o8

CCCCCCCCCCCCCC
IIIIIIIIII

PRG - PROGRAMMING ESSENTIALS

Lecture 8 — Testing, Unit Tests, Exceptions

Milan Nemy

Czech Technical University in Prague,
Faculty of Electrical Engineering, Dept. of Cybernetics

https://beat.ciirc.cvut.cz/people/milan-nemy/

milan.nemy@cvut.cz

https://beat.ciirc.cvut.cz/people/milan-nemy/
https://beat.ciirc.cvut.cz/people/milan-nemy/
https://beat.ciirc.cvut.cz/people/milan-nemy/
mailto:milan.nemy@cvut.cz

TESTING

* Including proves invaluable if the project
becomes larger or if we have to return to it to make a small

change after a long absence

e Tests serve as a form of — by reading through
test cases we can get an idea of the expected behavior

e Test driven approach — , thereby creating a
for what the program is supposed to do, and

filling in the actual program code

SOURCE: courtesy of Petr Posik BESb33PR 2016/2017

28/11/25 Milan Nemy, Czech Technical University in Prague

SELECTING TEST CASES

 Two major approaches: or testing

* In testing treat tested function like an opaque
“black box” — only think about what the function is supposed
to do

(strategies:

In testing choose test cases by analyzing the code
inside our function

(strategies:

SOURCE http: hon-textbok.readthedocs.io/en/1.0/Packaging_and_Testing.html#testin

28/11/25 Milan Nemy, Czech Technical University in Prague

http://python-textbok.readthedocs.io/en/1.0/Packaging_and_Testing.html#testing
http://python-textbok.readthedocs.io/en/1.0/Packaging_and_Testing.html#testing
http://python-textbok.readthedocs.io/en/1.0/Packaging_and_Testing.html#testing
http://python-textbok.readthedocs.io/en/1.0/Packaging_and_Testing.html#testing

CTU

TESTING

CZECH TECHNICAL
UNIVERSITY
IN PRAGUE

Example: sum digits ()

Specifications: In module tools.py, create function sum digits (string) which return the sum of all digits in string.

Solution: We create the required module as follows:

sswritefile tools.py
def sum digits(string):
""MReturn the sum of all digits in the string"""

for ch in string:

if ch in '012346789"':
sum += int (ch)
return sum

Writing tools.py

Are we finished? How do we test the code?

SOURCE: courtesy of Petr Posik BESb33PR 2016/2017

28/11/25 Milan Nemy, Czech Technical University in Prague

CTU

e TESTING

UNIVERSITY
IN PRAGUE

Option 1: Try to use it in Python shell

>>> from tools import sum digits
>>> sum digits('l, 2, 3, dee, dah, dee')

6

¢ We have tested a single test case.

¢ We have to manually check the correctness of the result.
e What if we want to run the test again?

SOURCE: courtesy of Petr Posik BESb33PR 2016/2017

28/11/25 Milan Nemy, Czech Technical University in Prague

CTU

TESTING

CZECH TECHNICAL
UNIVERSITY
IN PRAGUE

Option 2: Including the test code directly in the module

The code previously written on Python console can be stored directly with the module (or in some other module).

tswritefile tools2.py
def sum digits(string):
"""Return the sum of all digits in the string"""
sum = 0
for ch in string:
if ch in '012346789"':
sum += int (ch)
return sum

if name == " main ":
All the code below is executed only when the file is run as a script.

print (sum digits('1l, 2, 3, dee, dah, dee'))

SOURCE: courtesy of Petr Posik BESb33PR 2016/2017

28/11/25 Milan Nemy, Czech Technical University in Prague

CTU

TESTING

CZECH TECHNICAL
UNIVERSITY
IN PRAGUE

import tools2 # "Nothing" happens when we Import the module (desired),

Srun toolsZ.py # ... but the testing code is executed when we run the module!

6

¢ We still test a single test case only.
¢ We still have to manually check the correctness of the result.
¢ But we can run the test easilly. As many times as we want!

SOURCE: courtesy of Petr Posik BESb33PR 2016/2017

28/11/25 Milan Nemy, Czech Technical University in Prague

CTU

TESTING

CZECH TECHNICAL
UNIVERSITY
IN PRAGUE

Option 3: Check the correctness of the result automatically

Instead of mere printing out the result, we can check its correctness!

