Policy estimate from training episodes J. Kostlivá, Z. Straka, P. Švarný

We have:

- unknown grid world of unknown size and structure/shape
- robot/agents moves in unknown directions with unknown parameters
- ightarrow We do not know anything

we only have a few episodes the robot tried

What to do?

- A: Run away :-)
- B: Examine episodes and learn
- C: Guess
- D: Try something

Policy estimate from training episodes J. Kostlivá, Z. Straka, P. Švarný

We have:

- unknown grid world of unknown size and structure/shape
- robot/agents moves in unknown directions with unknown parameters
- ightarrow We do not know anything
- we only have a few episodes the robot tried

What to do?

- A: Run away :-)
- B: Examine episodes and learn
- C: Guess
- D: Try something

Policy estimate from training episodes J. Kostlivá, Z. Straka, P. Švarný

We have:

- unknown grid world of unknown size and structure/shape
- robot/agents moves in unknown directions with unknown parameters
- ightarrow We do not know anything
- we only have a few episodes the robot tried

What to do?

- A: Run away :-)
- B: Examine episodes and learn
- C: Guess
- D: Try something

Policy estimate from training episodes

We have:

- unknown grid world of unknown size and structure/shape
- robot/agents moves in unknown directions with unknown parameters
- $\rightarrow\,$ We do not know anything
- we only have a few episodes the robot tried

What to do?

A: Run away :-)

- B: Examine episodes and learn
- C: Guess

D: Try something

Episode 1	Episode 2	Episode 3	Episode 4
$(B, \rightarrow, C, -3)$	$(B,\leftarrow,A,-1)$	$(C, \rightarrow, D, -3)$	$(C,\leftarrow,B,-1)$
$(C, \rightarrow, D, -3)$	$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$
$(D, \leftarrow, exit, 6)$			$(C,\leftarrow,B,-1)$
			$(B, \leftarrow, A, -1)$
			$(A, \leftarrow, exit, 6)$

each field in table is n-tuple (s, a, s', r), known discount factor $\gamma = 1$

Task: for non-terminal states determine the optimal policy. Use model-based learning.

What do we have to learn (model based learning)?

A: policy π

- B: state set S, policy π
- C: state set S, action set A, transition model p(s'|s, a)

D: state set S, action set A, rewards r, transition model p(s'|s, a)

Episode 1	Episode 2	Episode 3	Episode 4
$(B, \rightarrow, C, -3)$	$(B,\leftarrow,A,-1)$	$(C, \rightarrow, D, -3)$	$(C,\leftarrow,B,-1)$
$(C, \rightarrow, D, -3)$	$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$
$(D, \leftarrow, exit, 6)$			$(C, \leftarrow, B, -1)$
			$(B, \leftarrow, A, -1)$
			$(A, \leftarrow, exit, 6)$

each field in table is n-tuple (s, a, s', r), known discount factor $\gamma = 1$

Task: for non-terminal states determine the optimal policy. Use model-based learning.

What do we have to learn (model based learning)?

A: policy π

B: state set S, policy π

C: state set S, action set A, transition model p(s'|s, a)

D: state set S, action set A, rewards r, transition model p(s'|s, a)

Episode 1	Episode 2	Episode 3	Episode 4
$[(B, \rightarrow, C, -3)]$	$(B,\leftarrow,A,-1)$	$(C, \rightarrow, D, -3)$	$(C,\leftarrow,B,-1)$
$(C, \rightarrow, D, -3)$	$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$
$(D, \leftarrow, exit, 6)$			$(C, \leftarrow, B, -1)$
			$(B,\leftarrow,A,-1)$
			$(A, \leftarrow, exit, 6)$

each field in table is n-tuple (s, a, s', r)

Task: for non-terminal states determine the optimal policy

What do we have to learn (model based learning)?

A: policy π

- **B**: state set S, policy π
- C: state set S, action set A, transition model p(s'|s, a)

D: state set S, action set A, rewards r, transition model p(s'|s, a)

Episode 1	Episode 2	Episode 3	Episode 4
$(B, \rightarrow, C, -3)$	$(B,\leftarrow,A,-1)$	$(C, \rightarrow, D, -3)$	$(C,\leftarrow,B,-1)$
$(C, \rightarrow, D, -3)$	$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$
$(D, \leftarrow, exit, 6)$			$(C,\leftarrow,B,-1)$
			$(B,\leftarrow,A,-1)$
			$(A, \leftarrow, exit, 6)$

each field in table is n-tuple (s, a, s', r)

What is the state set S?

A: $S = \{B, C\}$ B: $S = \{A, B, C, D, exit\}$ C: $S = \{A, B, C, D\}$ D: $S = \{A, D\}$

Episode 1	Episode 2	Episode 3	Episode 4
$(B, \rightarrow, C, -3)$	$(B,\leftarrow,A,-1)$	$(C, \rightarrow, D, -3)$	$(C,\leftarrow,B,-1)$
$(C, \rightarrow, D, -3)$	$(A, \rightarrow, exit, 6)$	(D, ightarrow, exit, 6)	$(B, \rightarrow, C, -3)$
$(D, \leftarrow, exit, 6)$			$(C,\leftarrow,B,-1)$
			$(B,\leftarrow,A,-1)$
			$(A, \leftarrow, exit, 6)$

each field in table is n-tuple (s, a, s', r)

What is the state set S?

- A: $S = \{B, C\}$
- **B**: $S = \{A, B, C, D, exit\}$
- $\mathsf{C}: \ S = \{A, B, C, D\}$
- **D**: $S = \{A, D\}$

Episode 1	Episode 2	Episode 3	Episode 4
$[(B, \rightarrow, C, -3)]$	$(B,\leftarrow,A,-1)$	$(C, \rightarrow, D, -3)$	$(C,\leftarrow,B,-1)$
$(C, \rightarrow, D, -3)$	$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$
$(D, \leftarrow, exit, 6)$			$(C,\leftarrow,B,-1)$
			$(B,\leftarrow,A,-1)$
			$(A, \leftarrow, exit, 6)$

each field in table is n-tuple (s, a, s', r)

State set $S = \{A, B, C, D\}$

```
▶ What are the terminal states'
A: {A, B, C, D}
B: {A, D}
C: {B, C}
D: {A, C, D}
```

Episode 1	Episode 2	Episode 3	Episode 4
$[(B, \rightarrow, C, -3)]$	$(B,\leftarrow,A,-1)$	$(C, \rightarrow, D, -3)$	$(C,\leftarrow,B,-1)$
$(C, \rightarrow, D, -3)$	$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$
$(D, \leftarrow, exit, 6)$			$(C, \leftarrow, B, -1)$
			$(B,\leftarrow,A,-1)$
			$(A, \leftarrow, exit, 6)$

each field in table is n-tuple (s, a, s', r)

State set $S = \{A, B, C, D\}$

- What are the terminal states?
 - A: $\{A, B, C, D\}$ B: $\{A, D\}$ C: $\{B, C\}$ D: $\{A, C, D\}$

Episode 1	Episode 2	Episode 3	Episode 4
$[(B, \rightarrow, C, -3)]$	$(B,\leftarrow,A,-1)$	$(C, \rightarrow, D, -3)$	$(C,\leftarrow,B,-1)$
$(C, \rightarrow, D, -3)$	$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$
$(D, \leftarrow, exit, 6)$			$(C, \leftarrow, B, -1)$
			$(B,\leftarrow,A,-1)$
			$(A, \leftarrow, exit, 6)$

each field in table is n-tuple (s, a, s', r)

State set $S = \{A, B, C, D\}$

What are the terminal states?

A: {*A*, *B*, *C*, *D*} B: {*A*, *D*} C: {*B*, *C*} D: {*A*, *C*, *D*}

Episode 1	Episode 2	Episode 3	Episode 4
$[(B, \rightarrow, C, -3)]$	$(B,\leftarrow,A,-1)$	$(C, \rightarrow, D, -3)$	$(C,\leftarrow,B,-1)$
$(C, \rightarrow, D, -3)$	$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$
$(D, \leftarrow, exit, 6)$			$(C,\leftarrow,B,-1)$
			$(B,\leftarrow,A,-1)$
			$(A, \leftarrow, exit, 6)$

each field in table is n-tuple (s, a, s', r)

State set $S = \{A, B, C, D\}$

• Terminal states: $\{A, D\}$

```
    What are the non-terminal state
    A: {A, B, C, D}
    B: {A, D}
    C: {B, C}
    D: {A, B, C}
```

Episode 1	Episode 2	Episode 3	Episode 4
$[(B, \rightarrow, C, -3)]$	$(B,\leftarrow,A,-1)$	$(C, \rightarrow, D, -3)$	$(C,\leftarrow,B,-1)$
$(C, \rightarrow, D, -3)$	$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$
$(D, \leftarrow, exit, 6)$			$(C, \leftarrow, B, -1)$
			$(B,\leftarrow,A,-1)$
			$(A, \leftarrow, exit, 6)$

each field in table is n-tuple (s, a, s', r)

State set $S = \{A, B, C, D\}$

- **•** Terminal states: $\{A, D\}$
- What are the non-terminal states?

```
A: \{A, B, C, D\}
B: \{A, D\}
C: \{B, C\}
D: \{A, B, C\}
```

Episode 1	Episode 2	Episode 3	Episode 4
$[(B, \rightarrow, C, -3)]$	$(B,\leftarrow,A,-1)$	$(C, \rightarrow, D, -3)$	$(C,\leftarrow,B,-1)$
$(C, \rightarrow, D, -3)$	$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$
$(D, \leftarrow, exit, 6)$			$(C, \leftarrow, B, -1)$
			$(B,\leftarrow,A,-1)$
			$(A, \leftarrow, exit, 6)$

each field in table is n-tuple (s, a, s', r)

State set $S = \{A, B, C, D\}$

- **•** Terminal states: $\{A, D\}$
- What are the non-terminal states?

```
A: {A, B, C, D}
B: {A, D}
C: {B, C}
D: {A, B, C}
```

Episode 1	Episode 2	Episode 3	Episode 4
$[(B, \rightarrow, C, -3)]$	$(B,\leftarrow,A,-1)$	$(C, \rightarrow, D, -3)$	$(C,\leftarrow,B,-1)$
$(C, \rightarrow, D, -3)$	$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$
$(D, \leftarrow, exit, 6)$			$(C,\leftarrow,B,-1)$
			$(B,\leftarrow,A,-1)$
			$(A, \leftarrow, exit, 6)$

each field in table is n-tuple (s, a, s', r)

State set $S = \{A, B, C, D\}$, terminal states: $\{A, D\}$, non-terminal states: $\{B, C\}$

What is the action set?

