PRG — PROGRAMMING ESSENTIALS

Michal Reinstein

Czech Technical University in Prague,
Faculty of Electrical Engineering, Dept. of Cybernetics,
Center for Machine Perception

DATA TYPES @

Python 3.6.3 (default, Oct 5 2017, 23:34:28)
—*¢ [GCC 4.2.1 Compatible Apple LLVM 8.1.0 (clang-802.0.42)] on darwin
72 type(11)
Out[2]: int
e type(11.1234)
- Out[3]: float
' type()

Out[4]: str
typel(
Out[5]: str
type(
Out[6]: str

Integers (int) 1,10, 124
Strings (str) ”Hello, World!”
Float (float) 1.0, 9.999

Strings in Python can be enclosed in either single quotes (') or
double quotes ("), or three of each (" or """)

VARIABLES

Python Console

» /opt/local/bin/python3.6 /Applications/PyCharm.a) =3 gnacial Variables
® python 3.6.3 (default, Oct 5 2017, 23:34:28)

X

my_name =
my_age = 17
my_height = 183.5

my_age = 17
my_height = 183.5
my_name = 'Bob'

We use variables to values!
Variable remembers a value via an assighment

Do not confuse = and !

=is token such that name_of variable = value

== |S operator to
Key property of a variable that
Naming convention:

il KEYWORDS @
and as assert | break class | continue
def del | elif else except | exec
finally | for | from global if import
in 1S lambda | nonlocal | not or
pass raise | return | try while | with
yield | True | False None

Python keywords have purpose
Always choose names to human readers
Use and to improve readability

STATEMENTS @

for student™in students:

f len(student) >= 5:
print(student)

David
» Brandon

Statement is an executable in Python
Statements

So far only assignment statements

Statement examples:

EXPRESSIONS @

Python Console

: /opt/local/b1n/python3 6 /Applications/PyCharm.app/Contents/helpers
mp

ython 3.6.2 (default, Sep 21 2017, 00:54:38)

students =, , , , ,]

for student in students:
f len(student) >= 5:
print(student)

David
» Brandon

Expression is a combination of , , ,
and to functions

Built-in Python functions:

Value by itself is an expression

Expression (right side of an assignment)

il OPERATORS & OPERANDS @

Python Console
» /opt/local/bin/python3.6 /Applications/PyCharm.app/) =5 Special Variables

Python 3.6.3 (default, Oct 5 2017, 23:34:28)
minutes = 635
hours = minutes / 60 E1
hours_floor_division = minutes

[hours = 10.583333333333334
hours_floor_division = 10
minutes = 635

 OPERAND OPERAND

e Operators are that represent computations like
addition, subtraction, multiplication, division etc.

* The values the operator uses are called

 When a variable name appears in the place of an operand, it
is replaced with its value before the operation is performed

 Division / vs floor division

Ao

TYPE CONVERSION @

>>> int(3.14)

3

>>> int(3.9999) # This doesn't round to the closest int!
3

>>> int(3.9)

3

>>> int(-3.999) # Note that the result is closer to zero
-3

>>> int(minutes / 60)

10

>>> int("2345") # Parse a string to produce an int

2345

>>> int(17) # It even works if arg is already an int
17

>>> int("23 bottles") Traceback (most recent call last):

File "<interactive input>", line 1, in <module>
ValueError: invalid literal for int() with base 10: '23 bottles’

Functions, , and convert their arguments into
types int, and str respectively.

