
Lecture 7 – Files, I/O

Milan Nemy
Czech Technical University in Prague,

Faculty of Electrical Engineering, Dept. of Cybernetics

https://beat.ciirc.cvut.cz/people/milan-nemy/

milan.nemy@cvut.cz

PRG – PROGRAMMING ESSENTIALS

https://beat.ciirc.cvut.cz/people/milan-nemy/
https://beat.ciirc.cvut.cz/people/milan-nemy/
https://beat.ciirc.cvut.cz/people/milan-nemy/
mailto:milan.nemy@cvut.cz

RECAP: MODULES – SCOPE

21/11/25 Milan Nemy, Czech Technical University in Prague

http://openbookproject.net/thinkcs/python/english3e/modules.htmlsource http://openbookproject.net/thinkcs/python/english3e/modules.html

• A scope is a textual region of a Python program where a
namespace is directly accessible

What types of scopes can be defined?
• Local scope refers to identifiers declared within a function /

class (these identifiers are kept in the namespace that belongs
to the function, and each function has its own namespace)

• Global scope refers to all the identifiers declared within the
current module (file)

• Built-in scope refers to all the identifiers built into Python
(those like range and min that can be used without having to
import anything)

2

http://openbookproject.net/thinkcs/python/english3e/modules.html
http://openbookproject.net/thinkcs/python/english3e/modules.html

RECAP: MODULES – SCOPE

21/11/25 Milan Nemy, Czech Technical University in Prague

What are the scope precedence rules?
• The same name can occur in more than one of these scopes, but the

innermost, or local scope, will always take precedence over the global
scope, and the global scope always gets used in preference to the built-in
scope

• Names can be “hidden” from use if own variables or functions reuse those
names (shadowing)

• EXAMPLE: variables n and m are created just for the duration of the
execution of f since they are created in the local namespace of function f
(precedence rules apply)

http://openbookproject.net/thinkcs/python/english3e/modules.htmlsource http://openbookproject.net/thinkcs/python/english3e/modules.html

3

http://openbookproject.net/thinkcs/python/english3e/modules.html
http://openbookproject.net/thinkcs/python/english3e/modules.html

RECAP: MODULES – THE DOT OPERATOR

21/11/25 Milan Nemy, Czech Technical University in Prague

• Variables defined inside a module are called attributes of the module
• Attributes are accessed using the dot operator (.)
• When a dotted name is used it is often referred to it as a

fully qualified name

http://openbookproject.net/thinkcs/python/english3e/modules.htmlsource http://openbookproject.net/thinkcs/python/english3e/modules.html

4

http://openbookproject.net/thinkcs/python/english3e/modules.html
http://openbookproject.net/thinkcs/python/english3e/modules.html

FILES

21/11/25 Milan Nemy, Czech Technical University in Prague

http://openbookproject.net/thinkcs/python/english3e/files.htmlsource http://openbookproject.net/thinkcs/python/english3e/files.html

• During program execution, its data are stored in random
access memory (RAM)

• RAM is fast and inexpensive but volatile
• To preserve data when the system is not powered the data

has to be written to a non-volatile storage medium
• Data on non-volatile storage media are stored in named

locations on the media called files
• By reading and writing files, programs can save information

between program runs
• To open a file, we specify its name (path) and indicate

whether we want to read or write.

5

http://openbookproject.net/thinkcs/python/english3e/files.html
http://openbookproject.net/thinkcs/python/english3e/files.html

FILES

21/11/25 Milan Nemy, Czech Technical University in Prague

• EXAMPLE: program writes three lines of text into a file

• Line 1: the open function takes two arguments:
the first is the name of the file, and the second is the mode

• Mode "w" means that we are opening the file for writing:

• If there is no file on the disk, it will be created
• If the file exists it will be replaced

http://openbookproject.net/thinkcs/python/english3e/files.htmlsource http://openbookproject.net/thinkcs/python/english3e/files.html

6

http://openbookproject.net/thinkcs/python/english3e/files.html
http://openbookproject.net/thinkcs/python/english3e/files.html

FILES

21/11/25 Milan Nemy, Czech Technical University in Prague

• EXAMPLE: program writes three lines of text into a file

• Opening a file creates a file handle
• Variable myfile refers to the new handle object

• Program calls methods on the handle (dot notation) changing
the actual file which is usually located on our disk

http://openbookproject.net/thinkcs/python/english3e/files.htmlsource http://openbookproject.net/thinkcs/python/english3e/files.html