%writefile tools3.py
def sum digits(string):
"""Return the sum of all digits in the string"""
sum = 0
for ch in string:
if ch in '012346789"':
sum += int (ch)
return sum

if name == " main ":
observed = sum digits('l, 2, 3, dee, dah, dee')
expected = 6
if observed == expected:

print('.")
else:
print ('Test failed.')
print ('- Expected:', str(expected))
print('—- But got: ', str(cbserved))

SOURCE: courtesy of Petr Posik BESb33PR 2016/2017

28/11/25 Milan Nemy, Czech Technical University in Prague

CTU

TESTING

CZECH TECHNICAL
UNIVERSITY
IN PRAGUE

run tools3.py

o We still test a single test case only.
¢ But we do not have to manually check the correctness of the result, we can immediately see if the test passed or not.
¢ And we can run the test easilly. As many times as we want!

SOURCE: courtesy of Petr Posik BESb33PR 2016/2017

28/11/25 Milan Nemy, Czech Technical University in Prague

CTU

CZECH TECHNICAL
UNIVERSITY
IN PRAGUE

TESTING

s
%

Our own modaule for testing!

The process of checking the correctness of a result may be extracted to a function that will

« allow us to write tests using only a little code,
¢ be part of a module that can be reused in many projects.

Let's create module testing with function test equal () which shall have 3 parameters:

e the observed and expected values, and
¢ an optional name of the test.

The function shall print

e " " if the test passes, or
¢ an informative message about the failure, if the test fails.

SOURCE: courtesy of Petr Posik BESb33PR 2016/2017

28/11/25 Milan Nemy, Czech Technical University in Prague 10

CTU

TESTING

CZECH TECHNICAL
UNIVERSITY
IN PRAGUE

%writefile testing.py
import sys

def quote (name) :
if name:
name = "'" + name + "' "
return name

def test equal (observed, expected, name=''):
"""Compare the observed and expected results"""
if observed == expected:

print('.', end="'")
else:

linenum = sys. getframe(l).f lineno # Get the caller's line number.

print ("\nTest {}at line {} FAILED:".format (quote (name), linenum))
print ("- Expected:", str(expected))
print ("- But got: ", str(observed))

SOURCE: courtesy of Petr Posik BESb33PR 2016/2017

28/11/25 Milan Nemy, Czech Technical University in Prague

11

CTU

TESTING

CZECH TECHNICAL
UNIVERSITY
IN PRAGUE

With the help of our testing module, we can rewrite the tools module as follows:

$%writefile toolsd.py
from testing import test_ equal

def sum _digits(string):
"""Return the sum of all digits in the string"""
sum = 0
for ch in string:
if ch in '012346789"':
sum += int (ch)
return sum

if name == " main ":

test equal (sum digits('l, 2, 3, dee, dah, dee'), 6, 'Test 1')

SOURCE: courtesy of Petr Posik BESb33PR 2016/2017

28/11/25 Milan Nemy, Czech Technical University in Prague

12

CTU

TESTING

CZECH TECHNICAL
UNIVERSITY
IN PRAGUE

$run toolsd.py

We still test a single test case only.

But we do not have to manually check the correctness of the result, we can immediately see if the test passed or failed.
And we do not need to write much code to test a single casel

And we can run the tests easilly. As many times as we want!

SOURCE: courtesy of Petr Posik BESb33PR 2016/2017

28/11/25 Milan Nemy, Czech Technical University in Prague

13

IN PRAGUE

28/11/25

TESTING

Adding more tests

When we have more test cases, we can add them either

e tothe if name ==" main

e to a separate testing module.

Let's create a separate testing module.

$%writefile test tools.py
from testing import test equal
from tools4 import *

def test_sum_digits():

test equal (sum digits(''), O

test_equal(sum_digits('O'
test equal (sum digits('1l'
test_equal(sum_digits('2'
test equal (sum digits ('3’
test_equal(sum_digits('4')
test equal(sum digits('5"'")
test_equal(sum_digits('6')
test equal(sum digits('7")
test_equal(sum_digits('8')
test equal(sum digits('9")
test_equal(sum_digits('1,

)
)
)
)

Run the test suite
test sum digits ()

" section of the main file, or

r
r
r
r

r
r
r
r
r

r

2,

'Test
'Test
'Test
'Test
'Test
'Test
'Test
'Test
'Test
'Test
, dee,

- - -

-

- - - -

W O ~JdJo U b WNEHE O~
-

w ~

0o")
1)
2")
3")
4')
5")
')
")
8")
9")
dah, dee'),

'Test empty string')

6,

'"Non trivial test')

SOURCE: courtesy of Petr Posik BESb33PR 2016/2017

Milan Nemy, Czech Technical University in Prague

14

CTU

)

UNIVERSITY
IN PRAGUE

28/11/25

TESTING

$run test tools.py

Test 'Test 5' at line 11 FAILED:
- Expected: 5
- But got: 0

Ha! We have an error in our code! Can you find it?