The type converter can turn an integer, a float, or a
syntactically legal string into a float

The type converter turns its argument into a string

One symbol can have different meaning depending on the
data type(s) - trv & &

@ ORDER OF OPERATIONS - PEMDAS | (@

Python Console
» /opt/local/bin/python3.6 fApplications/PyCharm.app/Contents/helpers/pydev

Python 3.6.3 (default, Oct 5 2017, 23:34:28)

Qut([2]: 512
W (2 %% 3) *
Out[3]: 64

L

 Evaluation depends on the rules of precedence:
arentheses (for order, readability)
Xponentiation
ultiplication and Division
ddition and Subtraction
e Order evaluation on the same level, with the
exception of exponentiation ()

il OPERATIONS ON STRINGS G

10
>>> message - 1 # Error
>>> "Hello" / 123 # Error
>>> message * "Hello" # Error
>>> "15" + 2 # Error

Python Console
/opt/local/bin/python3.6 /Applications/PyCharm.app/Contents/helpers/pyc p pogpacial Variables
H p An 2 A& 2 - y 2: 4 0
LNOI D203 UCiaull JC L w £UL £D:.039.40
name @ _ =
age = 17 ®__ =

description = name + str(age) -
print(description) e
My name is Boband my age is 17 %] age = 17

description = 'My name is Boband my age is 17'
name = 'Bob’

* You cannot perform mathematical operations on strings, even
if the strings look like numbers

 The + operator represents , hot addition

 The " operator also works on strings; it performs
(one of the operands has to be a string;
the other has to be an integer)

Ao

PROGRAM STRUCTURE @

11

[e example.py

sys.argv[1])

When python interpreter runs a source file as main program,
it sets variable to have a value

If being imported from another module, will be
set to the

@% FUNCTION DEFINITION @

def NAME(PARAMETERS):
STATEMENTS

12

= named sequence of statements belonging together
: begins with a keyword cef, ends with a colon
: one or more statements, each indented the same

amount
: empty or any number of comma separated

parameters (can have default value)

* Any except for keywords and illegal identifiers
* Any inside the function, but
from the (standard indentation of)

* Function may () or may not () produce a result

FLOW OF EXECUTION @

Python Console

» /opt/local/bin/python3.6 /Applications/PyCharm. 3
® python 3.6.3 (default, Oct 5 2017, 23:34:28)

X 7

y 10

X, Y=Y, X

print(x)

print(y)

Flow of execution =
(begins at the first statement of the program)
Statements are executed ,in order
(but , hot top to bottom!)
Python evaluates
(during assignment right-hand side is evaluated first)
Function calls are like a in the flow of execution
We can define one function inside another
Function or class definitions

13

THE FOR LOOP

> /0pt/10§a1/pin/python3.6 /Application;/PyCharm.a; > 52 Special Variables
Python 3.6.3 (default, Oct 5 2017, 23:34:28)
for number in range(5): & _ =
print(number) m__ =

_ =
number =

On each iteration or pass of the loop:

Check to see if there are still more

If there are none left (the

the loop has finished

If there are items still to be processed, the
to refer to the next item in the list

Program execution

loop body

To explore: early , Or loop

14

of the loop)

after the

il THE FOR LOOP - CONTROLFLOW | (@

15

e Control flow (control of the flow of
execution of the program)
e As program executes, the

Have all items in
sequence had their
turn?

Yes

' interpreter of
Asign next fom t0 loop which statement is about to be
executed
e Control flow until now has been
) strictly , one
Bt et statement at a time,

/@é BOOLEAN VALUES & EXPRESSIONS | (@

16

>»> 5 == (3 + 2) # Is five equal 5 to the result of 3 + 2?

True

>»> 5 == 6

False

>>> j = "hel

>»> j + "lo" == "hello"

True

X ==Y #

X =y = . X 1s
X >y # ... X 1s
X <y # ... x 1is
X >= Yy # X 18
X <=y # x 1is

Produce True if ... x 1s equal to y

not equal to y

greater than y

Less than y

greater than or equal to y
Less than or equal to y

* Boolean expression is an expression that evaluates to produce

a result which is a
e Six common

which all produce

a bool result (different from the mathematical symbols)

o

CONDITIONAL EXECUTION @
if BOOLEAN EXPRESSION:
STATEMENTS_ 1 # Executed 1if condition evaluates to True
else:
STATEMENTS_2 # Executed 1if condition evaluates to False

l

if True:

False True pass
else:

pass

statements_2

statements_1

 Condition

e Conditional statement — the
ability to check conditions and

change the behavior of the
program accordingly

17

Ao

CONDITIONAL EXECUTION @

False

False

True

if x < y:

STATEMENTS_A
elif x > y:
STATEMENTS_B

else:

STATEMENTS_C

statements_c

l

True

v

statements_a

statements_b

)

18

if choice == "a":
function_one()

elif choice == "b":
function_two()

elif choice == "c":
function_three()

else:
print("Invalid choice.")

