
1

PRG – PROGRAMMING ESSENTIALS
1

Lecture 10 – Selected parts of Python
https://cw.fel.cvut.cz/wiki/courses/be5b33prg/start

Michal Reinštein
Czech Technical University in Prague,

Faculty of Electrical Engineering, Dept. of Cybernetics,
Center for Machine Perception
http://cmp.felk.cvut.cz/~reinsmic/

reinstein.michal@fel.cvut.cz

14/12/2017 Michal Reinštein, Czech Technical University in Prague

2

DATA TYPES
2

14/12/2017 Michal Reinštein, Czech Technical University in Prague

source http://openbookproject.net/thinkcs/python/english3e/variables_expressions_statements.html

• Integers (int) 1, 10, 124
• Strings (str) ”Hello, World!”
• Float (float) 1.0, 9.999

• Strings in Python can be enclosed in either single quotes (') or
double quotes ("), or three of each (''' or """)

3

VARIABLES
3

14/12/2017 Michal Reinštein, Czech Technical University in Prague

source http://openbookproject.net/thinkcs/python/english3e/variables_expressions_statements.html

• We use variables to remember values!
• Variable remembers a value via an assignment
• name_of_variable = value_to_remember
• Do not confuse = and == !

= is assignment token such that name_of_variable = value
== is operator to test equality

• Key property of a variable that we can change its value
• Naming convention: with freedom comes responsibility!

4

KEYWORDS
4

14/12/2017 Michal Reinštein, Czech Technical University in Prague

source http://openbookproject.net/thinkcs/python/english3e/variables_expressions_statements.html

• Python keywords have special purpose
• Always choose names meaningful to human readers
• Use comments (#) and blank lines to improve readability

5

STATEMENTS
5

14/12/2017 Michal Reinštein, Czech Technical University in Prague

source http://openbookproject.net/thinkcs/python/english3e/variables_expressions_statements.html

• Statement is an instruction executable in Python

• Statements do not produce any results
• So far only assignment statements =
• Statement examples: for, in, if …

6

EXPRESSIONS
6

14/12/2017 Michal Reinštein, Czech Technical University in Prague

source http://openbookproject.net/thinkcs/python/english3e/variables_expressions_statements.html

• Expression is a combination of values, variables, operators,

and calls to functions

• Built-in Python functions: len, type, print
• Value by itself is an expression

• Expression produces result (right side of an assignment)

7

OPERATORS & OPERANDS
7

14/12/2017 Michal Reinštein, Czech Technical University in Prague

source http://openbookproject.net/thinkcs/python/english3e/variables_expressions_statements.html

• OPERAND OPERATOR OPERAND
• Operators are special tokens that represent computations like

addition, subtraction, multiplication, division etc.
• The values the operator uses are called operands
• When a variable name appears in the place of an operand, it

is replaced with its value before the operation is performed
• Division / vs floor division //

8

TYPE CONVERSION
8

14/12/2017 Michal Reinštein, Czech Technical University in Prague

source http://openbookproject.net/thinkcs/python/english3e/variables_expressions_statements.html

• Functions, int(), float() and str() convert their arguments into

types int, float and str respectively.

• The type converter float() can turn an integer, a float, or a

syntactically legal string into a float

• The type converter str() turns its argument into a string

• One symbol can have different meaning depending on the

data type(s) - try & explore & understand

9

ORDER OF OPERATIONS – PEMDAS
9

14/12/2017 Michal Reinštein, Czech Technical University in Prague

source http://openbookproject.net/thinkcs/python/english3e/variables_expressions_statements.html

• Evaluation depends on the rules of precedence:

1. Parentheses (for order, readability)

2. Exponentiation

3. Multiplication and Division

4. Addition and Subtraction

• Order left-to-right evaluation on the same level, with the

exception of exponentiation (**)

