAMPLE @

class MyTime:
Previous method definitions here...

29

def after(self, time2):
" Return True if I am strictly greater than time2 """
if self.hours > time2.hours:
return True
if self.hours < time2.hours:
return False

if self.minutes > time2.minutes:
return True

if self.minutes < time2.minutes:
return False

if self.seconds > time2.seconds:
return True

return False . . .
if current time.after(done time):

print("The bread will be done before it starts!")

* Lines 11-18 will only be reached if the two hour fields are the

same.
* The test at line 16 is only executed if both times have the
same hours and the same minutes.

http://openbookproject.net/thinkcs/python/english3e/even_more_oop.html

%é EXAMPLE @

30

class MyTime:
Previous method definitions here...

def after(self, time2):

" Return True if I am strictly greater than time2 """
return self.to_seconds() > time2.to_seconds()

* The whole example can be made using the
of converting the time into !

* This is a great way to code this:

http://openbookproject.net/thinkcs/python/english3e/even_more_oop.html

Ao

OPERATOR OVERLOADING @

class MyTime:

Previously defined methods here...

def add (self, other):
return MyTime(0, 0, self.to seconds() + other.to seconds())

. possibility to have different meanings

for the same operator when applied to different types

e EXAMPLE: the + in Python means quite different things for

integers (

) and for strings ()!

* To override the addition operator + provide a method

named

31

http://openbookproject.net/thinkcs/python/english3e/even_more_oop.html

OPERATOR OVERLOADING @

32

class MyTime:
Previously defined methods here...

def add_ (self, other):
return MyTime(0, 0, self.to seconds() + other.to seconds())

>>> tl1 = MyTime(1l, 15, 42)
>>> t2 = MyTime(3, 50, 30)
>>> t3 = t1 + t2

>>> print(t3)

05:06:12

First parameter is the
Second parameter is named to distinguish it from self
To add two MyTime objects create and return a

that contains their sum

The expression is equivalent to

http://openbookproject.net/thinkcs/python/english3e/even_more_oop.html

@ OPERATOR OVERLOADING @

class Point:
Previously defined methods here...

def add (self, other):
return Point(self.x + other.x, self.y + other.y)

« EXAMPLE: back to the Point class — adds
their respective (x, y) coordinates

« EXAMPLE: several ways to override the behavior of the
by defining a method named
or or both

33

http://openbookproject.net/thinkcs/python/english3e/even_more_oop.html

Ao

OPERATOR OVERLOADING @

def mul_ (self, other): 34

return self.x * other.x + self.y * other.y

def rmul (self, other):
return Point(other * self.x, other * self.y)

e |f the operand of " is a , Python invokes ,
which assumes that the other operand is also a Point
(this computes the of the two Points)

* |f the left operand of " is a and the right
operand is a , Python invokes , Which
performs

 The result is always a whose coordinates are a

multiple of the original coordinates

http://openbookproject.net/thinkcs/python/english3e/even_more_oop.html

Ao

OPERATOR OVERLOADING

>>>
>>>
>>>
43
>>>
(10,

>>>

AttributeError: 'int' object has no attribute 'x'

pl Point (3, 4)
p2 = Point(5, 7)
print(pl * p2)

print(2 * p2)
14)

PROBLEM: How is evaluated?

print(p2 * 2)

35

http://openbookproject.net/thinkcs/python/english3e/even_more_oop.html

Ao

OPERATOR OVERLOADING @

36

>>> pl = Point(3, 4)
>>> p2 = Point(5, 7)
>>> print(pl * p2)
43

>>> print(2 * p2)
(10, 14)

>>> print(p2 * 2)
AttributeError: 'int' object has no attribute 'x'

PROBLEM: How is evaluated?

Since the first parameter is a Point, Python invokes

with 2 as the second argument

Inside , the program tries to access the x coordinate
of other, which because an integer has no attributes

http://openbookproject.net/thinkcs/python/english3e/even_more_oop.html

Ao

POLYMORPHISM @

37
def front and back(front):
import copy >>> my list = [1, 2, 3, 4]
back = copy.copy(front) >>> front and back(my list)
back.reverse() [1, 2, 3, 4114, 3, 2, 1]
print(str(front) + str(back))
EXAMPLE: — consider a function which prints

a list twice, forward and backward

e The reverse method is a therefore a

(this way we prevent to modify the

list the function gets as a parameter!)