Condition chaining

Recommendation: handle
all distinctive options by
separate condition, use else
to handle all other

A

THE WHILE LOOP — CONTROL FLOW @

def sum_to(n):
'" Return the sum of 1+2+3 ... n """
ss =0
v =1
while v <= n:
SS = SS + V
V=V + 1
return ss

For your test suite

test(sum_to(4) == 10)
test(sum_to(1000) == 500500)

The statement has same meaning as in English
Evaluate the condition (at line 5) either or :

If the value is , exit the while statement and continue
execution at the next statement (/ine 8 in this case)

If the value is , execute each of the statements in the
body (lines 6 and 7), then go back to the statement

19

%%% TRAVERSAL — THE WHILE LOOP @
def sum_to(n):
" fegurn the sum of 1+2+3 ... n """

while v <= n:
SS = SS + V
v=Vv+1

return ss

For your test suite
test(sum_to(4) == 10)
test(sum_to(1000) == 500500)

* The while loop is

Need to

def sum_to(n):

20

" Return the sum of 1+2+3 ... n """

ss =0

for v in range(n+1):
SS = SS + V

return ss

than the equivalent for loop
. give it an value,

, update it in the body to enable
* Note: range generates a list up to but excluding the last value

s

TRAVERSAL — WHILE vs. FOR @

21

e Usea loop if you know how many times the loop will

execute (— we know ahead some definite
bounds for what is needed)

Use a to loop over (to be explored in later
classes) usually in combination with

Use loop if you are required to repeat computation until
given condition is met, and you cannot calculate in advance
when this will happen (— we do not know
how many iterations will be needed)

@é TRAVERSAL — BREAK vs. CONTINUE | (@

while True: 22
play the game_once()
response = input("Play again? (yes or no)")
if response != "yes":
break
print("Goodbye!")

for i in [12, 16, 17, 24, 29, 30]: 12
ifi% 2 ==1: # If the number 1is odd 16
continue # Don't process it 24
print(i) 30
print("done") done
* The statement in Python terminates the current loop
and resumes execution at the next statement
* The statement in Python returns the control to the
beginning of the current loop
e The statement rejects all the remaining statements

in the current iteration of the loop ...

@ TRAVERSAL — CONDITIONAL EXECUTION

for n in range(2, 10):
for x in range(2, n):
if n % x ==
print(n, 'equals', x, '"*', n/x)
break

for n in range(2, 190):
for x in range(2, n):
if n % x ==
print(n, 'equals', x, '*', n/x)
break
else:

print(n, 'is a prime number')

e Early return / early break
* Can be used to speed-up code execution
e Special condition:

23

EXAMPLE

@ example.py

/opt/local/bin/python3.6 "/Users/mic
Hello there /Users/michalreinstein/D

is prime number

is prime number

SO NWON

Il
N

sys.argv[0])

o
Qo
c
o
—
w
N
*
N

nmuwnn

-
w0

prime number

NOD B_AWNWD

prime number

NOoOoDOULE WNN

equals 2 * 4
9
p
3
equals 3 % 3

n
2
n
X
3
n
X
4
n
X
X
X
)
n
X
6 equals 2 x 3
n
X
X
X
X
X
7
n
X
8
n
X
X
9

Process finished with exit code 0

/@é FUNCTIONS CALLING FUNCTIONS @

25

lef compute_area_rectangle(height, width):

assert height >= 0 and width >= 0,
return height * width

lef compute_area_square(side_length):
return compute_area_rectangle(side_length, side_length)

if __name__ == :
square_side_length = float(input(
print(compute_area_square(square_side_length))

* Function behind a single
command and capture abstraction of the problem.

e Functions can a program

* Creating a new function can make a by

eliminating

@ FUNCTIONS CALLING FUNCTIONS m p

Stack Memory

0S, Other processes, applications and shared memory

y = f2(x)

Shadows name 'y' from outer scope less... (38F1)

This inspection detects shadowing names defined in outer scopes.