With the help of a testing framework:

We can easilly build comprehensive test suites.

We do not have to manually check the correctness of the result, we can immediately see if the test passed or failed.
We do not need to write much code to test a single case!

We can run the test suite easilly. As many times as we want.

Other testing frameworks

Our module testing is not an original idea. Python has several popular testing frameworks, e.g. modules

e doctest and

e unittest.
SOURCE: courtesy of Petr Posik BESb33PR 2016/2017

Milan Nemy, Czech Technical University in Prague

15

CTU

TESTING

CZECH TECHNICAL
UNIVERSITY
IN PRAGUE

Testing the code using doctest

o Create the habit to include examples of the functions' usage in their docstrings (see below).
e Module doctest allows you to easilly execute the examples from the docstrings:

sswritefile modulewithdoctests.py
def average(x,V):
"""Return the average of 2 numbers.

>>> average (10,20)
15.0

>>> average(l.5, 2.0)
1.75

mman

return (x + vy) / 2

if name == " main ":
import doctest
doctest.testmod (verbose=True)

Writing modulewithdoctests.py

SOURCE: courtesy of Petr Posik BESb33PR 2016/2017

28/11/25 Milan Nemy, Czech Technical University in Prague 16

CTU

TESTING

CZECH TECHNICAL
UNIVERSITY
IN PRAGUE

Then, if you run the module, the tests are executed automatically and compared with their expected results:

$run modulewithdoctests.py

Trying:
average (10, 20)
Expecting:
15.0
ok
Trying:
average(l.5, 2.0)
Expecting:
1.75
ok
1l items had no tests:
_ _main
1l items passed all tests:
2 tests in main_ .average

2 tests in 2 items.
2 passed and 0 failed.
Test passed.

SOURCE: courtesy of Petr Posik BESb33PR 2016/2017

28/11/25 Milan Nemy, Czech Technical University in Prague

CTU

UNIVERSITY
IN PRAGUE

)

28/11/25

TESTING

Summary

e Testing your own code is extremely important!

e You should learn several ways how to test your code.

¢ Using a testing framework, from simple ones (like our testing) to comprehensive ones
(like unittest), gives you an considerable advantage!

o Testing frameworks like unittest are common to many other languages. If you learn it for
one languaga, you will profit from it also in the other languages.

SOURCE: courtesy of Petr Posik BESb33PR 2016/2017

Milan Nemy, Czech Technical University in Prague

18

CTU

e UNITTESTS

UNIVERSITY
IN PRAGUE

ourprog/
ourprog/
__init__.py
db.py
gui.py
rules.py
test/
__init__.py
test _db.py
test_gui.py
test rules.py
setup.py

* Advanced framework for testing — python module
e Alltests in a file hierarchy from main the program

(directory test/)

 Createa and put them
all in a

SOURCE http: hon-textbok.readthedocs.io/en/1.0/Packaging_and_Testing.html#testin

28/11/25 Milan Nemy, Czech Technical University in Prague

http://python-textbok.readthedocs.io/en/1.0/Packaging_and_Testing.html#testing
http://python-textbok.readthedocs.io/en/1.0/Packaging_and_Testing.html#testing
http://python-textbok.readthedocs.io/en/1.0/Packaging_and_Testing.html#testing
http://python-textbok.readthedocs.io/en/1.0/Packaging_and_Testing.html#testing

CTU

CZECH TECHNICAL

UNIVERSITY
IN PRAGUE

28/11/25

UNITTESTS

if _name_ == "'_ main__':
unittest.main()

these commands will try to find all our tests
python -m unittest
python -m unittest discover

but we can be more specific

python -m unittest ourprog.test.test_rules

python -m unittest ourprog.test.test rules.TestPerson

python -m unittest ourprog.test.test _rules.TestPerson.test _fullname

we can also turn on verbose output with -v
python -m unittest -v test_rules

(test automation frameworks)
Run all the tests from a single file by adding at the bottom

of and
Execute the unittest module on the and use it to import and
run some or all of our tests