- A: $\{\rightarrow, \leftarrow\}$
- $B{:}\ \{\rightarrow,\leftarrow,\uparrow,\downarrow\}$
- $\mathsf{C} \colon \{ \rightarrow, \leftarrow, \uparrow \}$
- $\mathsf{D}{:}\ \{\rightarrow,\leftarrow,\downarrow\}$

Episode 1	Episode 2	Episode 3	Episode 4
$[(B, \rightarrow, C, -3)]$	$(B,\leftarrow,A,-1)$	$(C, \rightarrow, D, -3)$	$(C,\leftarrow,B,-1)$
$(C, \rightarrow, D, -3)$	$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$
$(D, \leftarrow, exit, 6)$			$(C,\leftarrow,B,-1)$
			$(B,\leftarrow,A,-1)$
			$(A, \leftarrow, exit, 6)$

each field in table is n-tuple (s, a, s', r)

State set $S = \{A, B, C, D\}$, terminal states: $\{A, D\}$, non-terminal states: $\{B, C\}$

What is the action set?

A: $\{\rightarrow, \leftarrow\}$ B: $\{\rightarrow, \leftarrow, \uparrow, \downarrow\}$ C: $\{\rightarrow, \leftarrow, \uparrow\}$ D: $\{\rightarrow, \leftarrow, \downarrow\}$

Episode 1	Episode 2	Episode 3	Episode 4
$[(B, \rightarrow, C, -3)]$	$(B,\leftarrow,A,-1)$	$(C, \rightarrow, D, -3)$	$(C, \leftarrow, B, -1)$
$(C, \rightarrow, D, -3)$	$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$
$(D, \leftarrow, exit, 6)$			$(C, \leftarrow, B, -1)$
			$(B,\leftarrow,A,-1)$
			$(A, \leftarrow, exit, 6)$

each field in table is n-tuple (s, a, s', r)

State set $S = \{A, B, C, D\}$, terminal states: $\{A, D\}$, non-terminal states: $\{B, C\}$

What is the action set?

- A: $\{\rightarrow, \leftarrow\}$
- $\textbf{B:} \ \{\rightarrow,\leftarrow,\uparrow,\downarrow\}$
- $\textbf{C} \text{: } \{ \rightarrow, \leftarrow, \uparrow \}$
- $\textbf{D:} \ \{\rightarrow,\leftarrow,\downarrow\}$

Episode 1	Episode 2	Episode 3	Episode 4
$(B, \rightarrow, C, -3)$	$(B,\leftarrow,A,-1)$	$(C, \rightarrow, D, -3)$	$(C, \leftarrow, B, -1)$
$(C, \rightarrow, D, -3)$	$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$
$(D, \leftarrow, exit, 6)$			$(C,\leftarrow,B,-1)$
			$(B,\leftarrow,A,-1)$
			$(A, \leftarrow, exit, 6)$

each field in table is n-tuple (s, a, s', r)

State set $S = \{A, B, C, D\}$, terminal states: $\{A, D\}$, non-terminal states: $\{B, C\}$ Action set $A = \{\rightarrow, \leftarrow\}$

What is the transition model?

A: deterministic

B: non-deterministic

Let's examine :-)

Episode 1	Episode 2	Episode 3	Episode 4
$(B, \rightarrow, C, -3)$	$(B,\leftarrow,A,-1)$	$(C, \rightarrow, D, -3)$	$(C, \leftarrow, B, -1)$
$(C, \rightarrow, D, -3)$	$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$
$(D, \leftarrow, exit, 6)$			$(C,\leftarrow,B,-1)$
			$(B,\leftarrow,A,-1)$
			$(A, \leftarrow, exit, 6)$

each field in table is n-tuple (s, a, s', r)

State set $S = \{A, B, C, D\}$, terminal states: $\{A, D\}$, non-terminal states: $\{B, C\}$ Action set $A = \{\rightarrow, \leftarrow\}$

What is the transition model?

- A: deterministic
- B: non-deterministic

Let's examine :-]

Episode 1	Episode 2	Episode 3	Episode 4
$[(B, \rightarrow, C, -3)]$	$(B,\leftarrow,A,-1)$	$(C, \rightarrow, D, -3)$	$(C,\leftarrow,B,-1)$
$(C, \rightarrow, D, -3)$	$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$
$(D, \leftarrow, exit, 6)$			$(C,\leftarrow,B,-1)$
			$(B,\leftarrow,A,-1)$
			$(A, \leftarrow, exit, 6)$

each field in table is n-tuple (s, a, s', r)

State set $S = \{A, B, C, D\}$, terminal states: $\{A, D\}$, non-terminal states: $\{B, C\}$ Action set $A = \{\rightarrow, \leftarrow\}$

What is the transition model?

- A: deterministic
- B: non-deterministic

Let's examine :-)

Episode 1	Episode 2	Episode 3	Episode 4
$(B, \rightarrow, C, -3)$	$(B,\leftarrow,A,-1)$	$(C, \rightarrow, D, -3)$	$(C, \leftarrow, B, -1)$
$(C, \rightarrow, D, -3)$	$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$
$(D, \leftarrow, exit, 6)$			$(C,\leftarrow,B,-1)$
			$(B,\leftarrow,A,-1)$
			$(A, \leftarrow, exit, 6)$

each field in table is n-tuple (s, a, s', r)

State set $S = \{A, B, C, D\}$, terminal states: $\{A, D\}$, non-terminal states: $\{B, C\}$ Action set $A = \{\rightarrow, \leftarrow\}$

- ► How to compute?
 - A: for each state and action
 - B: for each state, action and new state
 - C: for each state
 - D: for each action and new state

Episode 1	Episode 2	Episode 3	Episode 4
$[(B, \rightarrow, C, -3)]$	$(B,\leftarrow,A,-1)$	$(C, \rightarrow, D, -3)$	$(C, \leftarrow, B, -1)$
$(C, \rightarrow, D, -3)$	$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$
$(D, \leftarrow, exit, 6)$			$(C,\leftarrow,B,-1)$
			$(B,\leftarrow,A,-1)$
			$(A, \leftarrow, exit, 6)$

each field in table is n-tuple (s, a, s', r)

State set $S = \{A, B, C, D\}$, terminal states: $\{A, D\}$, non-terminal states: $\{B, C\}$ Action set $A = \{\rightarrow, \leftarrow\}$

- How to compute?
 - A: for each state and action
 - B: for each state, action and new state
 - C: for each state
 - D: for each action and new state

Episode 1	Episode 2	Episode 3	Episode 4
$(B, \rightarrow, C, -3)$	$(B,\leftarrow,A,-1)$	$(C, \rightarrow, D, -3)$	$(C,\leftarrow,B,-1)$
$(C, \rightarrow, D, -3)$	$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$
$(D, \leftarrow, exit, 6)$			$(C, \leftarrow, B, -1)$
			$(B,\leftarrow,A,-1)$
			$(A, \leftarrow, exit, 6)$

each field in table is n-tuple (s, a, s', r)

State set $S = \{A, B, C, D\}$, terminal states: $\{A, D\}$, non-terminal states: $\{B, C\}$ Action set $A = \{\rightarrow, \leftarrow\}$

- ► How to compute?
 - $1. \ \mbox{for each state, action and new state}$
 - 2. A: as relative frequencies in one episode
 - B: as sum of occurencies in one episode
 - C: as relative frequencies in all episodes
 - D: as sum of occurencies in all episodes

Episode 1	Episode 2	Episode 3	Episode 4
$(B, \rightarrow, C, -3)$	$(B,\leftarrow,A,-1)$	$(C, \rightarrow, D, -3)$	$(C,\leftarrow,B,-1)$
$(C, \rightarrow, D, -3)$	$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$
$(D, \leftarrow, exit, 6)$			$(C, \leftarrow, B, -1)$
			$(B,\leftarrow,A,-1)$
			$(A, \leftarrow, exit, 6)$

each field in table is n-tuple (s, a, s', r)

State set $S = \{A, B, C, D\}$, terminal states: $\{A, D\}$, non-terminal states: $\{B, C\}$ Action set $A = \{\rightarrow, \leftarrow\}$

- How to compute?
 - $1. \ \mbox{for each state, action and new state}$
 - A: as relative frequencies in one episode
 B: as sum of occurencies in one episode
 - C: as relative frequencies in all episodes
 - D: as sum of occurencies in all episodes

Episode 1	Episode 2	Episode 3	Episode 4
$[(B, \rightarrow, C, -3)]$	$(B,\leftarrow,A,-1)$	$(C, \rightarrow, D, -3)$	$(C, \leftarrow, B, -1)$
$(C, \rightarrow, D, -3)$	$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$
$(D, \leftarrow, exit, 6)$			$(C,\leftarrow,B,-1)$
			$(B,\leftarrow,A,-1)$
			$(A, \leftarrow, exit, 6)$

each field in table is n-tuple (s, a, s', r)

State set $S = \{A, B, C, D\}$, terminal states: $\{A, D\}$, non-terminal states: $\{B, C\}$ Action set $A = \{\rightarrow, \leftarrow\}$

- How to compute?
 - $1. \ \mbox{for each state, action and new state}$
 - 2. as relative frequencies in all episodes
- evaluate $p(C|B, \rightarrow)$
 - A: 1
 - **B**: 2/3
 - C: 1/2
 - D: 1/3

Episode 1	Episode 2	Episode 3	Episode 4
$(B, \rightarrow, C, -3)$	$(B,\leftarrow,A,-1)$	$(C, \rightarrow, D, -3)$	$(C, \leftarrow, B, -1)$
$(C, \rightarrow, D, -3)$	$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$
$(D, \leftarrow, exit, 6)$			$(C,\leftarrow,B,-1)$
			$(B,\leftarrow,A,-1)$
			$(A, \leftarrow, exit, 6)$

each field in table is n-tuple (s, a, s', r)

State set $S = \{A, B, C, D\}$, terminal states: $\{A, D\}$, non-terminal states: $\{B, C\}$ Action set $A = \{\rightarrow, \leftarrow\}$

What is the transition model?

- How to compute?
 - $1. \ \mbox{for each state, action and new state}$
 - 2. as relative frequencies in all episodes

► evaluate $p(C|B, \rightarrow)$ A: $1 = \frac{\#(B, \rightarrow, C, \cdot)}{\#(B, \rightarrow, \cdot, \cdot)} = 2/2$ B: 2/3C: 1/2D: 1/3

Episode 1	Episode 2	Episode 3	Episode 4
$[(B, \rightarrow, C, -3)]$	$(B,\leftarrow,A,-1)$	$(C, \rightarrow, D, -3)$	$(C, \leftarrow, B, -1)$
$(C, \rightarrow, D, -3)$	$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$
$(D, \leftarrow, exit, 6)$			$(C,\leftarrow,B,-1)$
			$(B,\leftarrow,A,-1)$
			$(A, \leftarrow, exit, 6)$

each field in table is n-tuple (s, a, s', r)

State set $S = \{A, B, C, D\}$, terminal states: $\{A, D\}$, non-terminal states: $\{B, C\}$ Action set $A = \{\rightarrow, \leftarrow\}$

What is the transition model?