A

X

il EXAMPLE @

27

Tdexamph_OZpy *‘exampm_01py f:examph_04py
def find_first_2_letter_word(xs): 2 /opt/local/bin/python3.6 "/Users/mi
for wd in xs: is
if len(wd) == 2: Nothing found
return. wd

eturn 5=5| Process finished with exit code @

print(find_first_2_letter_word([
print(find_first_2_letter_word([

e Return statement in the middle of a loop — control
from the function

« EXAMPLE: Let us assume that we want a function which looks
through a list of words. It should return the first 2-letter word.
If there is not one, it should return “Nothing found”

MORE ABOUT PYTHON @

The methods and variables are created on

The objects / instances are created on

New is created on invocation of a

function / method

Stack frames are destroyed as soon as the

function / method returns

Mechanism to clean up the dead (unreferenced) objects is

Everything in Python is
Python is language

28

il TUPLES @

>»> julia = ("Julia", "Roberts", 1967, "Duplicity"”, 2009, "Actress", "Atlanta, Georgia")

29

>>> julia[2] >>> julia[e] = "X"
1967 TypeError: 'tuple' object does not support item assignment

e Tuple groups any number of items into a
 Tupleisa
e Other languages often call it

(some related information that belongs together)
* Important: strings and tuples are

(once Python creates a tuple in memory, it cannot be changed)
* Elements of a tuple cannot be modified,

should always be made instead

il INDEXING ®

30

>>> fruit = "banana” >>> m = fruit[9]
>>> m = fruit[1] >>> print(m)
>>> print(m) b
* Python uses to enclose the index —

* The expression in brackets is called an

 Example: expression fruit[1] selects second character
from fruit, and creates new string containing this character
 Computer scientists always start !
* An index specifies a
(in this case the collection of characters in the string)
* Index indicates which one you want, hence the name
* |Index can be any (not only value)

Ao

LISTS

>>> my_string = "TEST"
>>> my_string[2] = "X"
Traceback (most recent call last):

File "<interactive input>", line 1, in <module>

TypeError:

* Lists are
e Strings are
e Use

'str' object does not support item assignment

31

>>> my—list - ["T”, "E", |Isll,
>>> my_list[2] = "X"

>>> my_list
['T., 'E', leJ

"

5

(we can change their elements)

(we cannot change their elements)

(indexes in between characters / items)

A

SLICING @
32

>>> s = "Pirates of the Caribbean”
>>> print(s[0:7]) !
Pirates fruft — " b anana -
>>> print(s[11:14]) |
the . - .
>>> print(s[15:24]) idex 0 1 2 3 4 35 6
Caribbean
>>> friends = ["Joe", "Zoe", "Brad", "Angelina", "Zuki", "Thandi", "Paris"]
>>> print(friends[2:4])
['Brad’', 'Angelina']

e A of a string is obtained by taking a

 Slice a list to refer to some of the items in the list

 The operator returns the part of the string from the n’th

character to the m’th character,

(indices pointing between the characters)
Slice operator [n:m] out the part of the paper between
the n and m positions
Result of will be of

il STRINGS vs. LISTS @
a = "banana” a~ >»> ais b
b = "banana" e True

>>> a
»>»»> b
>>> a
True
>>> ais b
False

Variables 2 and b refer to string object with letters "banana”
Use is operator or ic function to find out the

Strings are

Not the case of lists: 2 and b have the same value (content)
but do not refer to the same object