SOURCE http://python-textbok.readthedocs.io/en/1.0/Packaging_and_Testing.html#testing
Milan Nemy, Czech Technical University in Prague

20

http://python-textbok.readthedocs.io/en/1.0/Packaging_and_Testing.html#testing
http://python-textbok.readthedocs.io/en/1.0/Packaging_and_Testing.html#testing
http://python-textbok.readthedocs.io/en/1.0/Packaging_and_Testing.html#testing
http://python-textbok.readthedocs.io/en/1.0/Packaging_and_Testing.html#testing

CTU

CZECH TECHNICAL
UNIVERSITY
IN PRAGUE

28/11/25

UNITTESTS

def suite():
suite = unittest.TestSuite()
suite.addTest(TestPerson)
return suite

package allows to

This way many related tests can be executed at once

EXAMPLE:
One way to add all the tests from the classto a

suite is to add for example function to the
file

SOURCE http://python-textbok.readthedocs.io/en/1.0/Packaging_and_Testing.html#testing
Milan Nemy, Czech Technical University in Prague

21

http://python-textbok.readthedocs.io/en/1.0/Packaging_and_Testing.html#testing
http://python-textbok.readthedocs.io/en/1.0/Packaging_and_Testing.html#testing
http://python-textbok.readthedocs.io/en/1.0/Packaging_and_Testing.html#testing
http://python-textbok.readthedocs.io/en/1.0/Packaging_and_Testing.html#testing

CTU

CZECH TECHNICAL
UNIVERSITY
IN PRAGUE

28/11/25

UNITTESTS - DOCUMENTATION

The unittest module provides a rich set of tools for constructing and running tests. This section
demonstrates that a small subset of the tools suffice to meet the needs of most users.

Here is a short script to test three string methods:

import unittest
class TestStringMethods(unittest.TestCase):

def test upper(self):
self.assertEqual(' foo'.upper(), 'FO0')

def test isupper(self):
self.assertTrue('FOO'.isupper())
self.assertFalse('Foo'.isupper())

def test split(self):
s = 'hello world'
self.assertEqual(s.split(), ['hello', 'world'])
check that s.split fails when the separator is not a string
with self.assertRaises(TypeError):

s.split(2)
if name == ' main '
unittest.main()

SOURCE https://docs.python.org/3.7/library/unittest.html|
Milan Nemy, Czech Technical University in Prague

22

https://docs.python.org/3.7/library/unittest.html
https://docs.python.org/3.7/library/unittest.html

CTU

s UNITTESTS - DOCUMENTATION

UNIVERSITY
IN PRAGUE

28/11/25

A testcase is created by subclassing unittest.TestCase. The three individual tests are defined with
methods whose names start with the letters test. This naming convention informs the test runner
about which methods represent tests.

The crux of each test is a call to assertEqual() to check for an expected result; assertTrue() or
assertFalse() to verify a condition; or assertRaises() to verify that a specific exception gets
raised. These methods are used instead of the assert statement so the test runner can accumulate all
test results and produce a report.

The setUp() and tearbown() methods allow you to define instructions that will be executed before
and after each test method. They are covered in more detail in the section Organizing test code.

The final block shows a simple way to run the tests. unittest.main() provides a command-line in-

terface to the test script. When run from the command line, the above script produces an output that
looks like this:

Ran 3 tests in 0.000s

OK

SOURCE https://docs.python.org/3.7/library/unittest.html|
Milan Nemy, Czech Technical University in Prague

23

https://docs.python.org/3.7/library/unittest.html
https://docs.python.org/3.7/library/unittest.html

CTU

UNITTESTS - DOCUMENTATION

CZECH TECHNICAL
UNIVERSITY
IN PRAGUE

Passing the -v option to your test script will instruct unittest.main() to enable a higher level of
verbosity, and produce the following output:

test isupper (_ main_ .TestStringMethods) ... ok
test split (_ main .TestStringMethods) ... ok
test upper (_ main_ .TestStringMethods) ... ok

Ran 3 tests in 0.001s

OK

The above examples show the most commonly used unittest features which are sufficient to meet
many everyday testing needs. The remainder of the documentation explores the full feature set from
first principles.