7

http://openbookproject.net/thinkcs/python/english3e/files.html
http://openbookproject.net/thinkcs/python/english3e/files.html

FILES

21/11/25 Milan Nemy, Czech Technical University in Prague

• To store data into the file we invoke the write method on the handle (lines
2, 3 and 4)

• Lines 2 – 4: should usually be replaced by a loop that writes more lines
into the file, i.e. the content we want to store

• Line 5: closing the file handle tells the system that writing the content is
finished and makes the disk file available for reading by other programs

http://openbookproject.net/thinkcs/python/english3e/files.htmlsource http://openbookproject.net/thinkcs/python/english3e/files.html

8

http://openbookproject.net/thinkcs/python/english3e/files.html
http://openbookproject.net/thinkcs/python/english3e/files.html

FILES – HANDLE

21/11/25 Milan Nemy, Czech Technical University in Prague

http://openbookproject.net/thinkcs/python/english3e/files.htmlsource http://openbookproject.net/thinkcs/python/english3e/files.html

9

http://openbookproject.net/thinkcs/python/english3e/files.html
http://openbookproject.net/thinkcs/python/english3e/files.html

FILES

21/11/25 Milan Nemy, Czech Technical University in Prague

• Reading a file one line-at-a-time using the mode argument
is "r" for reading

• More extensive logic into the body of the loop at line 8

http://openbookproject.net/thinkcs/python/english3e/files.htmlsource http://openbookproject.net/thinkcs/python/english3e/files.html

10

http://openbookproject.net/thinkcs/python/english3e/files.html
http://openbookproject.net/thinkcs/python/english3e/files.html

FILES

21/11/25 Milan Nemy, Czech Technical University in Prague

• Line 8: the newline character that print usually appends to our strings is
suppressed

• The string already has its own newline: the readline method in line 3
returns everything up to and including the newline

• The end-of-file detection logic: when there are no more lines to be read
from the file, readline returns an empty string
(no newline at the end, hence its length is 0)

http://openbookproject.net/thinkcs/python/english3e/files.htmlsource http://openbookproject.net/thinkcs/python/english3e/files.html

11

http://openbookproject.net/thinkcs/python/english3e/files.html
http://openbookproject.net/thinkcs/python/english3e/files.html

FILES – END OF FILE

21/11/25 Milan Nemy, Czech Technical University in Prague

http://openbookproject.net/thinkcs/python/english3e/files.htmlsource http://openbookproject.net/thinkcs/python/english3e/files.html

12

http://openbookproject.net/thinkcs/python/english3e/files.html
http://openbookproject.net/thinkcs/python/english3e/files.html

FILES – READLINES vs. READ

21/11/25 Milan Nemy, Czech Technical University in Prague

• EXAMPLE: fetch data from a disk file, perform processing
(sorting) and turn it into a list of lines written back into the file

• The readlines method in line 2 reads all the lines and returns
a list of the strings

http://openbookproject.net/thinkcs/python/english3e/files.htmlsource http://openbookproject.net/thinkcs/python/english3e/files.html

13

http://openbookproject.net/thinkcs/python/english3e/files.html
http://openbookproject.net/thinkcs/python/english3e/files.html

FILES – READLINES vs. READ

21/11/25 Milan Nemy, Czech Technical University in Prague

• EXAMPLE: reading the whole file at once
• Read the complete contents of the file into a single string, and then to use

string-processing skills to work with the contents
• Not interested in the line structure of the file

• EXAMPLE: use the split method on strings which can break a string into
words (e.g. counting the number of words in a file)

• The "r" mode in line 1 is omitted since by default Python opens the file for
reading

http://openbookproject.net/thinkcs/python/english3e/files.htmlsource http://openbookproject.net/thinkcs/python/english3e/files.html

14

http://openbookproject.net/thinkcs/python/english3e/files.html
http://openbookproject.net/thinkcs/python/english3e/files.html

FILES

21/11/25 Milan Nemy, Czech Technical University in Prague

http://openbookproject.net/thinkcs/python/english3e/files.htmlsource http://openbookproject.net/thinkcs/python/english3e/files.html

15

http://openbookproject.net/thinkcs/python/english3e/files.html
http://openbookproject.net/thinkcs/python/english3e/files.html