 $p(C|B, \rightarrow) = 2/2 = 1$ $p(A|B, \leftarrow) = 2/2 = 1$ $p(D|C, \rightarrow) = 2/2 = 1$ $p(B|C, \leftarrow) = 2/2 = 1$

A: non-deterministic

Episode 1	Episode 2	Episode 3	Episode 4
$[(B, \rightarrow, C, -3)]$	$(B,\leftarrow,A,-1)$	$(C, \rightarrow, D, -3)$	$(C, \leftarrow, B, -1)$
$(C, \rightarrow, D, -3)$	$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$
$(D, \leftarrow, exit, 6)$			$(C,\leftarrow,B,-1)$
			$(B,\leftarrow,A,-1)$
			$(A, \leftarrow, exit, 6)$

each field in table is n-tuple (s, a, s', r)

State set $S = \{A, B, C, D\}$, terminal states: $\{A, D\}$, non-terminal states: $\{B, C\}$ Action set $A = \{\rightarrow, \leftarrow\}$

What is the transition model?

▶ $p(C|B, \rightarrow) = 2/2 = 1$ $p(A|B, \leftarrow) = 2/2 = 1$ $p(D|C, \rightarrow) = 2/2 = 1$ $p(B|C, \leftarrow) = 2/2 = 1$

A: non-deterministic

Episode 1	Episode 2	Episode 3	Episode 4
$[(B, \rightarrow, C, -3)]$	$(B,\leftarrow,A,-1)$	$(C, \rightarrow, D, -3)$	$(C, \leftarrow, B, -1)$
$(C, \rightarrow, D, -3)$	$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$
$(D, \leftarrow, exit, 6)$			$(C,\leftarrow,B,-1)$
			$(B,\leftarrow,A,-1)$
			$(A, \leftarrow, exit, 6)$

each field in table is n-tuple (s, a, s', r)

State set $S = \{A, B, C, D\}$, terminal states: $\{A, D\}$, non-terminal states: $\{B, C\}$ Action set $A = \{\rightarrow, \leftarrow\}$

What is the transition model?

▶ $p(C|B, \rightarrow) = 2/2 = 1$ $p(A|B, \leftarrow) = 2/2 = 1$ $p(D|C, \rightarrow) = 2/2 = 1$ $p(B|C, \leftarrow) = 2/2 = 1$

A: non-deterministic

Episode 1	Episode 2	Episode 3	Episode 4
$[(B, \rightarrow, C, -3)]$	$(B,\leftarrow,A,-1)$	$(C, \rightarrow, D, -3)$	$(C, \leftarrow, B, -1)$
$(C, \rightarrow, D, -3)$	$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$
$(D, \leftarrow, exit, 6)$			$(C,\leftarrow,B,-1)$
			$(B,\leftarrow,A,-1)$
			$(A, \leftarrow, exit, 6)$

each field in table is n-tuple (s, a, s', r)

State set $S = \{A, B, C, D\}$, terminal states: $\{A, D\}$, non-terminal states: $\{B, C\}$ Action set $A = \{\rightarrow, \leftarrow\}$

What is the transition model?

▶ $p(C|B, \rightarrow) = 2/2 = 1$ $p(A|B, \leftarrow) = 2/2 = 1$ $p(D|C, \rightarrow) = 2/2 = 1$ $p(B|C, \leftarrow) = 2/2 = 1$

A: non-deterministic

Episode 1	Episode 2	Episode 3	Episode 4
$[(B, \rightarrow, C, -3)]$	$(B,\leftarrow,A,-1)$	$(C, \rightarrow, D, -3)$	$(C,\leftarrow,B,-1)$
$(C, \rightarrow, D, -3)$	$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$
$(D, \leftarrow, exit, 6)$			$(C,\leftarrow,B,-1)$
			$(B,\leftarrow,A,-1)$
			$(A, \leftarrow, exit, 6)$

each field in table is n-tuple (s, a, s', r)

State set $S = \{A, B, C, D\}$, terminal states: $\{A, D\}$, non-terminal states: $\{B, C\}$ Action set $A = \{\rightarrow, \leftarrow\}$ Deterministic transition model: $p(C|B, \rightarrow) = p(A|B, \leftarrow) = p(D|C, \rightarrow) = p(B|C, \leftarrow) = 2/2 = 1$

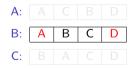
What is the world structure?

Episode 1	Episode 2	Episode 3	Episode 4
$[(B, \rightarrow, C, -3)]$	$(B,\leftarrow,A,-1)$	$(C, \rightarrow, D, -3)$	$(C, \leftarrow, B, -1)$
$(C, \rightarrow, D, -3)$	$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$
$(D, \leftarrow, exit, 6)$			$(C,\leftarrow,B,-1)$
			$(B,\leftarrow,A,-1)$
			$(A, \leftarrow, exit, 6)$

each field in table is n-tuple (s, a, s', r)

State set $S = \{A, B, C, D\}$, terminal states: $\{A, D\}$, non-terminal states: $\{B, C\}$ Action set $A = \{\rightarrow, \leftarrow\}$ Deterministic transition model: $p(C|B, \rightarrow) = p(A|B, \leftarrow) = p(D|C, \rightarrow) = p(B|C, \leftarrow) = 2/2 = 1$

What is the world structure?



Episode 1	Episode 2	Episode 3	Episode 4
$[(B, \rightarrow, C, -3)]$	$(B,\leftarrow,A,-1)$	$(C, \rightarrow, D, -3)$	$(C, \leftarrow, B, -1)$
$(C, \rightarrow, D, -3)$	$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$
$(D, \leftarrow, exit, 6)$			$(C,\leftarrow,B,-1)$
			$(B,\leftarrow,A,-1)$
			$(A, \leftarrow, exit, 6)$

each field in table is n-tuple (s, a, s', r)

State set $S = \{A, B, C, D\}$, terminal states: $\{A, D\}$, non-terminal states: $\{B, C\}$ Action set $A = \{\rightarrow, \leftarrow\}$ Deterministic transition model: $p(C|B, \rightarrow) = p(A|B, \leftarrow) = p(D|C, \rightarrow) = p(B|C, \leftarrow) = 2/2 = 1$

What is the world structure?

Episode 1	Episode 2	Episode 3	Episode 4
$[(B, \rightarrow, C, -3)]$	$(B,\leftarrow,A,-1)$	$(C, \rightarrow, D, -3)$	$(C, \leftarrow, B, -1)$
$(C, \rightarrow, D, -3)$	$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$
$(D, \leftarrow, exit, 6)$			$(C,\leftarrow,B,-1)$
			$(B,\leftarrow,A,-1)$
			$(A, \leftarrow, exit, 6)$

each field in table is n-tuple (s, a, s', r)

State set $S = \{A, B, C, D\}$, terminal states: $\{A, D\}$, non-terminal states: $\{B, C\}$ Action set $A = \{\rightarrow, \leftarrow\}$ Deterministic transition model: $p(C|B, \rightarrow) = p(A|B, \leftarrow) = p(D|C, \rightarrow) = p(B|C, \leftarrow) = 2/2 = 1$ World structure: A B C D

What is a correct value for the reward function?

A: r(B) = -1B: $r(B, \leftarrow, A) = -4$ C: r(B) = -3D: $r(B, \leftarrow) = -1$

Episode 1	Episode 2	Episode 3	Episode 4
$[(B, \rightarrow, C, -3)]$	$(B,\leftarrow,A,-1)$	$(C, \rightarrow, D, -3)$	$(C, \leftarrow, B, -1)$
$(C, \rightarrow, D, -3)$	$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$
$(D, \leftarrow, exit, 6)$			$(C,\leftarrow,B,-1)$
			$(B,\leftarrow,A,-1)$
			$(A, \leftarrow, exit, 6)$

each field in table is n-tuple (s, a, s', r)

State set $S = \{A, B, C, D\}$, terminal states: $\{A, D\}$, non-terminal states: $\{B, C\}$ Action set $A = \{\rightarrow, \leftarrow\}$ Deterministic transition model: $p(C|B, \rightarrow) = p(A|B, \leftarrow) = p(D|C, \rightarrow) = p(B|C, \leftarrow) = 2/2 = 1$ World structure: A B C D

What is a correct value for the reward function?

A: r(B) = -1B: $r(B, \leftarrow, A) = -4$ C: r(B) = -3D: $r(B, \leftarrow) = -1$

Episo	ode 1	Episode 2	Episode 3	Episode 4
$(B, \rightarrow,$	C, -3)	$(B,\leftarrow,A,-1)$	$(C, \rightarrow, D, -3)$	$(C, \leftarrow, B, -1)$
$ (C, \rightarrow, $	D, -3)	$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$
$ (D, \leftarrow,$	exit,6)			$(C, \leftarrow, B, -1)$
				$(B,\leftarrow,A,-1)$
				$(A, \leftarrow, exit, 6)$

each field in table is n-tuple (s, a, s', r)

State set $S = \{A, B, C, D\}$, terminal states: $\{A, D\}$, non-terminal states: $\{B, C\}$ Action set $A = \{\rightarrow, \leftarrow\}$ Deterministic transition model: $p(C|B, \rightarrow) = p(A|B, \leftarrow) = p(D|C, \rightarrow) = p(B|C, \leftarrow) = 2/2 = 1$ World structure: $A \mid B \mid C \mid D$

▶ $r(B, \leftarrow) = -1$

What is also correct for the reward function?

A: r(B) = -1B: $r(B, \rightarrow) = -3$ C: r(B) = -3D: $r(B, \rightarrow, C) = -$

Epise	ode 1	Episode 2	Episode 3	Episode 4
$(B, \rightarrow,$	C, -3)	$(B,\leftarrow,A,-1)$	$(C, \rightarrow, D, -3)$	$(C, \leftarrow, B, -1)$
$ (C, \rightarrow, $	D, -3)	$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$
$ (D, \leftarrow,$	exit,6)			$(C,\leftarrow,B,-1)$
				$(B,\leftarrow,A,-1)$
				$(A, \leftarrow, exit, 6)$

each field in table is n-tuple (s, a, s', r)

State set $S = \{A, B, C, D\}$, terminal states: $\{A, D\}$, non-terminal states: $\{B, C\}$ Action set $A = \{\rightarrow, \leftarrow\}$ Deterministic transition model: $p(C|B, \rightarrow) = p(A|B, \leftarrow) = p(D|C, \rightarrow) = p(B|C, \leftarrow) = 2/2 = 1$ World structure: $A \mid B \mid C \mid D$

$$(B, \leftarrow) = -1$$

What is also correct for the reward function?

