
1

PRG – PROGRAMMING ESSENTIALS

1

Lecture 11 – Classes & Objects II
https://cw.fel.cvut.cz/wiki/courses/be5b33prg/start

Tomas Jenicek
Czech Technical University in Prague, 

Faculty of Electrical Engineering, Dept. of Cybernetics, 
Center for Machine Perception
http://cmp.felk.cvut.cz/~jenicto2/

tomas.jenicek@fel.cvut.cz

03/12/20 Michal Reinštein, Czech Technical University in Prague

https://cw.fel.cvut.cz/wiki/courses/be5b33prg/start
http://cmp.felk.cvut.cz/~jenicto2/
mailto:tomas.jenicek@fel.cvut.cz


2

RECAP: OOP PERSPECTIVE

2

03/12/20 Michal Reinštein, Czech Technical University in Prague

source http://openbookproject.net/thinkcs/python/english3e/classes_and_objects_I.html

OOP is about changing the perspective

• Syntax for a function call: function_name(variable)
function is the one who executes on the variable

• Syntax in OOP: object_name.function_name()
object is the one who executes its method on given data / 
attribute

http://openbookproject.net/thinkcs/python/english3e/classes_and_objects_I.html
http://openbookproject.net/thinkcs/python/english3e/classes_and_objects_I.html


3

RECAP: CLASS vs. TUPLE

3

03/12/20 Michal Reinštein, Czech Technical University in Prague

source http://openbookproject.net/thinkcs/python/english3e/classes_and_objects_I.html

• Advantage of using a class (e.g. Point) rather than a tuple is 
that class methods are sensible operations for points, but 
may not be appropriate for other tuples
(e.g. calculate the distance from the origin)

• Class allows to group together sensible operations as well as 
data to apply the methods on

• Each instance of the class has its own state
• Method behaves like a function but it is invoked on a specific 

instance

http://openbookproject.net/thinkcs/python/english3e/classes_and_objects_I.html
http://openbookproject.net/thinkcs/python/english3e/classes_and_objects_I.html


4

RECAP: CLASS METHODS

4

03/12/20 Michal Reinštein, Czech Technical University in Prague

SOURCE http://python-textbok.readthedocs.io/en/1.0/Classes.html# UNDER CC BY-SA 4.0 licence Revision 8e685e710775

@classmethod
• In the same way class attributes are defined, which are shared 

between all instances of a class, class methods are defined 
using @classmethod decorator for ordinary method

• Class method still has its calling object as the first parameter, 
but by convention it is cls instead of self

• If class method is called from an instance, this parameter will 
contain the instance object, but if it is called from the class it 
will contain the class object

• Naming the parameter cls serves as reminder that it is not 
guaranteed to have any instance attributes

http://python-textbok.readthedocs.io/en/1.0/Classes.html
https://creativecommons.org/licenses/by-sa/4.0/
http://python-textbok.readthedocs.io/en/1.0/Classes.html
https://creativecommons.org/licenses/by-sa/4.0/


5

RECAP: CLASS METHODS

5

03/12/20 Michal Reinštein, Czech Technical University in Prague

SOURCE http://python-textbok.readthedocs.io/en/1.0/Classes.html# UNDER CC BY-SA 4.0 licence Revision 8e685e710775

What are class methods good for?

• For tasks associated with a class utilizing constants and other 
class attributes without the need to create any class instances

• EXAMPLE: when we write classes to group related constants 
together with functions which act on them – no need to 
instantiate these classes at all

http://python-textbok.readthedocs.io/en/1.0/Classes.html
https://creativecommons.org/licenses/by-sa/4.0/
http://python-textbok.readthedocs.io/en/1.0/Classes.html
https://creativecommons.org/licenses/by-sa/4.0/


6

RECAP: EXAMPLE – INSTANCE METHODS

6

03/12/20 Michal Reinštein, Czech Technical University in Prague

SOURCE https://stackoverflow.com/questions/17134653/difference-between-class-and-instance-methods

https://stackoverflow.com/questions/17134653/difference-between-class-and-instance-methods
https://stackoverflow.com/questions/17134653/difference-between-class-and-instance-methods