Function that can take and

is called

http://openbookproject.net/thinkcs/python/english3e/even_more_oop.html

il POLYMORPHISM G
def multadd (x, y, 2): >>> pl = Point(3, 4)
return x * y + z >>> p2 = Point(5, 7)
>>> print(multadd (2, pl, p2))
(11, 15)
>>> multadd (3, 2, 1) >>> print(multadd (pl, p2, 1))
7 44

There are certain operations that can be applied to many
types, such as the arithmetic operations ...
EXAMPLE: operation takes three parameters:

The first case: the Point is multiplied by a scalar and then
added to another Point.

The second case: the dot product yields a numeric value, so
the third parameter also has to be a numeric value

38

http://openbookproject.net/thinkcs/python/english3e/even_more_oop.html

Ao

POLYMORPHISM @

def reverse(self):

(self.x ,

>>> p = Point(3, 4)
>>> front and back(p)

self.y) = (self.y, self.x) (3, 4)(4, 3)

* Python’s fundamental rule of polymorphism is called

the . If all of the operations inside the
function can be applied to the type, the function can be
applied to the type.

* Operations in the . copy, reverse, print

e EXAMPLE: What about our Point class?

The
a
only the

method works on any object; already written
method for Point objects for the conversion,
method for the Point class is needed!

39

http://openbookproject.net/thinkcs/python/english3e/even_more_oop.html

EXAMPLES

datetime

Person:

(name, surname, birthdate, address, telephone, email):
.name = name
.Surname = surname
.birthdate = birthdate

.address = address
.telephone = telephone
.email = email

age() E
today = datetime.date.today()
age = today.year - .birthdate.year

today < datetime.date(today.year .birthdate.month
.birthdate.day):
age -=

age

person = Person(
"Jane"
IIDoeII
datetime.date()
"No. 12 Short Street, Greenville"
"555 456 0987"
"jane.doe@example.com"

EXAMPLES FROM Revision 8e685e710775

http://python-textbok.readthedocs.io/en/1.0/Classes.html
https://creativecommons.org/licenses/by-sa/4.0/

il EXAMPLES @

(person.name)

Jane
(person.email)
jane.doe@example.com
(person.age())
25

Exercise 1

1. Explain what the following variables refer to, and their scope:

Person

person

surname

self

age (the function name)

age (the variable used inside the function)

self.email

© N oLk~ WD

person.email

EXAMPLES FROM "UNDER Revision 8e685e710775

http://python-textbok.readthedocs.io/en/1.0/Classes.html
https://creativecommons.org/licenses/by-sa/4.0/

EXAMPLES @

Answer to exercise 1

1. 1. rerson is a class defined in the global scope. It is a global variable.
2. person is an instance of the rerson class. It is also a global variable.
3. surname is a parameter passed intothe init_ method - it is a local variable in the scope
ifthe init method.
4. self is a parameter passed into each instance method of the class - it will be replaced by
the instance object when the method is called on the object with the . operator. It is a new

local variable inside the scope of each of the methods - it just always has the same value,
and by convention it is always given the same name to reflect this.
5. age is amethod of the rerson class. It is a local variable in the scope of the class.

6. age (the variable used inside the function) is a local variable inside the scope of the age

method.
7. self.email isn't really a separate variable. It's an example of how we can refer to attributes

and methods of an object using a variable which refers to the object, the . operator and
the name of the attribute or method. We use the seif variable to refer to an object inside
one of the object’s own methods - wherever the variable se1f is defined, we can use
self.email , self.age() , etc..
8. person.email is another example of the same thing. In the global scope, our person instance
is referred to by the variable name person . Wherever person is defined, we can use

person.email , person.age() , etc..

EXAMPLES FROM http://python-textbok.readthedocs.io/en/1.0/Classes.html# UNDER CC BY-SA 4.0 licence Revision 8e685e710775

42

http://python-textbok.readthedocs.io/en/1.0/Classes.html
https://creativecommons.org/licenses/by-sa/4.0/

EXAMPLES @

Exercise 2 %

43

datetime

Person:

(name, surname, birthdate, address, telephone, email):
.hame = name
.Surname = surname
.birthdate = birthdate

.address = address
.telephone = telephone
.email = email

age() E
today = datetime.date.today()
age = today.year - .birthdate.year

today < datetime.date(today.year .birthdate.month
.birthdate.day):

age -=

age

1. Rewrite the rerson class so that a person’s age is calculated for the first time when a new
person instance is created, and recalculated (when it is requested) if the day has changed since

the last time that it was calculated.