FILES – BINARY

21/11/25 Milan Nemy, Czech Technical University in Prague

• Working with binary files
• Binary files usually hold photographs, videos, zip files, executable

programs
• Binary files are not organized into lines and cannot be opened with a

normal text editor
• Reading binary files gets bytes back rather than a string

http://openbookproject.net/thinkcs/python/english3e/files.htmlsource http://openbookproject.net/thinkcs/python/english3e/files.html

16

http://openbookproject.net/thinkcs/python/english3e/files.html
http://openbookproject.net/thinkcs/python/english3e/files.html

FILES – BINARY

21/11/25 Milan Nemy, Czech Technical University in Prague

• Mode "b" to tell Python that the files are binary
• Line 5: read takes an argument telling how many bytes to attempt to read

from the file
(read and write up to 1024 bytes on each iteration of the loop)

• When an empty buffer is returned from the attempt to read, break out of
the loop and close both the files

• The type of buf is bytes

http://openbookproject.net/thinkcs/python/english3e/files.htmlsource http://openbookproject.net/thinkcs/python/english3e/files.html

17

http://openbookproject.net/thinkcs/python/english3e/files.html
http://openbookproject.net/thinkcs/python/english3e/files.html

EXAMPLE – FILE CONTENT FILTER

21/11/25 Milan Nemy, Czech Technical University in Prague

http://openbookproject.net/thinkcs/python/english3e/files.htmlsource http://openbookproject.net/thinkcs/python/english3e/files.html

18

http://openbookproject.net/thinkcs/python/english3e/files.html
http://openbookproject.net/thinkcs/python/english3e/files.html

EXAMPLE – FILE CONTENT FILTER

21/11/25 Milan Nemy, Czech Technical University in Prague

• EXAMPLE: filter that copies one file to another, omitting any
lines that begin with #, i.e. comments

• Line 9: the continue statement skips over remaining lines in
the current iteration of the loop, but the loop will still iterate

http://openbookproject.net/thinkcs/python/english3e/files.htmlsource http://openbookproject.net/thinkcs/python/english3e/files.html

19

http://openbookproject.net/thinkcs/python/english3e/files.html
http://openbookproject.net/thinkcs/python/english3e/files.html

EXAMPLE – FILE CONTENT FILTER

21/11/25 Milan Nemy, Czech Technical University in Prague

• If text is the empty string, the loop exits
• If the first character of text is a hash mark, the flow of execution goes to

the top of the loop, ready to start processing the next line
• Only if both conditions fail, writing the line into the new file

http://openbookproject.net/thinkcs/python/english3e/files.htmlsource http://openbookproject.net/thinkcs/python/english3e/files.html

20

http://openbookproject.net/thinkcs/python/english3e/files.html
http://openbookproject.net/thinkcs/python/english3e/files.html

DIRECTORIES

21/11/25 Milan Nemy, Czech Technical University in Prague

source courtesy of Petr Posik BE5b33PR 2016/2017

21

DIRECTORIES

21/11/25 Milan Nemy, Czech Technical University in Prague

• Files on non-volatile storage media are organized by a set of rules known
as a file system

• File systems are made of files and directories (and symbolic links), which
are containers for files and other directories.

• When we create a new file by opening it and writing, the new file goes
into the current directory

• When we want to open a file somewhere else, we have to specify
the path to the file, which is the name of the directory (or folder) where
the file is located

http://openbookproject.net/thinkcs/python/english3e/files.htmlsource http://openbookproject.net/thinkcs/python/english3e/files.html

22

http://openbookproject.net/thinkcs/python/english3e/files.html
http://openbookproject.net/thinkcs/python/english3e/files.html

PATHS

21/11/25 Milan Nemy, Czech Technical University in Prague

source courtesy of Petr Posik BE5b33PR 2016/2017

23

PATHS

21/11/25 Milan Nemy, Czech Technical University in Prague

source courtesy of Petr Posik BE5b33PR 2016/2017

24

PATHS

21/11/25 Milan Nemy, Czech Technical University in Prague

• A Windows path might be:
"C:/temp/words.txt" or "C:\temp\words.txt"

• Backslashes are used to escape things like newlines and tabs, we need to
write two backslashes in a literal string to get one! (the length of these
two strings is the same)

• We cannot use / or \ as part of a filename
(reserved as a delimiter between directory and filenames)

• The file /usr/share/dict/words should exist on Unix-based systems, and
contains a list of words in alphabetical order

http://openbookproject.net/thinkcs/python/english3e/files.htmlsource http://openbookproject.net/thinkcs/python/english3e/files.html