10

OPERATIONS ON STRINGS
10

14/12/2017 Michal Reinštein, Czech Technical University in Prague

source http://openbookproject.net/thinkcs/python/english3e/variables_expressions_statements.html

• You cannot perform mathematical operations on strings, even
if the strings look like numbers

• The + operator represents concatenation, not addition
• The * operator also works on strings; it performs repetition

(one of the operands has to be a string;
the other has to be an integer)

11

PROGRAM STRUCTURE
11

14/12/2017 Michal Reinštein, Czech Technical University in Prague

source https://developers.google.com/edu/python/introduction

• When python interpreter runs a source file as main program,
it sets __name__ variable to have a value "__main__"

• If being imported from another module, __name__ will be
set to the module’s name

Global

Function
definitions

Main section

12

FUNCTION DEFINITION
12

14/12/2017 Michal Reinštein, Czech Technical University in Prague

source http://openbookproject.net/thinkcs/python/english3e/functions.html

• Function = named sequence of statements belonging together
• Header line: begins with a keyword def, ends with a colon :
• Body: one or more statements, each indented the same

amount
• Parameter list: empty or any number of comma separated

parameters (can have default value)
• Any name except for keywords and illegal identifiers
• Any number of statements inside the function, but indented

from the def (standard indentation of four spaces)
• Function may (fruitful) or may not (modifier) produce a result

13

FLOW OF EXECUTION
13

14/12/2017 Michal Reinštein, Czech Technical University in Prague

source http://docs.python.org/3/reference/expressions.html#evaluation-order

• Flow of execution = order of statements execution
(begins at the first statement of the program)

• Statements are executed one at a time, in order
from top to bottom (but read the flow, not top to bottom!)

• Python evaluates expressions from left to right
(during assignment right-hand side is evaluated first)

• Function calls are like a detour in the flow of execution
• We can define one function inside another
• Function or class definitions do not alter flow of execution

Swapping variables

14

THE FOR LOOP
14

14/12/2017 Michal Reinštein, Czech Technical University in Prague

source http://openbookproject.net/thinkcs/python/english3e/hello_little_turtles.html

On each iteration or pass of the loop:

• Check to see if there are still more items to be processed
• If there are none left (the terminating condition of the loop)

the loop has finished

• If there are items still to be processed, the loop variable is
updated to refer to the next item in the list

• Program execution continues at the next statement after the

loop body

• To explore: early break, or for – else loop

15

THE FOR LOOP – CONTROL FLOW
15

14/12/2017 Michal Reinštein, Czech Technical University in Prague

source http://openbookproject.net/thinkcs/python/english3e/hello_little_turtles.html

• Control flow (control of the flow of

execution of the program)

• As program executes, the

interpreter always keeps track of

which statement is about to be

executed

• Control flow until now has been

strictly top to bottom, one

statement at a time, the for loop
changes this!

16

BOOLEAN VALUES & EXPRESSIONS
16

14/12/2017 Michal Reinštein, Czech Technical University in Prague

source http://openbookproject.net/thinkcs/python/english3e/conditionals.html

• Boolean expression is an expression that evaluates to produce
a result which is a Boolean value

• Six common comparison operators which all produce
a bool result (different from the mathematical symbols)

17

CONDITIONAL EXECUTION
17

14/12/2017 Michal Reinštein, Czech Technical University in Prague

source http://openbookproject.net/thinkcs/python/english3e/conditionals.html

• Condition IF – ELSE
• Conditional statement – the

ability to check conditions and
change the behavior of the
program accordingly

18

CONDITIONAL EXECUTION
18

14/12/2017 Michal Reinštein, Czech Technical University in Prague

source http://openbookproject.net/thinkcs/python/english3e/conditionals.html

• Condition chaining
IF – ELIF – ELSE

• Recommendation: handle
all distinctive options by
separate condition, use else
to handle all other

19

THE WHILE LOOP – CONTROL FLOW
19

14/12/2017 Michal Reinštein, Czech Technical University in Prague

source http://openbookproject.net/thinkcs/python/english3e/iteration.html

• The while statement has same meaning as in English

• Evaluate the condition (at line 5) either False or True.