A: r(B) = -1B: $r(B, \rightarrow) = -3$ C: r(B) = -3D: $r(B, \rightarrow, C) = -1$

Episo	ode 1	Episode 2	Episode 3	Episode 4
$(B, \rightarrow,$	C, -3)	$(B,\leftarrow,A,-1)$	$(C, \rightarrow, D, -3)$	$(C, \leftarrow, B, -1)$
$ (C, \rightarrow, $	D, -3)	$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$
$ (D, \leftarrow,$	exit,6)			$(C, \leftarrow, B, -1)$
				$(B,\leftarrow,A,-1)$
				$(A, \leftarrow, exit, 6)$

each field in table is n-tuple (s, a, s', r)

State set $S = \{A, B, C, D\}$, terminal states: $\{A, D\}$, non-terminal states: $\{B, C\}$ Action set $A = \{\rightarrow, \leftarrow\}$ Deterministic transition model: $p(C|B, \rightarrow) = p(A|B, \leftarrow) = p(D|C, \rightarrow) = p(B|C, \leftarrow) = 2/2 = 1$ World structure: $A \mid B \mid C \mid D$

▶ $r(B, \leftarrow) = -1$

What is also correct for the reward function?

A: r(B) = -1

- B: $r(B, \rightarrow) = -3$
- **C**: r(B) = -3

D: $r(B, \to, C) = -1$

Epis	ode 1	Episode 2	Episode 3	Episode 4
$(B, \rightarrow$, <i>C</i> , -3)	$(B,\leftarrow,A,-1)$	$(C, \rightarrow, D, -3)$	$(C, \leftarrow, B, -1)$
$ (C, \rightarrow)$, D, -3)	$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$
(<i>D</i> , ←	, <i>exit</i> , 6)			$(C,\leftarrow,B,-1)$
				$(B,\leftarrow,A,-1)$
				$(A, \leftarrow, exit, 6)$

each field in table is n-tuple (s, a, s', r)

State set $S = \{A, B, C, D\}$, terminal states: $\{A, D\}$, non-terminal states: $\{B, C\}$ Action set $A = \{\rightarrow, \leftarrow\}$ Deterministic transition model: $p(C|B, \rightarrow) = p(A|B, \leftarrow) = p(D|C, \rightarrow) = p(B|C, \leftarrow) = 2/2 = 1$ World structure: $A \mid B \mid C \mid D$

$$r(B,\leftarrow) = -1, r(B,\rightarrow) = -3$$

What is also correct for the reward function?

- A: r(C) = -1
- B: $r(C, \leftarrow, B) = -3$
- C: None
- D: $r(C, \leftarrow) = -1$

Epis	ode 1	Episode 2	Episode 3	Episode 4
$(B, \rightarrow$, <i>C</i> , -3)	$(B,\leftarrow,A,-1)$	$(C, \rightarrow, D, -3)$	$(C, \leftarrow, B, -1)$
$ (C, \rightarrow)$, D, -3)	$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$
(<i>D</i> , ←	, <i>exit</i> , 6)			$(C,\leftarrow,B,-1)$
				$(B,\leftarrow,A,-1)$
				$(A, \leftarrow, exit, 6)$

each field in table is n-tuple (s, a, s', r)

State set $S = \{A, B, C, D\}$, terminal states: $\{A, D\}$, non-terminal states: $\{B, C\}$ Action set $A = \{\rightarrow, \leftarrow\}$ Deterministic transition model: $p(C|B, \rightarrow) = p(A|B, \leftarrow) = p(D|C, \rightarrow) = p(B|C, \leftarrow) = 2/2 = 1$ World structure: $A \mid B \mid C \mid D$

▶
$$r(B, \leftarrow) = -1, r(B, \rightarrow) = -3$$

What is also correct for the reward function?

A: r(C) = -1

B: $r(C, \leftarrow, B) = -3$

C: None

D: $r(C, \leftarrow) = -1$

Episo	ode 1	Episode 2	Episode 3	Episode 4
$(B, \rightarrow,$	C, -3)	$(B,\leftarrow,A,-1)$	$(C, \rightarrow, D, -3)$	$(C, \leftarrow, B, -1)$
$ (C, \rightarrow, $	D, -3)	$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$
$ (D, \leftarrow,$	exit,6)			$(C, \leftarrow, B, -1)$
				$(B,\leftarrow,A,-1)$
				$(A, \leftarrow, exit, 6)$

each field in table is n-tuple (s, a, s', r)

State set $S = \{A, B, C, D\}$, terminal states: $\{A, D\}$, non-terminal states: $\{B, C\}$ Action set $A = \{\rightarrow, \leftarrow\}$ Deterministic transition model: $p(C|B, \rightarrow) = p(A|B, \leftarrow) = p(D|C, \rightarrow) = p(B|C, \leftarrow) = 2/2 = 1$ World structure: $A \mid B \mid C \mid D$

►
$$r(B, \leftarrow) = -1, r(B, \rightarrow) = -3, r(C, \leftarrow) = -1$$

What is also correct for the reward function?

A: r(C) = -1B: $r(C, \rightarrow) = -3$ C: r(C) = -3D: $r(C, \rightarrow, D) = -4$

Episode 1	Episode 2	Episode 3	Episode 4
$[(B, \rightarrow, C, -3)]$	$(B,\leftarrow,A,-1)$	$(C, \rightarrow, D, -3)$	$(C, \leftarrow, B, -1)$
$(C, \rightarrow, D, -3)$	$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$
$(D, \leftarrow, exit, 6)$			$(C,\leftarrow,B,-1)$
			$(B,\leftarrow,A,-1)$
			$(A, \leftarrow, exit, 6)$

each field in table is n-tuple (s, a, s', r)

State set $S = \{A, B, C, D\}$, terminal states: $\{A, D\}$, non-terminal states: $\{B, C\}$ Action set $A = \{\rightarrow, \leftarrow\}$ Deterministic transition model: $p(C|B, \rightarrow) = p(A|B, \leftarrow) = p(D|C, \rightarrow) = p(B|C, \leftarrow) = 2/2 = 1$ World structure: $A \mid B \mid C \mid D$

$$r(B,\leftarrow) = -1, r(B,\rightarrow) = -3, r(C,\leftarrow) = -1$$

What is also correct for the reward function?

A: r(C) = -1B: $r(C, \rightarrow) = -3$ C: r(C) = -3D: $r(C, \rightarrow, D) = -4$

Episo	ode 1	Episode 2	Episode 3	Episode 4
$(B, \rightarrow,$	C, -3)	$(B,\leftarrow,A,-1)$	$(C, \rightarrow, D, -3)$	$(C, \leftarrow, B, -1)$
$ (C, \rightarrow, $	D, -3)	$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$
$ (D, \leftarrow,$	exit,6)			$(C, \leftarrow, B, -1)$
				$(B,\leftarrow,A,-1)$
				$(A, \leftarrow, exit, 6)$

each field in table is n-tuple (s, a, s', r)

State set $S = \{A, B, C, D\}$, terminal states: $\{A, D\}$, non-terminal states: $\{B, C\}$ Action set $A = \{\rightarrow, \leftarrow\}$ Deterministic transition model: $p(C|B, \rightarrow) = p(A|B, \leftarrow) = p(D|C, \rightarrow) = p(B|C, \leftarrow) = 2/2 = 1$ World structure: $A \mid B \mid C \mid D$

►
$$r(B, \leftarrow) = -1, r(B, \rightarrow) = -3, r(C, \leftarrow) = -1$$

What is also correct for the reward function?

A: r(C) = -1

- B: $r(C, \rightarrow) = -3$
- **C**: r(C) = -3
- **D**: $r(C, \to, D) = -4$

Episode 1	Episode 2	Episode 3	Episode 4
$(B, \rightarrow, C, -3)$	$(B,\leftarrow,A,-1)$	$(C, \rightarrow, D, -3)$	$(C,\leftarrow,B,-1)$
$(C, \rightarrow, D, -3)$	$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$
$(D, \leftarrow, exit, 6)$			$(C,\leftarrow,B,-1)$
			$(B,\leftarrow,A,-1)$
			$(A, \leftarrow, exit, 6)$

each field in table is n-tuple (s, a, s', r)

State set $S = \{A, B, C, D\}$, terminal states: $\{A, D\}$, non-terminal states: $\{B, C\}$ Action set $A = \{\rightarrow, \leftarrow\}$ Deterministic transition model: $p(C|B, \rightarrow) = p(A|B, \leftarrow) = p(D|C, \rightarrow) = p(B|C, \leftarrow) = 2/2 = 1$ World structure: A B C D

►
$$r(B, \leftarrow) = -1, r(B, \rightarrow) = -3, r(C, \leftarrow) = -1, r(C, \rightarrow) = -3$$

Discussion point, do we need more reward values?

A: Yes, for all states and actions.

B: No.

C: Yes, for terminal states.

Episode 1	Episode 2	Episode 3	Episode 4
$(B, \rightarrow, C, -3)$	$(B,\leftarrow,A,-1)$	$(C, \rightarrow, D, -3)$	$(C, \leftarrow, B, -1)$
$(C, \rightarrow, D, -3)$	$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$
$(D, \leftarrow, exit, 6)$			$(C, \leftarrow, B, -1)$
			$(B,\leftarrow,A,-1)$
			$(A, \leftarrow, exit, 6)$

each field in table is n-tuple (s, a, s', r)

State set $S = \{A, B, C, D\}$, terminal states: $\{A, D\}$, non-terminal states: $\{B, C\}$ Action set $A = \{\rightarrow, \leftarrow\}$ Deterministic transition model: $p(C|B, \rightarrow) = p(A|B, \leftarrow) = p(D|C, \rightarrow) = p(B|C, \leftarrow) = 2/2 = 1$ World structure: A B C DReward function: $r(\{B, C\}, \leftarrow) = -1, r(\{B, C\}, \rightarrow) = -3$ Add also the terminal state rewards: $r(\{A, D\}, \{\leftarrow, \rightarrow\}) = 6$

Episode 1	Episode 2	Episode 3	Episode 4
$(B, \rightarrow, C, -3)$	$(B,\leftarrow,A,-1)$	$(C, \rightarrow, D, -3)$	$(C, \leftarrow, B, -1)$
$(C, \rightarrow, D, -3)$	$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$
$(D, \leftarrow, exit, 6)$			$(C,\leftarrow,B,-1)$
			$(B,\leftarrow,A,-1)$
			$(A, \leftarrow, exit, 6)$

each field in table is n-tuple (s, a, s', r)

State set $S = \{A, B, C, D\}$, terminal states: $\{A, D\}$, non-terminal states: $\{B, C\}$ Action set $A = \{\rightarrow, \leftarrow\}$ Deterministic transition model: $p(C|B, \rightarrow) = p(A|B, \leftarrow) = p(D|C, \rightarrow) = p(B|C, \leftarrow) = 2/2 = 1$ World structure: A B C DReward function: $r(\{B, C\}, \leftarrow) = -1, r(\{B, C\}, \rightarrow) = -3 r(\{A, D\}, \{\leftarrow, \rightarrow\}) = 6$

Do we have all we need?