7

RECAP: EXAMPLE – CLASS METHODS

7

03/12/20 Michal Reinštein, Czech Technical University in Prague

SOURCE https://stackoverflow.com/questions/17134653/difference-between-class-and-instance-methods

https://stackoverflow.com/questions/17134653/difference-between-class-and-instance-methods
https://stackoverflow.com/questions/17134653/difference-between-class-and-instance-methods
https://stackoverflow.com/questions/17134653/difference-between-class-and-instance-methods


8

RECAP: STATICS METHODS

8

03/12/20 Michal Reinštein, Czech Technical University in Prague

SOURCE http://python-textbok.readthedocs.io/en/1.0/Classes.html# UNDER CC BY-SA 4.0 licence Revision 8e685e710775

@staticmethod
• Static method does not have the calling object passed into it 

as the first parameter

• Static method does not have access to the rest of the class or 
instance

• Static method is most commonly called from class objects
(like class methods)

http://python-textbok.readthedocs.io/en/1.0/Classes.html
https://creativecommons.org/licenses/by-sa/4.0/
http://python-textbok.readthedocs.io/en/1.0/Classes.html
https://creativecommons.org/licenses/by-sa/4.0/


9

RECAP: EXAMPLE – STATIC METHODS

9

03/12/20 Michal Reinštein, Czech Technical University in Prague

SOURCE http://python-textbok.readthedocs.io/en/1.0/Classes.html# UNDER CC BY-SA 4.0 licence Revision 8e685e710775

http://python-textbok.readthedocs.io/en/1.0/Classes.html
https://creativecommons.org/licenses/by-sa/4.0/
http://python-textbok.readthedocs.io/en/1.0/Classes.html
https://creativecommons.org/licenses/by-sa/4.0/


10

EXAMPLE – CLASSES, OBJECTS

10

03/12/20 Michal Reinštein, Czech Technical University in Prague

source http://openbookproject.net/thinkcs/python/english3e/classes_and_objects_II.html

• Assume a rectangle that is oriented either vertically or 
horizontally, never at an angle;

• Specify the upper-left corner of the rectangle, and its size

http://openbookproject.net/thinkcs/python/english3e/classes_and_objects_II.html
http://openbookproject.net/thinkcs/python/english3e/classes_and_objects_II.html


11

EXAMPLE – CLASSES, OBJECTS

11

03/12/20 Michal Reinštein, Czech Technical University in Prague

source http://openbookproject.net/thinkcs/python/english3e/classes_and_objects_II.html

• To specify the upper-left corner embed a Point object within 
the new Rectangle object

• Create two new Rectangle objects, and then print them

http://openbookproject.net/thinkcs/python/english3e/classes_and_objects_II.html
http://openbookproject.net/thinkcs/python/english3e/classes_and_objects_II.html


12

DOT OPERATOR COMPOSITION

12

03/12/20 Michal Reinštein, Czech Technical University in Prague

• The dot operator composes.
• The expression box.corner.x means:

“Go to the object that box refers to and select its attribute 
named corner, then go to that object and select its attribute 
named x”

source http://openbookproject.net/thinkcs/python/english3e/classes_and_objects_II.html

http://openbookproject.net/thinkcs/python/english3e/classes_and_objects_II.html
http://openbookproject.net/thinkcs/python/english3e/classes_and_objects_II.html


13

OBJECTS ARE MUTABLE

13

03/12/20 Michal Reinštein, Czech Technical University in Prague

• Change the state of an object by making an assignment to one 
of its attributes

• Provide a method to encapsulate this inside the class
• Provide another method to move the position of the rectangle 

elsewhere
source http://openbookproject.net/thinkcs/python/english3e/classes_and_objects_II.html

http://openbookproject.net/thinkcs/python/english3e/classes_and_objects_II.html
http://openbookproject.net/thinkcs/python/english3e/classes_and_objects_II.html


14

OBJECT EQUALITY

14

03/12/20 Michal Reinštein, Czech Technical University in Prague

• If two objects are the same, does it mean they contain the 
same data or that they are the same object?