25

http://openbookproject.net/thinkcs/python/english3e/files.html
http://openbookproject.net/thinkcs/python/english3e/files.html

PATHS

21/11/25 Milan Nemy, Czech Technical University in Prague

source courtesy of Petr Posik BE5b33PR 2016/2017

26

FILES

21/11/25 Milan Nemy, Czech Technical University in Prague

source courtesy of Petr Posik BE5b33PR 2016/2017

27

ENCODING

21/11/25 Milan Nemy, Czech Technical University in Prague

source courtesy of Petr Posik BE5b33PR 2016/2017

28

ENCODING

21/11/25 Milan Nemy, Czech Technical University in Prague

source courtesy of Petr Posik BE5b33PR 2016/2017

29

FILES – „WITH“ STATEMENT

21/11/25 Milan Nemy, Czech Technical University in Prague

source courtesy of Petr Posik BE5b33PR 2016/2017

30

FILES – „WITH“ STATEMENT

21/11/25 Milan Nemy, Czech Technical University in Prague

source courtesy of Petr Posik BE5b33PR 2016/2017

31

FILES – „WITH“ STATEMENT

21/11/25 Milan Nemy, Czech Technical University in Prague

source courtesy of Petr Posik BE5b33PR 2016/2017

32

FILES

21/11/25 Milan Nemy, Czech Technical University in Prague

source courtesy of Petr Posik BE5b33PR 2016/2017

33

EXAMPLE – COLLATZ SEQUENCE

21/11/25 Milan Nemy, Czech Technical University in Prague

source courtesy of Petr Posik BE5b33PR 2016/2017

34

EXAMPLE – COLLATZ SEQUENCE

21/11/25 Milan Nemy, Czech Technical University in Prague

source courtesy of Petr Posik BE5b33PR 2016/2017

35

FILES – WRITE vs. APPEND

21/11/25 Milan Nemy, Czech Technical University in Prague

source courtesy of Petr Posik BE5b33PR 2016/2017

36

FILES – WRITE vs. APPEND

21/11/25 Milan Nemy, Czech Technical University in Prague

source courtesy of Petr Posik BE5b33PR 2016/2017

37

EXAMPLE – READ and WRITE

21/11/25 Milan Nemy, Czech Technical University in Prague

source courtesy of Petr Posik BE5b33PR 2016/2017

38

EXAMPLE – READ and WRITE

21/11/25 Milan Nemy, Czech Technical University in Prague

source courtesy of Petr Posik BE5b33PR 2016/2017

39

EXAMPLE – DATA FROM WEB

21/11/25 Milan Nemy, Czech Technical University in Prague

http://openbookproject.net/thinkcs/python/english3e/files.htmlsource http://openbookproject.net/thinkcs/python/english3e/files.html

• EXAMPLE: copy contents at some web URL to a local file

• The urlretrieve function can be used to download any kind of content
from the Internet (resources to fetch must exist)

• Need of permissions to write to the destination filename, and the file will
be created in the “current directory”
(i.e. the same folder that the Python program is saved in)

• Authorization necessary if behind a proxy server

40

http://openbookproject.net/thinkcs/python/english3e/files.html
http://openbookproject.net/thinkcs/python/english3e/files.html

EXAMPLE – DATA FROM WEB

21/11/25 Milan Nemy, Czech Technical University in Prague

• Rather than saving the web resource to local disk, we read it directly into a
string, and return it

• Opening the remote url returns a socket (handle to end of the connection
between the program and the remote web server)

• Call read, write, and close methods on the socket object

http://openbookproject.net/thinkcs/python/english3e/files.htmlsource http://openbookproject.net/thinkcs/python/english3e/files.html

41

http://openbookproject.net/thinkcs/python/english3e/files.html
http://openbookproject.net/thinkcs/python/english3e/files.html

SUMMARY

21/11/25 Milan Nemy, Czech Technical University in Prague

http://openbookproject.net/thinkcs/python/english3e/files.htmlsource http://openbookproject.net/thinkcs/python/english3e/files.html

42

http://openbookproject.net/thinkcs/python/english3e/files.html
http://openbookproject.net/thinkcs/python/english3e/files.html