- A: Yes
- B: No

Episode 1	Episode 2	Episode 3	Episode 4
$[(B, \rightarrow, C, -3)]$	$(B,\leftarrow,A,-1)$	$(C, \rightarrow, D, -3)$	$(C, \leftarrow, B, -1)$
$(C, \rightarrow, D, -3)$	$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$
$(D, \leftarrow, exit, 6)$			$(C,\leftarrow,B,-1)$
			$(B,\leftarrow,A,-1)$
			$(A, \leftarrow, exit, 6)$

each field in table is n-tuple (s, a, s', r)

State set $S = \{A, B, C, D\}$, terminal states: $\{A, D\}$, non-terminal states: $\{B, C\}$ Action set $A = \{\rightarrow, \leftarrow\}$ Deterministic transition model: $p(C|B, \rightarrow) = p(A|B, \leftarrow) = p(D|C, \rightarrow) = p(B|C, \leftarrow) = 2/2 = 1$ World structure: A B C DReward function: $r(\{B, C\}, \leftarrow) = -1, r(\{B, C\}, \rightarrow) = -3 r(\{A, D\}, \{\leftarrow, \rightarrow\}) = 6$

Do we have all we need?

A: Yes

B: No

Let's compute the policy.

Episode 1	Episode 2	Episode 3	Episode 4
$[(B, \rightarrow, C, -3)]$	$(B,\leftarrow,A,-1)$	$(C, \rightarrow, D, -3)$	$(C, \leftarrow, B, -1)$
$(C, \rightarrow, D, -3)$	$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$
$(D, \leftarrow, exit, 6)$			$(C,\leftarrow,B,-1)$
			$(B,\leftarrow,A,-1)$
			$(A, \leftarrow, exit, 6)$

each field in table is n-tuple (s, a, s', r)

State set $S = \{A, B, C, D\}$, terminal states: $\{A, D\}$, non-terminal states: $\{B, C\}$ Action set $A = \{\rightarrow, \leftarrow\}$ Deterministic transition model: $p(C|B, \rightarrow) = p(A|B, \leftarrow) = p(D|C, \rightarrow) = p(B|C, \leftarrow) = 2/2 = 1$ World structure: A B C DReward function: $r(\{B, C\}, \leftarrow) = -1, r(\{B, C\}, \rightarrow) = -3 r(\{A, D\}, \{\leftarrow, \rightarrow\}) = 6$

Do we have all we need?

A: Yes

B: No

Let's compute the policy.

Episode 1	Episode 2	Episode 3	Episode 4
$[(B, \rightarrow, C, -3)]$	$(B,\leftarrow,A,-1)$	$(C, \rightarrow, D, -3)$	$(C,\leftarrow,B,-1)$
$(C, \rightarrow, D, -3)$	$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$
$(D, \leftarrow, exit, 6)$			$(C,\leftarrow,B,-1)$
			$(B,\leftarrow,A,-1)$
			$(A, \leftarrow, exit, 6)$

each field in table is n-tuple (s, a, s', r)

State set $S = \{A, B, C, D\}$, terminal states: $\{A, D\}$, non-terminal states: $\{B, C\}$ Action set $A = \{\rightarrow, \leftarrow\}$ Deterministic transition model: $p(C|B, \rightarrow) = p(A|B, \leftarrow) = p(D|C, \rightarrow) = p(B|C, \leftarrow) = 2/2 = 1$ World structure: A B C DReward function: $r(\{B, C\}, \leftarrow) = -1, r(\{B, C\}, \rightarrow) = -3 r(\{A, D\}, \{\leftarrow, \rightarrow\}) = 6$

Observation: Immediate rewards significantly decrease state value.

- A: Best is to go by less decreased path to terminal state
- B: We can go to the terminal state arbitrarily

Episode 1	Episode 2	Episode 3	Episode 4
$[(B, \rightarrow, C, -3)]$	$(B,\leftarrow,A,-1)$	$(C, \rightarrow, D, -3)$	$(C, \leftarrow, B, -1)$
$(C, \rightarrow, D, -3)$	$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$
$(D, \leftarrow, exit, 6)$			$(C,\leftarrow,B,-1)$
			$(B,\leftarrow,A,-1)$
			$(A, \leftarrow, exit, 6)$

each field in table is n-tuple (s, a, s', r)

State set $S = \{A, B, C, D\}$, terminal states: $\{A, D\}$, non-terminal states: $\{B, C\}$ Action set $A = \{\rightarrow, \leftarrow\}$ Deterministic transition model: $p(C|B, \rightarrow) = p(A|B, \leftarrow) = p(D|C, \rightarrow) = p(B|C, \leftarrow) = 2/2 = 1$ World structure: $A \mid B \mid C \mid D$ Reward function: $r(\{B, C\}, \leftarrow) = -1, r(\{B, C\}, \rightarrow) = -3 r(\{A, D\}, \{\leftarrow, \rightarrow\}) = 6$

Observation: Immediate rewards significantly decrease state value.

- A: Best is to go by less decreased path to terminal state
- **B**: We can go to the terminal state arbitrarily

Episode 1	Episode 2	Episode 3	Episode 4
$[(B, \rightarrow, C, -3)]$	$(B,\leftarrow,A,-1)$	$(C, \rightarrow, D, -3)$	$(C, \leftarrow, B, -1)$
$(C, \rightarrow, D, -3)$	$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$
$(D, \leftarrow, exit, 6)$			$(C,\leftarrow,B,-1)$
			$(B,\leftarrow,A,-1)$
			$(A, \leftarrow, exit, 6)$

each field in table is n-tuple (s, a, s', r)

State set $S = \{A, B, C, D\}$, terminal states: $\{A, D\}$, non-terminal states: $\{B, C\}$ Action set $A = \{\rightarrow, \leftarrow\}$ Deterministic transition model: $p(C|B, \rightarrow) = p(A|B, \leftarrow) = p(D|C, \rightarrow) = p(B|C, \leftarrow) = 2/2 = 1$ World structure: $A \mid B \mid C \mid D$ Reward function: $r(\{B, C\}, \leftarrow) = -1, r(\{B, C\}, \rightarrow) = -3 r(\{A, D\}, \{\leftarrow, \rightarrow\}) = 6$

Obs.: Immediate rewards significantly decrease state value. \rightarrow go by less decreased path to terminal state ${\sf Compute}$

- A: $q(B, \leftarrow) = !$
- B: $q(B, \leftarrow) = 3$
- C: $q(B, \leftarrow) = -$
- D: $q(B, \leftarrow) = -3$

Episo	ode 1	Episode 2	Episode 3	Episode 4
$(B, \rightarrow,$	C, -3)	$(B,\leftarrow,A,-1)$	$(C, \rightarrow, D, -3)$	$(C, \leftarrow, B, -1)$
$ (C, \rightarrow, $	D, -3)	$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$ (B, \rightarrow, C, -3)$
$ (D, \leftarrow,$	exit,6)			$(C,\leftarrow,B,-1)$
				$(B,\leftarrow,A,-1)$
				$(A, \leftarrow, exit, 6)$

each field in table is n-tuple (s, a, s', r)

State set $S = \{A, B, C, D\}$, terminal states: $\{A, D\}$, non-terminal states: $\{B, C\}$ Action set $A = \{\rightarrow, \leftarrow\}$ Deterministic transition model: $p(C|B, \rightarrow) = p(A|B, \leftarrow) = p(D|C, \rightarrow) = p(B|C, \leftarrow) = 2/2 = 1$ World structure: $A \mid B \mid C \mid D$ Reward function: $r(\{B, C\}, \leftarrow) = -1, r(\{B, C\}, \rightarrow) = -3 r(\{A, D\}, \{\leftarrow, \rightarrow\}) = 6$

Obs.: Immediate rewards significantly decrease state value. \rightarrow go by less decreased path to terminal state Compute:

- A: $q(B, \leftarrow) = 5$
- B: $q(B, \leftarrow) = 3$
- C: $q(B, \leftarrow) = -1$
- D: $q(B, \leftarrow) = -3$

Episo	ode 1	Episode 2	Episode 3	Episode 4
$(B, \rightarrow,$	C, -3)	$(B,\leftarrow,A,-1)$	$(C, \rightarrow, D, -3)$	$(C, \leftarrow, B, -1)$
$ (C, \rightarrow, $	D, -3)	$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$ (B, \rightarrow, C, -3)$
$ (D, \leftarrow,$	exit,6)			$(C,\leftarrow,B,-1)$
				$(B,\leftarrow,A,-1)$
				$(A, \leftarrow, exit, 6)$

each field in table is n-tuple (s, a, s', r)

State set $S = \{A, B, C, D\}$, terminal states: $\{A, D\}$, non-terminal states: $\{B, C\}$ Action set $A = \{\rightarrow, \leftarrow\}$ Deterministic transition model: $p(C|B, \rightarrow) = p(A|B, \leftarrow) = p(D|C, \rightarrow) = p(B|C, \leftarrow) = 2/2 = 1$ World structure: $A \mid B \mid C \mid D$ Reward function: $r(\{B, C\}, \leftarrow) = -1, r(\{B, C\}, \rightarrow) = -3 r(\{A, D\}, \{\leftarrow, \rightarrow\}) = 6$

Obs.: Immediate rewards significantly decrease state value. \rightarrow go by less decreased path to terminal state Compute:

A:
$$q(B, \leftarrow) = B \leftarrow A = 6 - 1 = 5$$

B: $q(B, \leftarrow) = 3$
C: $q(B, \leftarrow) = -1$
D: $q(B, \leftarrow) = -3$

Episode 1	Episode 2	Episode 3	Episode 4
$[(B, \rightarrow, C, -3)]$	$(B,\leftarrow,A,-1)$	$(C, \rightarrow, D, -3)$	$(C, \leftarrow, B, -1)$
$(C, \rightarrow, D, -3)$	$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$
$(D, \leftarrow, exit, 6)$			$(C,\leftarrow,B,-1)$
			$(B,\leftarrow,A,-1)$
			$(A, \leftarrow, exit, 6)$

each field in table is n-tuple (s, a, s', r)

State set $S = \{A, B, C, D\}$, terminal states: $\{A, D\}$, non-terminal states: $\{B, C\}$ Action set $A = \{\rightarrow, \leftarrow\}$ Deterministic transition model: $p(C|B, \rightarrow) = p(A|B, \leftarrow) = p(D|C, \rightarrow) = p(B|C, \leftarrow) = 2/2 = 1$ World structure: $A \mid B \mid C \mid D$ Reward function: $r(\{B, C\}, \leftarrow) = -1, r(\{B, C\}, \rightarrow) = -3 r(\{A, D\}, \{\leftarrow, \rightarrow\}) = 6$

Obs.: Immediate rewards significantly decrease state value. \rightarrow go by less decreased path to terminal state Compute:

▶ $q(B, \leftarrow) = 5$

(What can we assume about $\pi({\it C})$?)