• The is operator was used in previous examples on the lists 
when explaining aliases: it allows us to find out if two 
references refer to the same object

source http://openbookproject.net/thinkcs/python/english3e/classes_and_objects_II.html

http://openbookproject.net/thinkcs/python/english3e/classes_and_objects_II.html
http://openbookproject.net/thinkcs/python/english3e/classes_and_objects_II.html


15

OBJECT EQUALITY

15

03/12/20 Michal Reinštein, Czech Technical University in Prague

• Shallow copy: is defined as constructing a new collection 
object and then populating it with references to the child 
objects found in the original, i.e. a shallow copy is only one 
level deep. The copying process does not recurse and 
therefore will not create copies of the child objects.

• Deep copy: is defined as recursive copying process, i.e. first 
constructing a new collection object and then recursively 
populating it with copies of the child objects found in the 
original. Copying an object this way walks the whole object 
tree to create a fully independent clone of the original object 
and all of its children.

source https://realpython.com/copying-python-objects/

https://realpython.com/copying-python-objects/
https://realpython.com/copying-python-objects/


16

OBJECT EQUALITY

16

03/12/20 Michal Reinštein, Czech Technical University in Prague

• Shallow equality: When is is True, this type of equality 
is shallow equality because it compares only the references
and not the contents of the objects

• Deep equality: To compare the contents of the objects a 
function like same_coordinates needs to be created

• IMPORTANT: If two variables refer to the same object, they 
have both shallow and deep equality

source http://openbookproject.net/thinkcs/python/english3e/classes_and_objects_II.html

http://openbookproject.net/thinkcs/python/english3e/classes_and_objects_II.html
http://openbookproject.net/thinkcs/python/english3e/classes_and_objects_II.html


17

OBJECT EQUALITY

17

03/12/20 Michal Reinštein, Czech Technical University in Prague

• Think about shallow & deep copy when designing classes!

• Even though the two lists (or tuples, etc.) are distinct objects 
with different memory addresses, for lists the == operator 
tests for deep equality, while in the case of objects (points) it 
makes a shallow test

source http://openbookproject.net/thinkcs/python/english3e/classes_and_objects_II.html

http://openbookproject.net/thinkcs/python/english3e/classes_and_objects_II.html
http://openbookproject.net/thinkcs/python/english3e/classes_and_objects_II.html


18

OBJECT COPY

18

03/12/20 Michal Reinštein, Czech Technical University in Prague

• Aliasing makes code difficult to read – changes made in one 
place might have unexpected effects in another place

• Copying object is an alternative to aliasing: the copy module 
contains a function copy that can duplicate any object

• EXAMPLE: To copy objects import the copy module and use 
the copy function to make a new Point: p1 and p2 are not the 
same point, but they contain the same data (shallow copy)

source http://openbookproject.net/thinkcs/python/english3e/classes_and_objects_II.html

http://openbookproject.net/thinkcs/python/english3e/classes_and_objects_II.html
http://openbookproject.net/thinkcs/python/english3e/classes_and_objects_II.html


19

OBJECT COPY

19

03/12/20 Michal Reinštein, Czech Technical University in Prague

• Assume Rectangle, which contains a reference to 
a Point: copy copies the reference to the Point object, so both 
the old Rectangle and the new one refer to the same Point

• Invoking grow on one of the Rectangle objects would not 
affect the other, 

• Invoking move on either would affect both since shallow copy 
has created an alias to the Point that represents the corner

• Copy module contains a function named deepcopy that 
copies not only the object but also any embedded objects

source http://openbookproject.net/thinkcs/python/english3e/classes_and_objects_II.html

http://openbookproject.net/thinkcs/python/english3e/classes_and_objects_II.html
http://openbookproject.net/thinkcs/python/english3e/classes_and_objects_II.html