* Verbosity for the tests can be defined using

SOURCE https://docs.python.org/3.7/library/unittest.html|
28/11/25 Milan Nemy, Czech Technical University in Prague 24

https://docs.python.org/3.7/library/unittest.html
https://docs.python.org/3.7/library/unittest.html

CTU

s UNITTESTS - DOCUMENTATION

UNIVERSITY
IN PRAGUE

The unittest module can be used from the command line to run tests from modules, classes or even
individual test methods:

python -m unittest test modulel test module2
python -m unittest test module.TestClass
python -m unittest test module.TestClass.test method

You can pass in a list with any combination of module names, and fully qualified class or method
names.

Test modules can be specified by file path as well:

python -m unittest tests/test something.py

* Unit tests can be executed for specified

’

or ; path to a python file can be used as well

SOURCE https://docs.python.org/3.7/library/unittest.html|
28/11/25 Milan Nemy, Czech Technical University in Prague

25

https://docs.python.org/3.7/library/unittest.html
https://docs.python.org/3.7/library/unittest.html

28/11/25

EXCEPTIONS

 Whenever occurs, it creates an exception object

* The at this point and Python prints out
the traceback, which ends with an describing
the exception that occurred

— An error that occurs at runtime

— To prevent an exception from causing
our program to crash, by wrapping the block of code in
a construct
— To create a deliberate exception by using
the raise statement

Milan Nemy, Czech Technical University in Prague

26

http://openbookproject.net/thinkcs/python/english3e/exceptions.html
http://openbookproject.net/thinkcs/python/english3e/exceptions.html

CTU

EXCEPTIONS

CZECH TECHNICAL
UNIVERSITY
IN PRAGUE

>>> print(55/0)
Traceback (most recent call last):

File "<interactive input>", line 1, in <module>
ZeroDivisionError: integer division or modulo by zero

>>> a = []
>>> print(a[5])
Traceback (most recent call last):
File "<interactive input>", line 1, in <module>
IndexError: list index out of range

>>> tup = ("a", "b", "d", "d")
>>> tup[2] = "c"
Traceback (most recent call last):
File "<interactive input>", line 1, in <module>
TypeError: 'tuple' object does not support item assignment

on the last line has two parts:

before the colon,
about the error after the colon

SOURCE http://openbookproject.net/thinkcs/python/english3e/exceptions.html

28/11/25 Milan Nemy, Czech Technical University in Prague

http://openbookproject.net/thinkcs/python/english3e/exceptions.html
http://openbookproject.net/thinkcs/python/english3e/exceptions.html

CTU

e EXCEPTIONS

UNIVERSITY
IN PRAGUE

filename = input("Enter a file name: ")
try:

f = open(filename, "r")
except:

print("There is no file named", filename)

* TASK: To execute an operation that might
but the program

 SOLUTION: Handle the exception using the
statement to “wrap” a region of code

« EXAMPLE: Prompt the user for the name of a file and then try

to open it. If the file does not exist, we do not want the
program to crash

SOURCE http://openbookproject.net/thinkcs/python/english3e/exceptions.html
28/11/25 Milan Nemy, Czech Technical University in Prague

28

http://openbookproject.net/thinkcs/python/english3e/exceptions.html
http://openbookproject.net/thinkcs/python/english3e/exceptions.html

CTU

CZECH TECHNICAL
UNIVERSITY
IN PRAGUE

28/11/25

EXCEPTIONS

def exists(filename):
try:
f = open(filename)
f.close()
return True
except:
return False

The has three separate clauses, or parts, introduced by the
keywords

The , or the clauses can be omitted

The try statement executes and in the first block
and

If any
then continues

SOURCE http://openbookproject.net/thinkcs/python/english3e/exceptions.html

Milan Nemy, Czech Technical University in Prague

29

http://openbookproject.net/thinkcs/python/english3e/exceptions.html
http://openbookproject.net/thinkcs/python/english3e/exceptions.html

CTU

EXCEPTIONS

CZECH TECHNICAL

UNIVERSITY
IN PRAGUE

28/11/25

>>> while True:

try:
X = int(input("Please enter a number: "))
break
except ValueError:
print("Oops! That was no valid number. Try again...")

The try statement works as follows.

« First, the try clause (the statement(s) between the try and except keywords) is executed.

« If no exception occurs, the except clause is skipped and execution of the try statement is
finished.