• If the value is False, exit the while statement and continue

execution at the next statement (line 8 in this case)

• If the value is True, execute each of the statements in the

body (lines 6 and 7), then go back to the while statement

20

TRAVERSAL – THE WHILE LOOP
20

14/12/2017 Michal Reinštein, Czech Technical University in Prague

source http://openbookproject.net/thinkcs/python/english3e/iteration.html

• The while loop is more work than the equivalent for loop
• Need to manage the loop variable: give it an initial value, test

for completion, update it in the body to enable termination
• Note: range generates a list up to but excluding the last value

21

TRAVERSAL – WHILE vs. FOR
21

14/12/2017 Michal Reinštein, Czech Technical University in Prague

source http://openbookproject.net/thinkcs/python/english3e/iteration.html

• Use a for loop if you know how many times the loop will
execute (definite iteration — we know ahead some definite
bounds for what is needed)

• Use a for to loop over iterables (to be explored in later
classes) usually in combination with in

• Use while loop if you are required to repeat computation until
given condition is met, and you cannot calculate in advance
when this will happen (indefinite iteration — we do not know
how many iterations will be needed)

22

TRAVERSAL – BREAK vs. CONTINUE
22

14/12/2017 Michal Reinštein, Czech Technical University in Prague

Source http://www.tutorialspoint.com/python/python_loop_control.htm

• The break statement in Python terminates the current loop
and resumes execution at the next statement

• The continue statement in Python returns the control to the
beginning of the current loop

• The continue statement rejects all the remaining statements
in the current iteration of the loop …

23

TRAVERSAL – CONDITIONAL EXECUTION
23

14/12/2017 Michal Reinštein, Czech Technical University in Prague

source http://book.pythontips.com/en/latest/for_-_else.html

• Early return / early break

• Can be used to speed-up code execution

• Special condition: FOR – ELSE

24

EXAMPLE
24

14/12/2017 Michal Reinštein, Czech Technical University in Prague

25

FUNCTIONS CALLING FUNCTIONS
25

14/12/2017 Michal Reinštein, Czech Technical University in Prague

source http://openbookproject.net/thinkcs/python/english3e/functions.html

• Function hide complex computation behind a single
command and capture abstraction of the problem.

• Functions can simplify a program
• Creating a new function can make a program shorter by

eliminating repetitive code

26

FUNCTIONS CALLING FUNCTIONS
26

14/12/2017 Michal Reinštein, Czech Technical University in Prague

source https://www.youtube.com/watch?v=arxWaw-E8QQ&t=1s

27

EXAMPLE
27

14/12/2017 Michal Reinštein, Czech Technical University in Prague

source http://openbookproject.net/thinkcs/python/english3e/fruitful_functions.html

• Return statement in the middle of a for loop – control

immediately returns from the function

• EXAMPLE: Let us assume that we want a function which looks
through a list of words. It should return the first 2-letter word.
If there is not one, it should return “Nothing found”

28

MORE ABOUT PYTHON
28

14/12/2017 Michal Reinštein, Czech Technical University in Prague

source https://www.youtube.com/watch?v=arxWaw-E8QQ&t=1s

• The methods and variables are created on stack memory
• The objects / instances are created on heap memory
• New stack frame is created on invocation of a

function / method
• Stack frames are destroyed as soon as the

function / method returns
• Mechanism to clean up the dead (unreferenced) objects is

Garbage collector
• Everything in Python is object
• Python is dynamically typed language

29

TUPLES
29

14/12/2017 Michal Reinštein, Czech Technical University in Prague

source http://openbookproject.net/thinkcs/python/english3e/tuples.html

• Tuple groups any number of items into a compound value
• Tuple is a comma-separated sequence of values
• Other languages often call it records