EXAMPLES FROM

'UNDER Revision 8e685e710775

http://python-textbok.readthedocs.io/en/1.0/Classes.html
https://creativecommons.org/licenses/by-sa/4.0/

EXAMPLES

Answer to exercise 2
1. Here is an example program:

import datetime
class Person:

def __init__ (
.name = name
.surname = surname
.birthdate = birthdate

.address = address

.telephone = telephone
.email = email

._age = None
._age_last_recalculated = None
._recalculate_age()
def _recalculate_age():
today = datetime.date.today()
age = today.year - .birthdate.year

if today < datetime.date(today.year,
age -=1

._age = age
._age_last_recalculated = today

def age():
if (datetime.date.today() >
._recalculate_age()

return ._age

EXAMPLES FROM

.birthdate.month,

._age_last_recalculated):

'UNDER

, hame, surname, birthdate, address, telephone, email):

.birthdate.day):

Revision 8e685e710775

44

http://python-textbok.readthedocs.io/en/1.0/Classes.html
https://creativecommons.org/licenses/by-sa/4.0/

EXAMPLES @

Exercise 3

1. Explain the differences between the attributes name , surname and profession , and what

values they can have in different instances of this class:

class Smith:

surname = "Smith"
profession = "smith"
def __init__ (, name, profession=None):

.name = name
if profession is not None:
.profession = profession

EXAMPLES FROM "UNDER Revision 8e685e710775

http://python-textbok.readthedocs.io/en/1.0/Classes.html
https://creativecommons.org/licenses/by-sa/4.0/

EXAMPLES @

Answer to exercise 3

1.

46

class Smith:
surname = "Smith"
profession = "smith"

def __init__ (self, name, profession=None):
self.name = name
if profession is not None:
self.profession = profession

name is always an instance attribute which is set in the constructor, and each class instance can
have a different name value. surname is always a class attribute, and cannot be overridden in
the constructor - every instance will have a surname value of Smith . profession is a class

attribute, but it can optionally be overridden by an instance attribute in the constructor. Each
instance will have a profession value of smith unless the optional surname parameter is passed
into the constructor with a different value.

EXAMPLES FROM http://python-textbok.readthedocs.io/en/1.0/Classes.html# UNDER CC BY-SA 4.0 licence Revision 8e685e710775

http://python-textbok.readthedocs.io/en/1.0/Classes.html
https://creativecommons.org/licenses/by-sa/4.0/

% EXAMPLES @

47

Exercise 4

1. Create a class called numbers , which has a single class attribute called muLTIPLIER ,and a
constructor which takes the parameters x and y (these should all be numbers).

1. Write a method called add which returns the sum of the attributes x and vy .

2. Write a class method called muitipiy , which takes a single number parameter a2 and
returns the product of a and MULTIPLIER.

3. Wrrite a static method called subtract , which takes two number parameters, » and ¢,
and returns b - c.

4. Write a method called vaiue which returns a tuple containing the values of x and vy .
Make this method into a property, and write a setter and a deleter for manipulating the

valuesof x and vy .

EXAMPLES FROM http://python-textbok.readthedocs.io/en/1.0/Classes.html# UNDER CC BY-SA 4.0 licence Revision 8e685e710775

http://python-textbok.readthedocs.io/en/1.0/Classes.html
https://creativecommons.org/licenses/by-sa/4.0/

EXAMPLES

48

Answer to exercise 4
1. Here is an example program:

class Numbers:
MULTIPLIER = 3.5

def __init__(self, x, y):

self.x = X

self.y =y Create a class called numbers , which has a single class attribute called muLTIPLIER ,and a
def add(self): constructor which takes the parameters x and y (these should all be numbers).

return self.x + self.y
1. Write a method called add which returns the sum of the attributes x and vy .

gg}a;ﬂm?g(c 1s, a): 2. Write a class method called muttiply , which takes a single number parameter a and
return cls.MULTIPLIER * a returns the product of a and MULTIPLIER .

@staticmethod 3. Write a static method called subtract , which takes two number parameters, b and ¢,

def subtract(b, c): andreturns b - c.

return b - ¢
4. Write a method called vaiue which returns a tuple containing the values of x and y .

@property Make this method into a property, and write a setter and a deleter for manipulating the
def value(self):
return (self.x, self.y) values of x and y .