A: $q(B, \rightarrow) =$

- $\mathsf{B}: \ q(B, \to) = 1$
- C: $q(B, \rightarrow) = 1$

Episode 1	Episode 2	Episode 3	Episode 4
$[(B, \rightarrow, C, -3)]$	$(B,\leftarrow,A,-1)$	$(C, \rightarrow, D, -3)$	$(C, \leftarrow, B, -1)$
$(C, \rightarrow, D, -3)$	$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$
$(D, \leftarrow, exit, 6)$			$(C,\leftarrow,B,-1)$
			$(B,\leftarrow,A,-1)$
			$(A, \leftarrow, exit, 6)$

each field in table is n-tuple (s, a, s', r)

State set $S = \{A, B, C, D\}$, terminal states: $\{A, D\}$, non-terminal states: $\{B, C\}$ Action set $A = \{\rightarrow, \leftarrow\}$ Deterministic transition model: $p(C|B, \rightarrow) = p(A|B, \leftarrow) = p(D|C, \rightarrow) = p(B|C, \leftarrow) = 2/2 = 1$ World structure: $A \mid B \mid C \mid D$ Reward function: $r(\{B, C\}, \leftarrow) = -1, r(\{B, C\}, \rightarrow) = -3 r(\{A, D\}, \{\leftarrow, \rightarrow\}) = 6$

Obs.: Immediate rewards significantly decrease state value. \rightarrow go by less decreased path to terminal state Compute:

▶ $q(B, \leftarrow) = 5$

(What can we assume about $\pi(C)$?)

A: $q(B, \rightarrow) = 5$ B: $q(B, \rightarrow) = 3$ C: $q(B, \rightarrow) = 1$

Episode 1	Episode 2	Episode 3	Episode 4
$[(B, \rightarrow, C, -3)]$	$(B,\leftarrow,A,-1)$	$(C, \rightarrow, D, -3)$	$(C, \leftarrow, B, -1)$
$(C, \rightarrow, D, -3)$	$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$
$(D, \leftarrow, exit, 6)$			$(C,\leftarrow,B,-1)$
			$(B,\leftarrow,A,-1)$
			$(A, \leftarrow, exit, 6)$

each field in table is n-tuple (s, a, s', r)

State set $S = \{A, B, C, D\}$, terminal states: $\{A, D\}$, non-terminal states: $\{B, C\}$ Action set $A = \{\rightarrow, \leftarrow\}$ Deterministic transition model: $p(C|B, \rightarrow) = p(A|B, \leftarrow) = p(D|C, \rightarrow) = p(B|C, \leftarrow) = 2/2 = 1$ World structure: $A \mid B \mid C \mid D$ Reward function: $r(\{B, C\}, \leftarrow) = -1, r(\{B, C\}, \rightarrow) = -3 r(\{A, D\}, \{\leftarrow, \rightarrow\}) = 6$

Obs.: Immediate rewards significantly decrease state value. \rightarrow go by less decreased path to terminal state Compute:

▶ $q(B, \leftarrow) = 5$

(What can we assume about $\pi(C)$?)

A: $q(B, \rightarrow) = 5$

B:
$$q(B, \rightarrow) = 1$$

C:
$$q(B, \rightarrow) = B \rightarrow C \leftarrow B \leftarrow A = -3 - 1 - 1 + 6 = 1$$

Episode 1	Episode 2	Episode 3	Episode 4
$(B, \rightarrow, C, -3)$	$(B,\leftarrow,A,-1)$	$(C, \rightarrow, D, -3)$	$(C, \leftarrow, B, -1)$
$(C, \rightarrow, D, -3)$	$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$
$(D, \leftarrow, exit, 6)$			$(C, \leftarrow, B, -1)$
			$(B,\leftarrow,A,-1)$
			$(A, \leftarrow, exit, 6)$

each field in table is n-tuple (s, a, s', r)

State set $S = \{A, B, C, D\}$, terminal states: $\{A, D\}$, non-terminal states: $\{B, C\}$ Action set $A = \{\rightarrow, \leftarrow\}$ Deterministic transition model: $p(C|B, \rightarrow) = p(A|B, \leftarrow) = p(D|C, \rightarrow) = p(B|C, \leftarrow) = 2/2 = 1$ World structure: $A \mid B \mid C \mid D$ Reward function: $r(\{B, C\}, \leftarrow) = -1, r(\{B, C\}, \rightarrow) = -3 \ r(\{A, D\}, \{\leftarrow, \rightarrow\}) = 6$

Obs.: Immediate rewards significantly decrease state value. \rightarrow go by less decreased path to terminal state Compute:

- ▶ $q(B, \leftarrow) = 5$
- ▶ $q(B, \rightarrow) = 1$

 $\rightarrow \pi(B) = 0$

Episode 1	Episode 2	Episode 3	Episode 4
$(B, \rightarrow, C, -3)$	$(B,\leftarrow,A,-1)$	$(C, \rightarrow, D, -3)$	$(C,\leftarrow,B,-1)$
$(C, \rightarrow, D, -3)$	$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$
$(D, \leftarrow, exit, 6)$			$(C,\leftarrow,B,-1)$
			$(B,\leftarrow,A,-1)$
			$(A, \leftarrow, exit, 6)$

each field in table is n-tuple (s, a, s', r)

State set $S = \{A, B, C, D\}$, terminal states: $\{A, D\}$, non-terminal states: $\{B, C\}$ Action set $A = \{\rightarrow, \leftarrow\}$ Deterministic transition model: $p(C|B, \rightarrow) = p(A|B, \leftarrow) = p(D|C, \rightarrow) = p(B|C, \leftarrow) = 2/2 = 1$ World structure: $A \mid B \mid C \mid D$ Reward function: $r(\{B, C\}, \leftarrow) = -1, r(\{B, C\}, \rightarrow) = -3 \ r(\{A, D\}, \{\leftarrow, \rightarrow\}) = 6$

Obs.: Immediate rewards significantly decrease state value. \rightarrow go by less decreased path to terminal state Compute:

- $q(B, \leftarrow) = 5$
- ▶ $q(B, \rightarrow) = 1$
- $\rightarrow \pi(B) = \leftarrow$

Episode 1	Episode 2	Episode 3	Episode 4
$[(B, \rightarrow, C, -3)]$	$(B,\leftarrow,A,-1)$	$(C, \rightarrow, D, -3)$	$(C, \leftarrow, B, -1)$
$(C, \rightarrow, D, -3)$	$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$
$(D, \leftarrow, exit, 6)$			$(C,\leftarrow,B,-1)$
			$(B,\leftarrow,A,-1)$
			$(A, \leftarrow, exit, 6)$

each field in table is n-tuple (s, a, s', r)

State set $S = \{A, B, C, D\}$, terminal states: $\{A, D\}$, non-terminal states: $\{B, C\}$ Action set $A = \{\rightarrow, \leftarrow\}$ Deterministic transition model: $p(C|B, \rightarrow) = p(A|B, \leftarrow) = p(D|C, \rightarrow) = p(B|C, \leftarrow) = 2/2 = 1$ World structure: $A \mid B \mid C \mid D$ Reward function: $r(\{B, C\}, \leftarrow) = -1, r(\{B, C\}, \rightarrow) = -3 r(\{A, D\}, \{\leftarrow, \rightarrow\}) = 6$

Obs.: Immediate rewards significantly decrease state value. \rightarrow go by less decreased path to terminal state $\pi(B) = \leftarrow$ Compute now $\pi(C)$:

A: $q(C, \rightarrow) = 5$ B: $q(C, \rightarrow) = 3$ C: $q(C, \rightarrow) = 0$ D: $q(C, \rightarrow) = -3$

Episode 1	Episode 2	Episode 3	Episode 4
$[(B, \rightarrow, C, -3)]$	$(B,\leftarrow,A,-1)$	$(C, \rightarrow, D, -3)$	$(C, \leftarrow, B, -1)$
$(C, \rightarrow, D, -3)$	$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$
$(D, \leftarrow, exit, 6)$			$(C,\leftarrow,B,-1)$
			$(B,\leftarrow,A,-1)$
			$(A, \leftarrow, exit, 6)$

each field in table is n-tuple (s, a, s', r)

State set $S = \{A, B, C, D\}$, terminal states: $\{A, D\}$, non-terminal states: $\{B, C\}$ Action set $A = \{\rightarrow, \leftarrow\}$ Deterministic transition model: $p(C|B, \rightarrow) = p(A|B, \leftarrow) = p(D|C, \rightarrow) = p(B|C, \leftarrow) = 2/2 = 1$ World structure: $A \mid B \mid C \mid D$ Reward function: $r(\{B, C\}, \leftarrow) = -1, r(\{B, C\}, \rightarrow) = -3 r(\{A, D\}, \{\leftarrow, \rightarrow\}) = 6$

Obs.: Immediate rewards significantly decrease state value. \rightarrow go by less decreased path to terminal state $\pi(B) = \leftarrow$ Compute now $\pi(C)$:

A: $q(C, \rightarrow) = 5$ B: $q(C, \rightarrow) = 3$ C: $q(C, \rightarrow) = 0$ D: $q(C, \rightarrow) = -3$