» If an exception occurs during execution of the try clause, the rest of the clause is skipped. Then
if its type matches the exception named after the except keyword, the except clause is ex-
ecuted, and then execution continues after the try statement.

e If an exception occurs which does not match the exception named in the except clause, it is
passed on to outer try statements; if no handler is found, it is an unhandl/ed exception and exe-
cution stops with a message as shown above.

. except (RuntimeError, TypeError, NameError):
pass

SOURCE https://docs.python.org/3/tutorial/errors.html
Milan Nemy, Czech Technical University in Prague

30

https://docs.python.org/3/tutorial/errors.html
https://docs.python.org/3/tutorial/errors.html

CTU

CZECH TECHNICAL
UNIVERSITY
IN PRAGUE

28/11/25

EXCEPTIONS

>>> def divide(x, y):
try:
result = x / y
except ZeroDivisionError:
print("division by zero!")
else:
print("result is", result)
finally:
print("executing finally clause")

>>> divide(2, 1)

result is 2.0

executing finally clause

>>> divide(2, 0)

division by zero!

executing finally clause

>>> divide("2", "1")

executing finally clause

Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "<stdin>", line 3, in divide

TypeError: unsupported operand type(s) for /: 'str' and 'str'

The clause is
whether the exception has occurred or not

When an exception is not handled by corresponding except clause (or is
raised in the except or the else clause), it is re-raised after the finally (see
the example for division of strings)

SOURCE https://docs.python.org/3/tutorial/errors.html
Milan Nemy, Czech Technical University in Prague

31

https://docs.python.org/3/tutorial/errors.html
https://docs.python.org/3/tutorial/errors.html

CTU

CZECH TECHNICAL

UNIVERSITY
IN PRAGUE

28/11/25

EXCEPTIONS

for arg in sys.argv[l:]:
try:
f = open(arg,
except OSError:
print('cannot open', arg)
else:
print(arg, 'has', len(f.readlines()), 'lines')
f.close()

r')

The use of the else clause is better than adding additional code to the try clause because it avoids
accidentally catching an exception that wasn’t raised by the code being protected by the try ...
except statement.

e Optional clause that must follow all clauses

e Useful for code that must be executed if the clause
an exception

SOURCE https://docs.python.org/3/tutorial/errors.html
Milan Nemy, Czech Technical University in Prague

32

https://docs.python.org/3/tutorial/errors.html
https://docs.python.org/3/tutorial/errors.html

CTU

EXCEPTIONS

def get_age():
age = int(input("Please enter your age: "))
if age < 0:
Create a new instance of an exception
my error = ValueError("{0} is not a valid age".format(age))
raise my_error
return age

CZECH TECHNICAL
UNIVERSITY
IN PRAGUE

>>> get_age()
Please enter your age: 42
42
>>> get_age()
Please enter your age: -2
Traceback (most recent call last):

File "<interactive input>", line 1, in <module>

File "learn exceptions.py", line 4, in get age

raise ValueError("{0} is not a valid age".format(age))

ValueError: -2 is not a valid age

* |If the program detects an error condition, an exception can be

 EXAMPLE: take input from the user and check that the number is non-
negative

SOURCE http://openbookproject.net/thinkcs/python/english3e/exceptions.html

28/11/25 Milan Nemy, Czech Technical University in Prague

33

http://openbookproject.net/thinkcs/python/english3e/exceptions.html
http://openbookproject.net/thinkcs/python/english3e/exceptions.html

EXCEPTIONS

 Line 5 creates an , the
that encapsulates specific information about the error

e EXAMPLE: Assume that in this case function A called B which
called C which called D which called

* The raise statement on line 6 carries this object out as a
kind of “return value”, and immediately exits from
get _age() toits caller D

* Then D again exits to its caller C, and C exits to B and so
on, each returning the exception object to their caller, until
it encounters a try ... except that can handle the exception

SOURCE http://openbookproject.net/thinkcs/python/english3e/exceptions.html

28/11/25 Milan Nemy, Czech Technical University in Prague 34

http://openbookproject.net/thinkcs/python/english3e/exceptions.html
http://openbookproject.net/thinkcs/python/english3e/exceptions.html

CTU

CZECH TECHNICAL
UNIVERSITY
IN PRAGUE

28/11/25

EXCEPTIONS

raise ValueError("{0} is not a valid age".format(age))