(some related information that belongs together)
• Important: strings and tuples are immutable

(once Python creates a tuple in memory, it cannot be changed)
• Elements of a tuple cannot be modified, new tuple holding

different information should always be made instead

30

INDEXING
30

14/12/2017 Michal Reinštein, Czech Technical University in Prague

source http://openbookproject.net/thinkcs/python/english3e/strings.html

• Python uses square brackets to enclose the index – indexing
operator []

• The expression in brackets is called an index

• Example: expression fruit[1] selects second character
from fruit, and creates new string containing this character

• Computer scientists always start counting from zero!
• An index specifies a member of an ordered collection

(in this case the collection of characters in the string)
• Index indicates which one you want, hence the name
• Index can be any integer expression (not only value)

31

LISTS
31

14/12/2017 Michal Reinštein, Czech Technical University in Prague

source http://openbookproject.net/thinkcs/python/english3e/lists.html

• Lists are mutable (we can change their elements)
• Strings are immutable (we cannot change their elements)
• Use slicing principles (indexes in between characters / items)

32

SLICING
32

14/12/2017 Michal Reinštein, Czech Technical University in Prague

source http://openbookproject.net/thinkcs/python/english3e/strings.html

• A substring of a string is obtained by taking a slice
• Slice a list to refer to some sublist of the items in the list
• The operator [n:m] returns the part of the string from the n’th

character to the m’th character, including the first but
excluding the last (indices pointing between the characters)

• Slice operator [n:m] copies out the part of the paper between
the n and m positions

• Result of [n:m] will be of length (m-n)

33

STRINGS vs. LISTS
33

14/12/2017 Michal Reinštein, Czech Technical University in Prague

source http://openbookproject.net/thinkcs/python/english3e/lists.html

• Variables a and b refer to string object with letters "banana”
• Use is operator or id function to find out the reference
• Strings are immutable
• Not the case of lists: a and b have the same value (content)

but do not refer to the same object

Strings

Lists

34

LISTS – ALIASING, CLONING
34

14/12/2017 Michal Reinštein, Czech Technical University in Prague

source http://openbookproject.net/thinkcs/python/english3e/lists.html

• If we assign one variable to another, both variables refer to
the same object

• The same list has two different names we say that it
is aliased (changes made with one alias affect the other)

• RECOMMENDATION: avoid aliasing when you are working
with mutable objects

• If need to modify a list and keep a copy of the original use the
slice operator (taking any slice of a creates a new list)

35

IMPORTANT – LIST PARAMETERS
35

14/12/2017 Michal Reinštein, Czech Technical University in Prague

source http://openbookproject.net/thinkcs/python/english3e/lists.html

• Passing a list as an argument passes a reference to the list,
not a copy or clone of the list

• So parameter passing creates an alias

36

MODULES – NAMESPACES
36

14/12/2017 Michal Reinštein, Czech Technical University in Prague

source http://openbookproject.net/thinkcs/python/english3e/modules.html

• Namespace is a mapping from names to objects
• Namespace is a collection of identifiers that belong to a

module, function, or a class
• Namespace is set of symbols used to organize objects of

various kinds so that can be referred by name
• Namespaces permit programmers to work on the same

project without having naming collisions (allow name reuse)
• Often hierarchically structured
• Each name must be unique in its namespace
• Namespace is very general concept not limited to Python
• Each module has its own namespace – we can use the same

identifier name in multiple modules without causing an
identification problem

37

MODULES – NAMESPACES
37

14/12/2017 Michal Reinštein, Czech Technical University in Prague

source http://openbookproject.net/thinkcs/python/english3e/modules.html

How are namespaces defined in Python?

• Packages (collections of related modules)

• Modules (.py files containing definitions of functions,
classes, variables, etc.)

• Classes, Functions …
What is the difference between programs and modules?

• Both are stored in .py files.