Episode 1		Episode 2	Episode 3	Episode 4
$(B, \rightarrow, C, -3)$		$(B,\leftarrow,A,-1)$	$(C, \rightarrow, D, -3)$	$(C, \leftarrow, B, -1)$
$ (C, \rightarrow, $	D, -3)	$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$
$ (D, \leftarrow,$	exit,6)			$(C,\leftarrow,B,-1)$
				$(B,\leftarrow,A,-1)$
				$(A, \leftarrow, exit, 6)$

each field in table is n-tuple (s, a, s', r)

State set $S = \{A, B, C, D\}$, terminal states: $\{A, D\}$, non-terminal states: $\{B, C\}$ Action set $A = \{\rightarrow, \leftarrow\}$ Deterministic transition model: $p(C|B, \rightarrow) = p(A|B, \leftarrow) = p(D|C, \rightarrow) = p(B|C, \leftarrow) = 2/2 = 1$ World structure: $A \mid B \mid C \mid D$ Reward function: $r(\{B, C\}, \leftarrow) = -1, r(\{B, C\}, \rightarrow) = -3 r(\{A, D\}, \{\leftarrow, \rightarrow\}) = 6$

Obs.: Immediate rewards significantly decrease state value. \rightarrow go by less decreased path to terminal state $\pi(B) = \leftarrow$ Compute now $\pi(C)$:

A: $q(C, \rightarrow) = 5$ B: $q(C, \rightarrow) = C \rightarrow D = 6 - 3 = 3$ C: $q(C, \rightarrow) = 0$ D: $q(C, \rightarrow) = -3$

Episode 1	Episode 2	Episode 3	Episode 4
$[(B, \rightarrow, C, -3)]$	$(B,\leftarrow,A,-1)$	$(C, \rightarrow, D, -3)$	$(C, \leftarrow, B, -1)$
$(C, \rightarrow, D, -3)$	$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$
$(D, \leftarrow, exit, 6)$			$(C,\leftarrow,B,-1)$
			$(B,\leftarrow,A,-1)$
			$(A, \leftarrow, exit, 6)$

each field in table is n-tuple (s, a, s', r)

State set $S = \{A, B, C, D\}$, terminal states: $\{A, D\}$, non-terminal states: $\{B, C\}$ Action set $A = \{\rightarrow, \leftarrow\}$ Deterministic transition model: $p(C|B, \rightarrow) = p(A|B, \leftarrow) = p(D|C, \rightarrow) = p(B|C, \leftarrow) = 2/2 = 1$ World structure: $A \mid B \mid C \mid D$ Reward function: $r(\{B, C\}, \leftarrow) = -1, r(\{B, C\}, \rightarrow) = -3 r(\{A, D\}, \{\leftarrow, \rightarrow\}) = 6$

- ▶ $q(C, \rightarrow) = 3$
- A: $q(C, \leftarrow) = 4$
- B: $q(C, \leftarrow) = 3$
- C: $q(C, \leftarrow) = 0$

Episode 1		Episode 2	Episode 3	Episode 4
$(B, \rightarrow, C, -3)$		$(B,\leftarrow,A,-1)$	$(C, \rightarrow, D, -3)$	$(C, \leftarrow, B, -1)$
$ (C, \rightarrow, $	D, -3)	$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$
$ (D, \leftarrow,$	exit,6)			$(C,\leftarrow,B,-1)$
				$(B,\leftarrow,A,-1)$
				$(A, \leftarrow, exit, 6)$

each field in table is n-tuple (s, a, s', r)

State set $S = \{A, B, C, D\}$, terminal states: $\{A, D\}$, non-terminal states: $\{B, C\}$ Action set $A = \{\rightarrow, \leftarrow\}$ Deterministic transition model: $p(C|B, \rightarrow) = p(A|B, \leftarrow) = p(D|C, \rightarrow) = p(B|C, \leftarrow) = 2/2 = 1$ World structure: $A \mid B \mid C \mid D$ Reward function: $r(\{B, C\}, \leftarrow) = -1, r(\{B, C\}, \rightarrow) = -3 r(\{A, D\}, \{\leftarrow, \rightarrow\}) = 6$

- $q(C, \rightarrow) = 3$
- A: $q(C, \leftarrow) = C \leftarrow B \leftarrow A = 6 1 1 = 4$
- **B**: $q(C, \leftarrow) = 3$
- C: $q(C, \leftarrow) = 0$

Episode 1		Episode 2	Episode 3	Episode 4
$(B, \rightarrow, C, -3)$		$(B,\leftarrow,A,-1)$	$(C, \rightarrow, D, -3)$	$(C, \leftarrow, B, -1)$
$ (C, \rightarrow, $	D, -3)	$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$
$ (D, \leftarrow,$	exit,6)			$(C,\leftarrow,B,-1)$
				$(B,\leftarrow,A,-1)$
				$(A, \leftarrow, exit, 6)$

each field in table is n-tuple (s, a, s', r)

State set $S = \{A, B, C, D\}$, terminal states: $\{A, D\}$, non-terminal states: $\{B, C\}$ Action set $A = \{\rightarrow, \leftarrow\}$ Deterministic transition model: $p(C|B, \rightarrow) = p(A|B, \leftarrow) = p(D|C, \rightarrow) = p(B|C, \leftarrow) = 2/2 = 1$ World structure: $A \mid B \mid C \mid D$ Reward function: $r(\{B, C\}, \leftarrow) = -1, r(\{B, C\}, \rightarrow) = -3 r(\{A, D\}, \{\leftarrow, \rightarrow\}) = 6$

- ▶ $q(C, \rightarrow) = 3$
- ▶ $q(C, \leftarrow) = 4$
- $\rightarrow \pi(C) = \leftarrow$

Episode 1		Episode 2	Episode 3	Episode 4
$(B, \rightarrow, C, -3)$		$(B,\leftarrow,A,-1)$	$(C, \rightarrow, D, -3)$	$(C, \leftarrow, B, -1)$
$ (C, \rightarrow, $	D, -3)	$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$ (B, \rightarrow, C, -3)$
$ (D, \leftarrow,$	exit,6)			$(C,\leftarrow,B,-1)$
				$(B,\leftarrow,A,-1)$
				$(A, \leftarrow, exit, 6)$

each field in table is n-tuple (s, a, s', r)

State set $S = \{A, B, C, D\}$, terminal states: $\{A, D\}$, non-terminal states: $\{B, C\}$ Action set $A = \{\rightarrow, \leftarrow\}$ Deterministic transition model: $p(C|B, \rightarrow) = p(A|B, \leftarrow) = p(D|C, \rightarrow) = p(B|C, \leftarrow) = 2/2 = 1$ World structure: $A \mid B \mid C \mid D$ Reward function: $r(\{B, C\}, \leftarrow) = -1, r(\{B, C\}, \rightarrow) = -3 r(\{A, D\}, \{\leftarrow, \rightarrow\}) = 6$

- ▶ $q(C, \rightarrow) = 3$
- $q(C, \leftarrow) = 4$
- $\rightarrow \pi(C) = \leftarrow$

Episode 1	Episode 2	Episode 3	Episode 4
$(B, \rightarrow, C, -3)$	$(B,\leftarrow,A,-1)$	$(C, \rightarrow, D, -3)$	$(C, \leftarrow, B, -1)$
$(C, \rightarrow, D, -3)$	$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$
$(D, \leftarrow, exit, 6)$			$(C,\leftarrow,B,-1)$
			$(B,\leftarrow,A,-1)$
			$(A, \leftarrow, exit, 6)$

each field in table is n-tuple (s, a, s', r)

State set $S = \{A, B, C, D\}$, terminal states: $\{A, D\}$, non-terminal states: $\{B, C\}$ Action set $A = \{\rightarrow, \leftarrow\}$ Deterministic transition model: $p(C|B, \rightarrow) = p(A|B, \leftarrow) = p(D|C, \rightarrow) = p(B|C, \leftarrow) = 2/2 = 1$ World structure: A B C DReward function: $r(\{B, C\}, \leftarrow) = -1, r(\{B, C\}, \rightarrow) = -3 r(\{A, D\}, \{\leftarrow, \rightarrow\}) = 6$

Obs.: Immediate rewards significantly decrease state value. \rightarrow go by less decreasedpath to terminal state

Solution:

- ► $\pi(B) = \leftarrow$
- ► $\pi(C) = \leftarrow$

Episode 1	Episode 2	Episode 3	Episode 4	Episode 5	Episode 6	Episode 7	Episode 8
$(B, \rightarrow, C, -3)$	$(B,\leftarrow,A,-1)$	$(C, \rightarrow, D, -3)$	$(C, \leftarrow, B, -1)$	$(B, \leftarrow, C, -3)$	$(B, \rightarrow, A, -1)$	$(C, \rightarrow, B, -1)$	$(C, \rightarrow, D, -3)$
$(C, \rightarrow, D, -3)$	$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$	$(C, \leftarrow, B, -1)$	$(A, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$	$(D, \rightarrow, exit, 6)$
$(D, \leftarrow, exit, 6)$			$(C, \leftarrow, B, -1)$	$(B, \leftarrow, A, -1)$		$(C, \leftarrow, D, -3)$	
			$(B, \leftarrow, A, -1)$	$(A, \leftarrow, exit, 6)$		$(D, \leftarrow, exit, 6)$	
			$(A, \leftarrow, exit, 6)$				

Calculating policy

- ► state set *S*,
- ▶ action set A,
- rewards r,
- ▶ transition model p(s'|s, a)
- \blacktriangleright policy π

Episode 1	Episode 2	Episode 3	Episode 4	Episode 5	Episode 6	Episode 7	Episode 8
$ (B, \rightarrow, C, -3) (C, \rightarrow, D, -3) $	$(B, \leftarrow, A, -1)$ $(A, \rightarrow, exit, 6)$	$(C, \rightarrow, D, -3)$ $(D, \rightarrow, exit, 6)$	$(C, \leftarrow, B, -1)$ $(B, \rightarrow, C, -3)$	$(B, \leftarrow, C, -3)$ $(C, \leftarrow, B, -1)$	$(B, \rightarrow, A, -1)$ $(A, \rightarrow, exit, 6)$	$(C, \rightarrow, B, -1)$ $(B, \rightarrow, C, -3)$	$(C, \rightarrow, D, -3)$ $(D, \rightarrow, exit, 6)$
$(D, \leftarrow, exit, 6)$	$(\Lambda, \neg, exit, 0)$	$(D, \rightarrow, ext, 0)$	$(B, \rightarrow, C, -3)$ $(C, \leftarrow, B, -1)$	$(B, \leftarrow, A, -1)$	$(\Lambda, \neg, ext, 0)$	$(C, \leftarrow, D, -3)$	$(D, \rightarrow, exit, 0)$
			$(B, \leftarrow, A, -1)$	$(A, \leftarrow, exit, 6)$		$(D, \leftarrow, exit, 6)$	
			$(A, \leftarrow, exit, 6)$				

What is the transition model?