REFERENCES

21/11/25 Milan Nemy, Czech Technical University in Prague

http://openbookproject.net/thinkcs/python/english3e/index.html

GNU Free Documentation License Version 1.3

https://code.launchpad.net/~thinkcspy-rle-

team/thinkcspy/thinkcspy3-rle

http://www.ict.ru.ac.za/Resources/cspw/thinkcspy3/

This lecture re-uses selected parts of the OPEN BOOK PROJECT
Learning with Python 3 (RLE)

http://openbookproject.net/thinkcs/python/english3e/index.html
available under GNU Free Documentation License Version 1.3)

• Version date: October 2012
• by Peter Wentworth, Jeffrey Elkner, Allen B. Downey, and Chris Meyers

(based on 2nd edition by Jeffrey Elkner, Allen B. Downey, and Chris
Meyers)

• Source repository is at https://code.launchpad.net/~thinkcspy-rle-
team/thinkcspy/thinkcspy3-rle

• For offline use, download a zip file of the html or a pdf version
from http://www.ict.ru.ac.za/Resources/cspw/thinkcspy3/

43

http://openbookproject.net/thinkcs/python/english3e/index.html
http://openbookproject.net/thinkcs/python/english3e/copyright.html
https://www.gnu.org/licenses/fdl-1.3.en.html
https://code.launchpad.net/~thinkcspy-rle-team/thinkcspy/thinkcspy3-rle
https://code.launchpad.net/~thinkcspy-rle-team/thinkcspy/thinkcspy3-rle
http://www.ict.ru.ac.za/Resources/cspw/thinkcspy3/
http://openbookproject.net/thinkcs/python/english3e/index.html
http://openbookproject.net/thinkcs/python/english3e/copyright.html
https://www.gnu.org/licenses/fdl-1.3.en.html
https://code.launchpad.net/~thinkcspy-rle-team/thinkcspy/thinkcspy3-rle
https://code.launchpad.net/~thinkcspy-rle-team/thinkcspy/thinkcspy3-rle
https://code.launchpad.net/~thinkcspy-rle-team/thinkcspy/thinkcspy3-rle
https://code.launchpad.net/~thinkcspy-rle-team/thinkcspy/thinkcspy3-rle
https://code.launchpad.net/~thinkcspy-rle-team/thinkcspy/thinkcspy3-rle
https://code.launchpad.net/~thinkcspy-rle-team/thinkcspy/thinkcspy3-rle
https://code.launchpad.net/~thinkcspy-rle-team/thinkcspy/thinkcspy3-rle
http://www.ict.ru.ac.za/Resources/cspw/thinkcspy3/

	Slide 1
	Slide 2: RECAP: MODULES – SCOPE
	Slide 3: RECAP: MODULES – SCOPE
	Slide 4: RECAP: MODULES – THE DOT OPERATOR
	Slide 5: FILES
	Slide 6: FILES
	Slide 7: FILES
	Slide 8: FILES
	Slide 9: FILES – HANDLE
	Slide 10: FILES
	Slide 11: FILES
	Slide 12: FILES – END OF FILE
	Slide 13: FILES – READLINES vs. READ
	Slide 14: FILES – READLINES vs. READ
	Slide 15: FILES
	Slide 16: FILES – BINARY
	Slide 17: FILES – BINARY
	Slide 18: EXAMPLE – FILE CONTENT FILTER
	Slide 19: EXAMPLE – FILE CONTENT FILTER
	Slide 20: EXAMPLE – FILE CONTENT FILTER
	Slide 21: DIRECTORIES
	Slide 22: DIRECTORIES
	Slide 23: PATHS
	Slide 24: PATHS
	Slide 25: PATHS
	Slide 26: PATHS
	Slide 27: FILES
	Slide 28: ENCODING
	Slide 29: ENCODING
	Slide 30: FILES – „WITH“ STATEMENT
	Slide 31: FILES – „WITH“ STATEMENT
	Slide 32: FILES – „WITH“ STATEMENT
	Slide 33: FILES
	Slide 34: EXAMPLE – COLLATZ SEQUENCE
	Slide 35: EXAMPLE – COLLATZ SEQUENCE
	Slide 36: FILES – WRITE vs. APPEND
	Slide 37: FILES – WRITE vs. APPEND
	Slide 38: EXAMPLE – READ and WRITE
	Slide 39: EXAMPLE – READ and WRITE
	Slide 40: EXAMPLE – DATA FROM WEB
	Slide 41: EXAMPLE – DATA FROM WEB
	Slide 42: SUMMARY
	Slide 43: REFERENCES