@value.setter
def value(self, xy_tuple):
self.x, self.y = xy_tuple

@value.deleter

def value(self):
del self.x
del self.y

EXAMPLES FROM http://python-textbok.readthedocs.io/en/1.0/Classes.html# UNDER CC BY-SA 4.0 licence Revision 8e685e710775

http://python-textbok.readthedocs.io/en/1.0/Classes.html
https://creativecommons.org/licenses/by-sa/4.0/

%é EXAMPLES @

49

Exercise 5

1. Create an instance of the rerson class from example 2. Use the dir function on the instance.

Then use the dir function on the class.

1. What happens if you call the _ str method on the instance? Verify that you get the
same result if you call the str function with the instance as a parameter.

2. What is the type of the instance?

3. What is the type of the class?
4. Write a function which prints out the names and values of all the custom attributes of

any object that is passed in as a parameter.

EXAMPLES FROM "UNDER Revision 8e685e710775

http://python-textbok.readthedocs.io/en/1.0/Classes.html
https://creativecommons.org/licenses/by-sa/4.0/

@% INSPECTING OBJECTS @

Person:
__init__(self, name, surname):
self.name = name
self.surname = surname

fullname(self):
"%s %s" % (self.name, self.surname)

Person("Jane", "Smith")

(dir(jane))
' _ipit__ "', '_module__', 'fullname', 'name', 'surname’]

* Use function dir for inspecting objects: output list of the
attributes and methods

EXAMPLES FROM UNDER Revision 8e685e710775

50

http://python-textbok.readthedocs.io/en/1.0/Classes.html
https://creativecommons.org/licenses/by-sa/4.0/

EXAMPLES @

51
Answer to exercise 5
1. 1. You should see something like '< main__ .Person object at 0x7fcb233301d6>" .
2. <class '_main__.Person'> - _ main__ is Python’s name for the program you are executing.

3. <class 'type'> - any class has the type type .
4. Here is an example program:
def print_object_attrs(any_object):

for k, v in any_object. dict__ .items():
print("%s: %s" % (k, v))

EXAMPLES FROM "UNDER Revision 8e685e710775

http://python-textbok.readthedocs.io/en/1.0/Classes.html
https://creativecommons.org/licenses/by-sa/4.0/

ok EXAMPLES @

52

Exercise 6

1. Write a class for creating completely generic objects: its __ init__ function should accept any

number of keyword parameters, and set them on the object as attributes with the keys as
names. Writea _ str__ method for the class - the string it returns should include the name of

the class and the values of all the object’s custom instance attributes.

EXAMPLES FROM "UNDER Revision 8e685e710775

http://python-textbok.readthedocs.io/en/1.0/Classes.html
https://creativecommons.org/licenses/by-sa/4.0/

EXAMPLES @

53

Answer to exercise 6
1. Here is an example program:

class AnyClass:

def __init__ (, **kwargs):
for k, v in kwargs.items():
setattr(, k, v)

def __ str__ ():
attrs = ["%s=%s" % (k, v) for (k, v) in .__dict__.items()]
classname = .__Class__.__name___
return "%s: %s" % (classname, " ".join(attrs))

EXAMPLES FROM "UNDER Revision 8e685e710775

http://python-textbok.readthedocs.io/en/1.0/Classes.html
https://creativecommons.org/licenses/by-sa/4.0/

REFERENCES @

54

This lecture re-uses selected parts of the OPEN BOOK PROJECT

available under)

Version date: October 2012

by Peter Wentworth, Jeffrey Elkner, Allen B. Downey, and Chris Meyers
(based on 2nd edition by Jeffrey Elkner, Allen B. Downey, and Chris Meyers)
Source repository is at

For offline use, download a zip file of the html or a pdf version
from

This lecture re-uses selected parts of the PYTHON TEXTBOOK

(released under Revision 8e685e710775)

http://openbookproject.net/thinkcs/python/english3e/index.html
http://openbookproject.net/thinkcs/python/english3e/copyright.html
https://www.gnu.org/licenses/fdl-1.3.en.html
https://code.launchpad.net/~thinkcspy-rle-team/thinkcspy/thinkcspy3-rle
http://www.ict.ru.ac.za/Resources/cspw/thinkcspy3/
http://python-textbok.readthedocs.io/en/1.0/Classes.html
https://creativecommons.org/licenses/by-sa/4.0/