• Programs (scripts) are designed to be executed

• Modules (libraries) are designed to be imported and used by

other programs and other modules

• Special case: .py file is designed to be both a program and a

module (it can be executed as well as imported to provide
functionality for other modules)

38

MODULES – NAMESPACES
38

14/12/2017 Michal Reinštein, Czech Technical University in Prague

source http://openbookproject.net/thinkcs/python/english3e/modules.html

39

MODULES – NAMESPACES
39

14/12/2017 Michal Reinštein, Czech Technical University in Prague

source http://openbookproject.net/thinkcs/python/english3e/modules.html

• Functions also have own namespaces created on function call
• Functions can read (read-only) variables in the outer scope

• EXAMPLE: the three n‘s above do not collide since they are
each in a different namespace — three names for three
different variables

40

MODULES, NAMESPACES, FILES
40

14/12/2017 Michal Reinštein, Czech Technical University in Prague

source http://openbookproject.net/thinkcs/python/english3e/modules.html

• Python has a convenient and simplifying one-to-one mapping:
one module per file – giving rise to one namespace

• Python takes the module name from the file name,
and this becomes the name of the namespace

• EXAMPLE: math.py is a filename, the module is called math,
and its namespace is math
(in Python the concepts are more or less interchangeable)

• NOTE: In other languages (e.g. C#) one module can span
multiple files, or one file to have multiple namespaces, or
many files to all share the same namespace

41

MODULES – SCOPE
41

14/12/2017 Michal Reinštein, Czech Technical University in Prague

source http://openbookproject.net/thinkcs/python/english3e/modules.html

• A scope is a textual region of a Python program where a
namespace is directly accessible

What types of scopes can be defined?
• Local scope refers to identifiers declared within a function

(these identifiers are kept in the namespace that belongs to
the function, and each function has its own namespace,
local scope is created with each function call)

• Global scope refers to all the identifiers
declared within the current module, or file

• Built-in scope refers to all the identifiers built into Python
(those like range and min that can be used without having to
import anything)

42

MODULES – SCOPE
42

14/12/2017 Michal Reinštein, Czech Technical University in Prague

source http://openbookproject.net/thinkcs/python/english3e/modules.html

What are the scope precedence rules?
• The same name can occur in more than one of these scopes,

but the innermost, or local scope, will always take precedence
over the global scope, and the global scope always gets used
in preference to the built-in scope

• Names can be “hidden” from use if own variables or functions
reuse those names

• EXAMPLE: variables n and m are created just for the duration
of the execution of f since they are created in the local
namespace of function f (precedence rules apply)

43

MODULES – THE DOT OPERATOR
43

14/12/2017 Michal Reinštein, Czech Technical University in Prague

source http://openbookproject.net/thinkcs/python/english3e/modules.html

• Variables defined inside a module are called attributes of the
module (similar to class attributes)

• Attributes are accessed using the dot operator (.)

44

DICTIONARIES
44

15/12/2017 Michal Reinštein, Czech Technical University in Prague

source courtesy of Petr Posik BE5b33PR 2016/2017

• Strings, lists, and tuples — are sequence types using integers
as indices to access the values they contain within them

• Dictionaries are Python’s built-in mapping type
• They map keys (any immutable type) to values that can be

any type (heterogeneous)
• The empty dictionary is denoted {}

• EXAMPLE: Create a dictionary to translate English words into
Spanish (the keys are strings). One way to create a dictionary
is to start with the empty dictionary and add key : value pairs.

45

DICTIONARIES
45

14/12/2017 Michal Reinštein, Czech Technical University in Prague

source http://openbookproject.net/thinkcs/python/english3e/dictionaries.html

• Keys and values can be defined as separate lists
(order matters!)