20

OBJECT COPY

20

03/12/20 Michal Reinštein, Czech Technical University in Prague

• Deep copy: To copy the contents of an object as well as any 
embedded objects, and any objects embedded in them, etc. 
(implemented as deepcopy function in copy module)

• Deep equality: Equality of values, or two references that point 
to objects that have the same value

• Shallow copy: To copy the contents of an object, including any 
references to embedded objects (one level copy).
(implemented by the copy function in the copy module)

• Shallow equality: Equality of references, or two references 
that point to the same object

source http://openbookproject.net/thinkcs/python/english3e/classes_and_objects_II.html

http://openbookproject.net/thinkcs/python/english3e/classes_and_objects_II.html
http://openbookproject.net/thinkcs/python/english3e/classes_and_objects_II.html


21

EXAMPLE MYTIME – OBJECT DEFINITION

21

03/12/20 Michal Reinštein, Czech Technical University in Prague

source http://openbookproject.net/thinkcs/python/english3e/even_more_oop.html

• EXAMPLE: User-defined type called MyTime that records the 
time of day

• Initializer using an __init__ method to ensure that every 
instance is created with appropriate attributes

http://openbookproject.net/thinkcs/python/english3e/even_more_oop.html
http://openbookproject.net/thinkcs/python/english3e/even_more_oop.html


22

EXAMPLE MYTIME – PURE FUNCTIONS

22

03/12/20 Michal Reinštein, Czech Technical University in Prague

EXAMPLE: Create two MyTime objects
• current_time, which contains the current time 
• bread_time, which contains the amount of time it takes for 

a breadmaker to make bread
• use add_time to figure out when the bread will be done

PROBLEM: ??

source http://openbookproject.net/thinkcs/python/english3e/even_more_oop.html

http://openbookproject.net/thinkcs/python/english3e/even_more_oop.html
http://openbookproject.net/thinkcs/python/english3e/even_more_oop.html


23

EXAMPLE MYTIME – PURE FUNCTIONS

23

03/12/20 Michal Reinštein, Czech Technical University in Prague

EXAMPLE: Create two MyTime objects:
• current_time, which contains the current time 
• bread_time, which contains the amount of time it takes for 

a breadmaker to make bread
• use add_time to figure out when the bread will be done

PROBLEM: We do not deal with cases where the number of 
seconds or minutes adds up to more than sixty!

source http://openbookproject.net/thinkcs/python/english3e/even_more_oop.html

http://openbookproject.net/thinkcs/python/english3e/even_more_oop.html
http://openbookproject.net/thinkcs/python/english3e/even_more_oop.html


24

EXAMPLE MYTIME – PURE FUNCTIONS

24

03/12/20 Michal Reinštein, Czech Technical University in Prague

source http://openbookproject.net/thinkcs/python/english3e/even_more_oop.html

• There can be two versions of a function add_time, pure
function or the modifier, which both calculate the sum of 
two MyTime objects

• Function that creates a new MyTime object and returns a 
reference to the new object is a pure function because it does 
not modify any of the objects passed to it as parameters and 
it has no side effects

http://openbookproject.net/thinkcs/python/english3e/even_more_oop.html
http://openbookproject.net/thinkcs/python/english3e/even_more_oop.html


25

EXAMPLE MYTIME – PURE FUNCTIONS

25

03/12/20 Michal Reinštein, Czech Technical University in Prague

source http://openbookproject.net/thinkcs/python/english3e/even_more_oop.html

PROBLEM: Do we now deal with cases where the number of 
seconds or minutes adds up to more than sixty?

http://openbookproject.net/thinkcs/python/english3e/even_more_oop.html
http://openbookproject.net/thinkcs/python/english3e/even_more_oop.html


26

EXAMPLE MYTIME – MODIFIERS

26

03/12/20 Michal Reinštein, Czech Technical University in Prague

• It can be useful for a function to modify one or more of the 
objects it gets as parameters

• Usually, the caller keeps a reference to the objects it passes, 
so any changes the function are visible to the caller (modifier)