It is often the case that lines 5 and 6 (
object, then) are combined into a single

statement

Those are , so it makes
sense to keep the two steps separate

— multiple except clauses to handle different kinds of
exceptions

SOURCE http://openbookproject.net/thinkcs/python/english3e/exceptions.html

Milan Nemy, Czech Technical University in Prague

35

https://docs.python.org/3/tutorial/errors.html
https://docs.python.org/3/tutorial/errors.html
http://openbookproject.net/thinkcs/python/english3e/exceptions.html
http://openbookproject.net/thinkcs/python/english3e/exceptions.html

CTU
s REFERENCES

UNIVERSITY
IN PRAGUE

This lecture re-uses selected parts of the OPEN BOOK PROJECT

available under

Version date: October 2012
by Peter Wentworth, Jeffrey Elkner, Allen B. Downey, and Chris Meyers

(based on 2nd edition by Jeffrey Elkner, Allen B. Downey, and Chris Meyers)
Source repository is at

For offline use, download a zip file of the html or a pdf version
from

This lecture re-uses selected parts of the PYTHON TEXTBOOK

(released under Revision 8e685e710775)

28/11/25 Milan Nemy, Czech Technical University in Prague

http://python-textbok.readthedocs.io/en/1.0/Packaging_and_Testing.html#testing
http://python-textbok.readthedocs.io/en/1.0/Packaging_and_Testing.html#testing
https://creativecommons.org/licenses/by-sa/4.0/
http://python-textbok.readthedocs.io/en/1.0/Packaging_and_Testing.html#testing
http://python-textbok.readthedocs.io/en/1.0/Packaging_and_Testing.html#testing
http://python-textbok.readthedocs.io/en/1.0/Packaging_and_Testing.html#testing
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
http://openbookproject.net/thinkcs/python/english3e/index.html
http://openbookproject.net/thinkcs/python/english3e/copyright.html
https://www.gnu.org/licenses/fdl-1.3.en.html
https://code.launchpad.net/~thinkcspy-rle-team/thinkcspy/thinkcspy3-rle
https://code.launchpad.net/~thinkcspy-rle-team/thinkcspy/thinkcspy3-rle
http://www.ict.ru.ac.za/Resources/cspw/thinkcspy3/
http://openbookproject.net/thinkcs/python/english3e/index.html
http://openbookproject.net/thinkcs/python/english3e/copyright.html
https://www.gnu.org/licenses/fdl-1.3.en.html
https://code.launchpad.net/~thinkcspy-rle-team/thinkcspy/thinkcspy3-rle
https://code.launchpad.net/~thinkcspy-rle-team/thinkcspy/thinkcspy3-rle
https://code.launchpad.net/~thinkcspy-rle-team/thinkcspy/thinkcspy3-rle
https://code.launchpad.net/~thinkcspy-rle-team/thinkcspy/thinkcspy3-rle
https://code.launchpad.net/~thinkcspy-rle-team/thinkcspy/thinkcspy3-rle
https://code.launchpad.net/~thinkcspy-rle-team/thinkcspy/thinkcspy3-rle
https://code.launchpad.net/~thinkcspy-rle-team/thinkcspy/thinkcspy3-rle
http://www.ict.ru.ac.za/Resources/cspw/thinkcspy3/

	Slide 1
	Slide 2: TESTING
	Slide 3: SELECTING TEST CASES
	Slide 4: TESTING
	Slide 5: TESTING
	Slide 6: TESTING
	Slide 7: TESTING
	Slide 8: TESTING
	Slide 9: TESTING
	Slide 10: TESTING
	Slide 11: TESTING
	Slide 12: TESTING
	Slide 13: TESTING
	Slide 14: TESTING
	Slide 15: TESTING
	Slide 16: TESTING
	Slide 17: TESTING
	Slide 18: TESTING
	Slide 19: UNITTESTS
	Slide 20: UNITTESTS
	Slide 21: UNITTESTS
	Slide 22: UNITTESTS – DOCUMENTATION
	Slide 23: UNITTESTS – DOCUMENTATION
	Slide 24: UNITTESTS – DOCUMENTATION
	Slide 25: UNITTESTS – DOCUMENTATION
	Slide 26: EXCEPTIONS
	Slide 27: EXCEPTIONS
	Slide 28: EXCEPTIONS
	Slide 29: EXCEPTIONS
	Slide 30: EXCEPTIONS
	Slide 31: EXCEPTIONS
	Slide 32: EXCEPTIONS
	Slide 33: EXCEPTIONS
	Slide 34: EXCEPTIONS
	Slide 35: EXCEPTIONS
	Slide 36: REFERENCES