• Lists can be paired using zip
• Once paired a dictionary can be created using dict

46

FILES
46

14/12/2017 Michal Reinštein, Czech Technical University in Prague

source http://openbookproject.net/thinkcs/python/english3e/files.html

• To store data into a file we invoke the write method on the
handle (lines 2, 3 and 4)

• NOTE: Lines 2 – 4 should usually be replaced by a loop that
writes more lines into the file, i.e. the content we want to store

• Line 5: closing the file handle tells the system that writing the
content is finished and makes the disk file available for
reading by other programs

47

FILES
47

14/12/2017 Michal Reinštein, Czech Technical University in Prague

source http://openbookproject.net/thinkcs/python/english3e/files.html

• EXAMPLE: reading a file line-at-a-time using the mode
argument is "r" for reading and method readline()

• More extensive logic into the body of the loop at line 8

48

FILES
48

14/12/2017 Michal Reinštein, Czech Technical University in Prague

source http://openbookproject.net/thinkcs/python/english3e/files.html

• EXAMPLE: reading the whole file at once using method read()
• Read the complete contents of the file into a string, and then

to use string-processing skills to work with the contents

• Not interested in the line structure of the file

• EXAMPLE: use the split method on strings which can break a

string into words (e.g. counting the number of words in a file)

• NOTE: the "r" mode in line 1 is omitted since by default
Python opens the file for reading

49

EXAMPLE – READ and WRITE
49

14/12/2017 Michal Reinštein, Czech Technical University in Prague

source courtesy of Petr Posik BE5b33PR 2016/2017

50

INITIALIZER
50

14/12/2017 Michal Reinštein, Czech Technical University in Prague

source http://openbookproject.net/thinkcs/python/english3e/classes_and_objects_I.html

• EXAMPLE: to create a point (instance of class Point) at position

(7, 6) currently needs three lines of code

• Make class initializer more general by adding parameters into

the __init__ method

• The x and y parameters here are optional (default values of 0)

51

CLASS vs. TUPLE
51

14/12/2017 Michal Reinštein, Czech Technical University in Prague

source http://openbookproject.net/thinkcs/python/english3e/classes_and_objects_I.html

• Advantage of using a class (e.g. Point) rather than a tuple is

that class methods are sensible operations for points, but

may not be appropriate for other tuples

(e.g. calculate the distance from the origin)

• Class allows to group together sensible operations as well as

data to apply the methods on

• Each instance of the class has its own state
• Method behaves like a function but it is invoked on a specific

instance

52

OBJECT METHODS
52

14/12/2017 Michal Reinštein, Czech Technical University in Prague

source http://openbookproject.net/thinkcs/python/english3e/classes_and_objects_I.html

• First parameter of a method refers to the instance being

manipulated (parameter self)
• The caller of distance_from_origin does not explicitly supply

an argument to match the self parameter

53

EXAMPLE – STATIC METHODS
53

14/12/2017 Michal Reinštein, Czech Technical University in Prague

SOURCE http://python-textbok.readthedocs.io/en/1.0/Classes.html# UNDER CC BY-SA 4.0 licence Revision 8e685e710775

54

REFERENCES
54

14/12/2017 Michal Reinštein, Czech Technical University in Prague

This lecture re-uses selected parts of the OPEN BOOK PROJECT
Learning with Python 3 (RLE)

http://openbookproject.net/thinkcs/python/english3e/index.html
available under GNU Free Documentation License Version 1.3)

• Version date: October 2012
• by Peter Wentworth, Jeffrey Elkner, Allen B. Downey, and Chris Meyers

(based on 2nd edition by Jeffrey Elkner, Allen B. Downey, and Chris Meyers)
• Source repository is at https://code.launchpad.net/~thinkcspy-rle-

team/thinkcspy/thinkcspy3-rle
• For offline use, download a zip file of the html or a pdf version

from http://www.ict.ru.ac.za/Resources/cspw/thinkcspy3/

This lecture re-uses selected parts of the PYTHON TEXTBOOK
Object-Oriented Programming in Python

http://python-textbok.readthedocs.io/en/1.0/Classes.html#
(released under CC BY-SA 4.0 licence Revision 8e685e710775)