• Function increment, which adds a given number of seconds to 
a MyTime object, is a natural example of a modifier

source http://openbookproject.net/thinkcs/python/english3e/even_more_oop.html

http://openbookproject.net/thinkcs/python/english3e/even_more_oop.html
http://openbookproject.net/thinkcs/python/english3e/even_more_oop.html


27

EXAMPLE MYTIME – MODIFIERS

27

03/12/20 Michal Reinštein, Czech Technical University in Prague

• SOLUTION: Include functions that work with MyTime objects 
into the MyTime class, i.e. conversion of the function 
increment to a method

• This conversion means moving the definition into the class 
and changing the name of the first parameter to self

source http://openbookproject.net/thinkcs/python/english3e/even_more_oop.html

http://openbookproject.net/thinkcs/python/english3e/even_more_oop.html
http://openbookproject.net/thinkcs/python/english3e/even_more_oop.html


28

EXAMPLE MYTIME – INSIGHT

28

03/12/20 Michal Reinštein, Czech Technical University in Prague

• INSIGHT: MyTime object is actually a three-digit number in 
base 60!

• Another approach —convert the MyTime object into a single 
number instead, i.e. the method to_seconds can be added to 
the MyTime class to convert any instance into corresponding 
number of seconds

source http://openbookproject.net/thinkcs/python/english3e/even_more_oop.html

http://openbookproject.net/thinkcs/python/english3e/even_more_oop.html
http://openbookproject.net/thinkcs/python/english3e/even_more_oop.html


29

EXAMPLE MYTIME – INSIGHT

29

03/12/20 Michal Reinštein, Czech Technical University in Prague

• In OOP we wrap together the data and the operations 
• Solution is to rewrite the class initializer so that it can cope 

with initial values of seconds or minutes that are outside 
the range of the normalized values

(normalized time: 3 hours 12 minutes and 20 seconds; the same 
time but not normalized 2 hours 70 minutes and 140 seconds)

source http://openbookproject.net/thinkcs/python/english3e/even_more_oop.html

http://openbookproject.net/thinkcs/python/english3e/even_more_oop.html
http://openbookproject.net/thinkcs/python/english3e/even_more_oop.html


30

EXAMPLE MYTIME – SOLUTION

30

03/12/20 Michal Reinštein, Czech Technical University in Prague

• The function after can be defined to compare two times and 
specify whether the first time is strictly after the second

• This solution is a bit more complicated because it operates on 
two MyTime objects not just one

source http://openbookproject.net/thinkcs/python/english3e/even_more_oop.html

http://openbookproject.net/thinkcs/python/english3e/even_more_oop.html
http://openbookproject.net/thinkcs/python/english3e/even_more_oop.html


31

EXAMPLE MYTIME – SOLUTION

31

03/12/20 Michal Reinštein, Czech Technical University in Prague

• Lines 11-18 will only be reached if the two hour fields are the 
same.

• The test at line 16 is only executed if both times have the 
same hours and the same minutes.

source http://openbookproject.net/thinkcs/python/english3e/even_more_oop.html

http://openbookproject.net/thinkcs/python/english3e/even_more_oop.html
http://openbookproject.net/thinkcs/python/english3e/even_more_oop.html


32

EXAMPLE MYTIME – SOLUTION

32

03/12/20 Michal Reinštein, Czech Technical University in Prague

• The whole example can be made easier using the previously 
discovered insight of converting the time into single integer!

• This is a great way to code this: 
If we want to tell if the first time is after the second time, turn 
them both into integers and compare the integers.

source http://openbookproject.net/thinkcs/python/english3e/even_more_oop.html

http://openbookproject.net/thinkcs/python/english3e/even_more_oop.html
http://openbookproject.net/thinkcs/python/english3e/even_more_oop.html


33

EXAMPLE MYTIME – OVERLOADING

33

03/12/20 Michal Reinštein, Czech Technical University in Prague

• Operator overloading: opens the possibility to have different 
meanings for the same operator when applied to different 
types

• EXAMPLE: the + in Python means quite different things for 
integers (addition) and for strings (concatenation)!