33

A

LISTS — ALIASING, CLONING @

34
>»> a = [1, 2, 3] a >>> b[0] = 5
>>>b?a \[1’ 2, 3) _
>»»> ais b b/ (5. 2, 3]
True
>»> a = [1, 2, 3] i
>>>E=a[:] a—[1, 2, 3] ;ii 2[0] =5
et b—s(1, 2, 3)
[1, 2, 3] [1, 2, 3]

If we assign one variable to another, both variables refer to
the same object

The we say that it
is (changes made with one alias affect the other)
RECOMMENDATION: when you are working

with mutable objects
If need to modify a list and keep a copy of the original use the
(taking any slice of a creates a new list)

—LISTPARAMETERS | (@

def double stuff(a_list):

35

""" Overwrite each element in a List with double its value. """

for (idx, val) in enumerate(a_list):
a_list[idx] = 2 * val

things = [2, 5, 9]

double_stuff(things) ~_main__ |a list
print(things) —
double stuff |things
[4, 10, 18]
¢ Passing d PaSsSes a

of the list
e So parameter passing creates an

T [2.5.9

to the list,

MODULES — NAMESPACES @

Namespace is a

Namespace is a that belong to a
module, function, or a class
Namespace is used to of

various kinds so that can be

Namespaces permit programmers to work on the same
project without having (allow name reuse)
Often structured

Each name must be

Namespace is very general concept not limited to Python
Each — we can use the same
identifier name in multiple modules without causing an
identification problem

36

el MODULES — NAMESPACES ©

37

How are namespaces defined in Python?
(collections of related modules)
(.py files containing definitions of functions,
classes, variables, etc.)

What is the difference between programs and modules?
* Both are stored in
(scripts) are designed to be executed
(libraries) are designed to be imported and used by
other programs and other modules
. .py file is designed to be both a program and a
module (it can be executed as well as imported to provide
functionality for other modules)

MODULES — NAMESPACES @

Modulel.py

question = "What is the meaning of Life, the Universe, and Everything?"
answer = 42

Module2.py import modulel

import module2
question = "What is your quest?" P

answer = "To seek the holy grail.” print(modulel.question)

print(module2.question)
print(modulel.answer)
print(module2.answer)

What is the meaning of Life, the Universe, and Everything?
What is your quest?

42

To seek the holy grail.

38

ok MODULES — NAMESPACES @

39

def f():

n=>7

print("printing n inside of f:", n)
def g():

n =42 printing n before calling f: 11

rint("printi inside of g:", n :

print(“printing n inside of g) printing n inside of f: 7
n = 11 printing n after calling f: 11
print("printing n before calling f:", n) pr}nt%ng n inside of 8- e
£() printing n after calling g: 11
print("printing n after calling f:", n)
g()

print("printing n after calling g:", n)

* Functions also have own namespaces created on function call
* Functions can read () variables in the outer scope

e EXAMPLE: the three n‘s above do not collide since they are
each in a different namespace — three names for three
different variables

s

MODULES, NAMESPACES, FILES @

40

Python has a convenient and simplifying one-to-one mapping:
— giving rise to

Python takes the ,

and this becomes the

EXAMPLE: math.py is a , the module is called)
and its namespace is
(in Python the concepts are more or less interchangeable)

NOTE: In other languages (e.g. C#) one module can span
multiple files, or one file to have multiple namespaces, or
many files to all share the same namespace

el MODULES — SCOPE @

e A is a textual region of a Python program where a
namespace is directly accessible

What types of scopes can be defined?
refers to identifiers declared
(these identifiers are kept in the namespace that belongs to
the function, and each function has its own namespace,
local scope is created with each function call)
refers to all the identifiers

declared

refers to all the identifiers built into Python
(those like range and min that can be used without having to
import anything)

41

il MODULES — SCOPE @

10

3

f(n):
m=7
return 2*n+m

42

def range(n):

n
return 123*n 2

= Il

print(range(10))
print(f(5), n, m)

What are the scope precedence rules?