• To override the addition operator + provide a method 
named __add__

source http://openbookproject.net/thinkcs/python/english3e/even_more_oop.html

http://openbookproject.net/thinkcs/python/english3e/even_more_oop.html
http://openbookproject.net/thinkcs/python/english3e/even_more_oop.html


34

EXAMPLE MYTIME – OVERLOADING

34

03/12/20 Michal Reinštein, Czech Technical University in Prague

• First parameter is the object on which the method is invoked
• Second parameter is named other to distinguish it from self
• To add two MyTime objects create and return a 

new MyTime object that contains their sum

• The expression t1 + t2 is equivalent to t1.__add__(t2)

source http://openbookproject.net/thinkcs/python/english3e/even_more_oop.html

http://openbookproject.net/thinkcs/python/english3e/even_more_oop.html
http://openbookproject.net/thinkcs/python/english3e/even_more_oop.html


35

OPERATOR OVERLOADING

35

03/12/20 Michal Reinštein, Czech Technical University in Prague

• EXAMPLE: back to the Point class – adding two points adds 
their respective (x, y) coordinates

• There are several ways to override the behavior of the 
multiplication operator by defining a method named __mul__
or __rmul__ or both

source http://openbookproject.net/thinkcs/python/english3e/even_more_oop.html

http://openbookproject.net/thinkcs/python/english3e/even_more_oop.html
http://openbookproject.net/thinkcs/python/english3e/even_more_oop.html


36

OPERATOR OVERLOADING

36

03/12/20 Michal Reinštein, Czech Technical University in Prague

• If the left operand of * is a Point, Python invokes __mul__, 
which assumes that the other operand is also a Point
(this computes the dot product of the two Points)

• If the left operand of * is a primitive type and the right 
operand is a Point, Python invokes __rmul__, which 
performs scalar multiplication

• The result is always a new Point whose coordinates are a 
multiple of the original coordinates

source http://openbookproject.net/thinkcs/python/english3e/even_more_oop.html

http://openbookproject.net/thinkcs/python/english3e/even_more_oop.html
http://openbookproject.net/thinkcs/python/english3e/even_more_oop.html


37

OPERATOR OVERLOADING

37

03/12/20 Michal Reinštein, Czech Technical University in Prague

PROBLEM: How is p2 * 2 evaluated? 

source http://openbookproject.net/thinkcs/python/english3e/even_more_oop.html

http://openbookproject.net/thinkcs/python/english3e/even_more_oop.html
http://openbookproject.net/thinkcs/python/english3e/even_more_oop.html


38

OPERATOR OVERLOADING

38

03/12/20 Michal Reinštein, Czech Technical University in Prague

• PROBLEM: How is p2 * 2 evaluated?

• Since the first parameter is a Point, Python invokes __mul__
with 2 as the second argument

• Inside __mul__, the program tries to access the x coordinate 
of other, which fails because an integer has no attributes

source http://openbookproject.net/thinkcs/python/english3e/even_more_oop.html

http://openbookproject.net/thinkcs/python/english3e/even_more_oop.html
http://openbookproject.net/thinkcs/python/english3e/even_more_oop.html


39

POLYMORPHISM

39

03/12/20 Michal Reinštein, Czech Technical University in Prague

• EXAMPLE: front_and_back – consider a function which prints 
a list twice: forward and backward

• The reverse method is a modifier therefore a copy needs to 
be made before applying it (this way we prevent to modify the 
list the function gets as a parameter!)