 The same name can occur in more than one of these scopes,
but the innermost, or local scope, will always take precedence
over the global scope, and the global scope always gets used
in preference to the built-in scope

* Names can be “ ” from use if own variables or functions
reuse those names

« EXAMPLE: variables n and m are created just for the duration
of the execution of f since they are created in the local
namespace of function f (precedence rules apply)

/@ MODULES — THE DOT OPERATOR | @

43
import math
x = math.sqrt(10)
def area(radius):

import math
return math.pi * radius * radius

from math import cos, sin, sqrt

X = sqrt(10) X = math.sqrt(10) # This gives an error

from math import * # Import all the identifiers from math,

adding them to the current namespace.
Use them without qualification.

>>> import math as m
>>> m.pi

X = sqrt(10) 3.141592653589793

e Variables defined are called
module (similar to class attributes)
* Attributes are accessed using the operator (.)

of the

DICTIONARIES @

44
>>> eng2sp = {}

>>> eng2sp["one"]
>>> eng2sp["two"]

>>> print(eng2sp)

”uno”
{"two": "dos”, "one": lluno"}

lldosll

Strings, lists, and tuples — are sequence types using integers
as indices to access the values they contain within them
Dictionaries are Python’s built-in

They map (any type) to that can be
any type ()
The is denoted

EXAMPLE: Create a dictionary to translate English words into
Spanish (the keys are strings). One way to create a dictionary
is to start with the empty dictionary and add key : value pairs.

@ DICTIONARIES @

45

Python Console
. /opt/local/bin/python2.7 /Applications/PyCharm.app/Contel) =3 gpecial Variables
keyS — [Ial |b| |c|]
values = []

my_dict = dict(zip(keys, values))

(my_diCt) 1TH] Ial It 1.0
': 1, 'c': 3, 'b': 2} keys = <type 'list'>: ['a', 'b’, 'c']

my_dict = {'a: 1, 'c": 3, 'b": 2}
[®] 'c' (4555205408) 3
®] 'b' (4555203808) 2
8 _len__= 3
] 'a' (4555203768) = 1
= values = <type 'list'>: [1, 2, 3]

* Keys and values can be defined as separate lists
(order matters!)

* Lists can be paired using

* Once paired a dictionary can be created using

il FILES @

46

myfile = open("test.txt", "w")

myfile.write("My first file written from Python\n")
myfile.write("------ - - - - - - -"\"——;———-—;-C—- ;- —-C—- - -, - Y-’ — — . (. .- . — — ., \n")
myfile.write("Hello, world!\n")

myfile.close()

e To into a file we invoke the on the
(lines 2, 3 and 4)

 NOTE: Lines 2 — 4 should usually be replaced by a loop that
writes more lines into the file, i.e. the content we want to store

* Line 5: the file handle tells the system that writing the
content is finished and makes the disk file available for
reading by other programs

@ FILES

@

mynewhandle = open("test.txt", "r")
while True:
theline = mynewhandle.readline()
if len(theline) == 0:
break

47

Keep reading forever

Try to read next line

If there are no more lines
leave the loop

Now process the line we've just read

print(theline, end="")

mynewhandle.close()

e EXAMPLE: reading a file

using the mode

argument is for reading and method

* More extensive logic into the body of the loop at line 8

A

FILES @

48
f = open("somefile.txt")
content = f.read()
f.close()

words = content.split()
print("There are {0} words in the file.".format(len(words)))

EXAMPLE: reading the using method
Read the complete contents of the file into a string, and then
to use string-processing skills to work with the contents

Not interested in the line structure of the file

EXAMPLE: use the method on strings which can break a
string into words (e.g. counting the number of words in a file)

NOTE: the mode in line 1 is omitted since
Python opens the file for reading

EXAMPLE — READ and WRITE

; def sum number pairs(infname, outfname):

""'"Read data from input file, sum each row, write results to output
file.