• Function that can take arguments with different types and 
handles them accordingly is called polymorphic

source http://openbookproject.net/thinkcs/python/english3e/even_more_oop.html

http://openbookproject.net/thinkcs/python/english3e/even_more_oop.html
http://openbookproject.net/thinkcs/python/english3e/even_more_oop.html


40

POLYMORPHISM

40

03/12/20 Michal Reinštein, Czech Technical University in Prague

• Polymorphism == ability to process objects differently based 
on data type

• There are certain operations that can be applied to many 
types, such as the arithmetic operations …

• EXAMPLE: The multadd operation takes three parameters: 
multiplies the first two and then adds the third

source http://openbookproject.net/thinkcs/python/english3e/even_more_oop.html

http://openbookproject.net/thinkcs/python/english3e/even_more_oop.html
http://openbookproject.net/thinkcs/python/english3e/even_more_oop.html


41

POLYMORPHISM

41

03/12/20 Michal Reinštein, Czech Technical University in Prague

• EXAMPLE: The multadd operation takes three parameters: 
multiplies the first two and then adds the third

• The first case: the Point is multiplied by a scalar and then 
added to another Point 

• The second case: the dot product yields a numeric value, so 
the third parameter also has to be a numeric value

source http://openbookproject.net/thinkcs/python/english3e/even_more_oop.html

http://openbookproject.net/thinkcs/python/english3e/even_more_oop.html
http://openbookproject.net/thinkcs/python/english3e/even_more_oop.html


42

POLYMORPHISM

42

03/12/20 Michal Reinštein, Czech Technical University in Prague

• Python’s fundamental rule of polymorphism is called 
the duck typing rule: If all of the operations inside the 
function can be applied to the type, the function can be 
applied to the type.

• Operations in the front_and_back : copy, reverse, print

• EXAMPLE: What about our Point class?
The copy method works on any object; already written 
a __str__ method for Point objects for the str() conversion, 
only the reverse method for the Point class is needed!

source http://openbookproject.net/thinkcs/python/english3e/even_more_oop.html

http://openbookproject.net/thinkcs/python/english3e/even_more_oop.html
http://openbookproject.net/thinkcs/python/english3e/even_more_oop.html


43

REFERENCES

43

03/12/20 Michal Reinštein, Czech Technical University in Prague

This lecture re-uses selected parts of the OPEN BOOK PROJECT
Learning with Python 3 (RLE)

http://openbookproject.net/thinkcs/python/english3e/index.html
available under GNU Free Documentation License Version 1.3)

• Version date: October 2012
• by Peter Wentworth, Jeffrey Elkner, Allen B. Downey, and Chris Meyers

(based on 2nd edition by Jeffrey Elkner, Allen B. Downey, and Chris Meyers) 
• Source repository is at https://code.launchpad.net/~thinkcspy-rle-

team/thinkcspy/thinkcspy3-rle
• For offline use, download a zip file of the html or a pdf version 

from http://www.ict.ru.ac.za/Resources/cspw/thinkcspy3/

This lecture re-uses selected parts of the PYTHON TEXTBOOK
Object-Oriented Programming in Python

http://python-textbok.readthedocs.io/en/1.0/Classes.html#
(released under CC BY-SA 4.0 licence Revision 8e685e710775)

http://openbookproject.net/thinkcs/python/english3e/index.html
http://openbookproject.net/thinkcs/python/english3e/copyright.html
https://www.gnu.org/licenses/fdl-1.3.en.html
https://code.launchpad.net/~thinkcspy-rle-team/thinkcspy/thinkcspy3-rle
https://code.launchpad.net/~thinkcspy-rle-team/thinkcspy/thinkcspy3-rle
http://www.ict.ru.ac.za/Resources/cspw/thinkcspy3/
http://openbookproject.net/thinkcs/python/english3e/index.html
http://openbookproject.net/thinkcs/python/english3e/copyright.html
https://www.gnu.org/licenses/fdl-1.3.en.html
https://code.launchpad.net/~thinkcspy-rle-team/thinkcspy/thinkcspy3-rle
http://www.ict.ru.ac.za/Resources/cspw/thinkcspy3/
http://python-textbok.readthedocs.io/en/1.0/Classes.html
https://creativecommons.org/licenses/by-sa/4.0/
http://python-textbok.readthedocs.io/en/1.0/Classes.html
https://creativecommons.org/licenses/by-sa/4.0/