(str, str) -> None

infname: the name of the input file containing a pair of numbers
separated by whitespace on each line

outfname: the name of the output file
rmon
with open(infname, 'r', encoding='utf-8') as infile, \

open (outfname, 'w', encoding='utf-8') as outfile:

for pair in infile:

pair = pair.strip()

operands = pair.split ()
total = float (operands[0]) + float (operands[l])
new line = '{} {}\n'.format (pair, total)

outfile.write(new line)

When called, this function creates the required output file containing the sums.

sum number pairs('number pairs.txt', 'number pairs with totals.txt')
!cat number pairs with totals.txt

49

il INITIALIZER ©

o O o
Mo

50

class Point:
""" Point class represents and manipulates x,y coords. '

Point () def init (self, x=0, y=0):
= 7 " Create a new point at x, y """
= 6 self.x X

self.y y

Other statements outside the class continue below here.

>>> p = Point(4, 2)

>>> q = Point(6, 3)

>>> r = Point() # r represents the origin (0, 0)
>>> print(p.x, g.y, r.x)

4 30

e EXAMPLE: to create a point (instance of class Point) at position
(7, 6) currently needs three lines of code

* Make class initializer more general by adding parameters into
the method

 The x and y parameters here are optional (default values of 0)

A

CLASS vs. TUPLE @

51

class Point:
""" Create a new Point, at coordinates x, y ""

def init_ (self, x=0, y=0):
""" Create a new point at x, y "
self.x = x
self.y = y

def distance from origin(self):
" Compute my distance from the origin """
return ((self.x ** 2) + (self.y ** 2)) ** 0.5

Advantage of using a class (e.g. Point) rather than a tuple is
that for points, but
may not be appropriate for other tuples

(e.g. calculate the distance from the origin)

Class allows to as well as
data to apply the methods on

Each instance of the class has its

Method but it is invoked on a specific
instance

Ao

OBJECT METHODS @

>>> p = Point (3, 4)

>>> p.x

3

>>> p.y

4

>>> p.distance_ from origin()
5.0

>>> g = Point(5, 12)

>>> g.x

5

>>> q.y

12

>>> g.distance_from origin()
13.0

>>> r = Point()

>>> r.x

0

>>> r.y

0

>>> r.distance_ from origin()
0.0

52

class Point:
""" Create a new Point, at coordinates x, y """

def init (self, x=0, y=0):
""" Create a new point at x, y """
self.x = x
self.y = vy

def distance_from origin(self):
""" Compute my distance from the origin """
return ((self.x ** 2) + (self.y ** 2)) ** 0.5

* First parameter of a method refers to the instance being
manipulated (parameter)

 The caller of

does not explicitly supply

an argument to match the self parameter

EXAMPLE - STATIC METHODS

Person:
TITLES = ('Dr', 'Mr', 'Mrs', 'Ms')

(name, surname):
.name = name
.surname = surname

fullname()k

AN

"%s %s" % (.surname)

aclassmethod
allowed_titles_starting_with(startswith):

[t t .TITLES t.startswith(startswith)]

astaticmethod
allowed_titles_ending_with(endswith):

[t Person.TITLES t.endswith(endswith)]

jane = Person("Jane", "Smith")

(jane.fullname())
Jane Smith

(jane.allowed_titles_starting_with("M"))
['Mr', 'Mrs', 'Ms']

(Person.allowed_titles_starting_with("M"))
['Mr', 'Mrs', 'Ms']
int(jane.allowed_titles_ending_with("s"))
['Mrs', 'Ms']

(Person.allowed_titles_ending_with("s"))
['Mrs', 'Ms']

SOURCE Revision 8e685e710775

s

REFERENCES @

54

This lecture re-uses selected parts of the OPEN BOOK PROJECT

available under)

Version date: October 2012

by Peter Wentworth, Jeffrey Elkner, Allen B. Downey, and Chris Meyers
(based on 2nd edition by Jeffrey Elkner, Allen B. Downey, and Chris Meyers)
Source repository is at

For offline use, download a zip file of the html or a pdf version
from

This lecture re-uses selected parts of the PYTHON TEXTBOOK

(released under Revision 8e685e710775)