- A: deterministic
- B: non-deterministic

Episode 1	Episode 2	Episode 3	Episode 4	Episode 5	Episode 6	Episode 7	Episode 8
$(B, \rightarrow, C, -3)$	$(B, \leftarrow, A, -1)$ $(A, \rightarrow, exit, 6)$	$(C, \rightarrow, D, -3)$ $(D, \rightarrow, exit, 6)$	$(C, \leftarrow, B, -1)$ $(B, \rightarrow, C, -3)$	$(B, \leftarrow, C, -3)$	$(B, \rightarrow, A, -1)$	$(C, \rightarrow, B, -1)$ $(B, \rightarrow, C, -3)$	$(C, \rightarrow, D, -3)$ $(D, \rightarrow, exit, 6)$
$(C, \rightarrow, D, -3)$ $(D, \leftarrow, exit, 6)$	$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 0)$	$(B, \rightarrow, C, -3)$ $(C, \leftarrow, B, -1)$	$(C, \leftarrow, B, -1)$ $(B, \leftarrow, A, -1)$	$(A, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$ $(C, \leftarrow, D, -3)$	$(D, \rightarrow, exit, 0)$
(2, , , ,, .)			$(B, \leftarrow, A, -1)$	$(A, \leftarrow, exit, 6)$		$(D, \leftarrow, exit, 6)$	
			$(A, \leftarrow, exit, 6)$				

What is a correct transitional probability?

A $p(C|B, \to) = 0.75$ B $p(A|B, \to) = 0.75$ C $p(A|B, \leftarrow) = 0.25$ D $p(D|B, \leftarrow) = 0.75$

E	pisode 1	Episode 2	Episode 3	Episode 4	Episode 5	Episode 6	Episode 7	Episode 8
(B, -	\rightarrow , C, -3) \rightarrow , D, -3)	$(B, \leftarrow, A, -1)$ $(A, \rightarrow, exit, 6)$	$(C, \rightarrow, D, -3)$ $(D, \rightarrow, exit, 6)$	$(C, \leftarrow, B, -1)$ $(B, \rightarrow, C, -3)$	$(B, \leftarrow, C, -3)$ $(C, \leftarrow, B, -1)$	$(B, \rightarrow, A, -1)$ $(A, \rightarrow, exit, 6)$	$(C, \rightarrow, B, -1)$ $(B, \rightarrow, C, -3)$	$(C, \rightarrow, D, -3)$ $(D, \rightarrow, exit, 6)$
	$\leftarrow, exit, 6)$	(,, , , , , , , , , , , , , , , , , , ,	(2, , , , c., c)	$(C, \leftarrow, B, -1)$	$(B, \leftarrow, A, -1)$	(,, ,, ,, ,, ,, ,, ,, ,)	$(C, \leftarrow, D, -3)$	(2, , , , c.i., c)
				$(B, \leftarrow, A, -1)$ $(A, \leftarrow, exit, 6)$	$(A, \leftarrow, exit, 6)$		$(D, \leftarrow, exit, 6)$	

What is a correct transitional probability?

- A $p(C|B, \rightarrow) = 0.75$, see the episodes (B, \rightarrow) occurs 4 times, three of which lead to C, one case to A thus also $p(A|B, \rightarrow) = 0.25$
- **B** $p(A|B, \rightarrow) = 0.75$
- **C** $p(A|B, \leftarrow) = 0.25$
- **D** $p(D|B, \leftarrow) = 0.75$

Transition model: Similarly for other probabilities. Agent follows the direction given with probability 0.75. Otherwise, it goes the other direction.

Episode 1	Episode 2	Episode 3	Episode 4	Episode 5	Episode 6	Episode 7	Episode 8
$(B, \rightarrow, C, -3)$	$(B, \leftarrow, A, -1)$	$(C, \rightarrow, D, -3)$	$(C, \leftarrow, B, -1)$	$(B, \leftarrow, C, -3)$	$(B, \rightarrow, A, -1)$	$(C, \rightarrow, B, -1)$	$(C, \rightarrow, D, -3)$
$(C, \rightarrow, D, -3)$ $(D, \leftarrow, exit, 6)$	$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$ $(C, \leftarrow, B, -1)$	$(C, \leftarrow, B, -1)$ $(B, \leftarrow, A, -1)$	$(A, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$ $(C, \leftarrow, D, -3)$	$(D, \rightarrow, exit, 6)$
$(D, \leftarrow, exit, 0)$			$(C, \leftarrow, B, -1)$ $(B, \leftarrow, A, -1)$	$(B, \leftarrow, A, -1)$ $(A, \leftarrow, exit, 6)$		$(C, \leftarrow, D, -3)$ $(D, \leftarrow, exit, 6)$	
			$(A, \leftarrow, exit, 6)$	(7, -, exit, 0)		$(D, \leftarrow, exit, 0)$	

What is the reward function?

A $r(B, \rightarrow, C) = -3$ B $r(B, \rightarrow, A) = -3$ C $r(B, \leftarrow, A) = -3$ D $r(B, \leftarrow, C) = -3$

Episode 1	Episode 2	Episode 3	Episode 4	Episode 5	Episode 6	Episode 7	Episode 8
$(B, \rightarrow, C, -3)$ $(C, \rightarrow, D, -3)$	$(B, \leftarrow, A, -1)$ $(A, \rightarrow, exit, 6)$	$(C, \rightarrow, D, -3)$ $(D, \rightarrow, exit, 6)$	$(C, \leftarrow, B, -1) (B, \rightarrow, C, -3) (C, -1) (B, -1) (C, -1) (C, -1) (B, -1) (C, -1) (B, -1) (B, -1) (C, -1) (B, -1) (C, -1) (C, -1) (B, -1) (C, -1) (C, -1) (B, -1) (C, -1)$	$(B, \leftarrow, C, -3) (C, \leftarrow, B, -1) (C, \leftarrow, A, -1)$	$(B, \rightarrow, A, -1)$ $(A, \rightarrow, exit, 6)$	$(C, \rightarrow, B, -1)$ $(B, \rightarrow, C, -3)$	$(C, \rightarrow, D, -3)$ $(D, \rightarrow, exit, 6)$
$(D, \leftarrow, exit, 6)$			$(C, \leftarrow, B, -1)$ $(B, \leftarrow, A, -1)$ $(A, \leftarrow, exit, 6)$	$(B, \leftarrow, A, -1)$ $(A, \leftarrow, exit, 6)$		$(C, \leftarrow, D, -3)$ $(D, \leftarrow, exit, 6)$	

What is the reward function?

A $r(B, \rightarrow, C) = -3$ B $r(B, \rightarrow, A) = -3$ C $r(B, \leftarrow, A) = -3$ D $r(B, \leftarrow, C) = -3$

 $D I(B, \leftarrow, C) = -3$

 \Rightarrow $r(\cdot)$ depends on s, s' only, not the action. Similarly for other possibilities of $r(\cdot)$.

Episode 1	Episode 2	Episode 3	Episode 4	Episode 5	Episode 6	Episode 7	Episode 8
$(B, \rightarrow, C, -3)$ $(C, \rightarrow, D, -3)$ $(D, \leftarrow, exit, 6)$	$(B, \leftarrow, A, -1) (A, \rightarrow, exit, 6)$	$(C, \rightarrow, D, -3)$ $(D, \rightarrow, exit, 6)$	$(C, \leftarrow, B, -1) \ (B, ightarrow, C, -3) \ (C, \leftarrow, B, -1) \ (B, \leftarrow, A, -1)$	$(B, \leftarrow, C, -3) (C, \leftarrow, B, -1) (B, \leftarrow, A, -1) (A, \leftarrow, exit, 6)$	(B, ightarrow, A, -1) (A, ightarrow, exit, 6)	(C, ightarrow, B, -1) (B, ightarrow, C, -3) (C, ightarrow, D, -3) (D, ightarrow, exit, 6)	$(C, \rightarrow, D, -3) (D, \rightarrow, exit, 6)$
			$(A, \leftarrow, exit, 6)$				

What is the reward function?

A $r(B, \rightarrow, C) = -3$ B $r(B, \rightarrow, A) = -3$ C $r(B, \leftarrow, A) = -3$ D $r(B, \leftarrow, C) = -3$

 \Rightarrow $r(\cdot)$ depends on s, s' only, not the action. Similarly for other possibilities of $r(\cdot)$.

Episode 1	Episode 2	Episode 3	Episode 4	Episode 5	Episode 6	Episode 7	Episode 8
$(B, \rightarrow, C, -3)$ $(C, \rightarrow, D, -3)$	$(B, \leftarrow, A, -1)$ $(A, \rightarrow, exit, 6)$	$(C, \rightarrow, D, -3)$ $(D, \rightarrow, exit, 6)$	$(C, \leftarrow, B, -1)$ $(B, \rightarrow, C, -3)$	$(B, \leftarrow, C, -3)$ $(C, \leftarrow, B, -1)$	$(B, \rightarrow, A, -1)$ $(A, \rightarrow, exit, 6)$	$(C, \rightarrow, B, -1)$ $(B, \rightarrow, C, -3)$	$(C, \rightarrow, D, -3)$ $(D, \rightarrow, exit, 6)$
$(D, \leftarrow, exit, 6)$	(1, -7, cxit, 0)	$(D, \neg, cxt, 0)$	$(C, \leftarrow, B, -1)$	$(B, \leftarrow, A, -1)$	(1, -7, car, 0)	$(C, \leftarrow, D, -3)$	(2, -, cxit, 0)
			$(B, \leftarrow, A, -1)$ $(A, \leftarrow, exit, 6)$	$(A, \leftarrow, exit, 6)$		$(D, \leftarrow, exit, 6)$	

Result:

- States: $S = \{A, B, C, D\}$, terminal= $\{A, D\}$, nonterminal= $\{B, C\}$
- ▶ Action set: $\{\leftarrow, \rightarrow\}$
- Rewards:

$$r(B, \{\leftarrow, \rightarrow\}, C) = -3, r(B, \{\leftarrow, \rightarrow\}, A) = -1, r(C, \{\leftarrow, \rightarrow\}, B) = -1, r(C, \{\leftarrow, \rightarrow\}, D) = -3$$

World structure:

- Transition model: Agent follows the direction given with probability 0.75. Otherwise, it goes the other direction.
- Policy: $\pi(B) = ?, \pi(C) = ?$

Episode 1	Episode 2	Episode 3	Episode 4	Episode 5	Episode 6	Episode 7	Episode 8
$(B, \rightarrow, C, -3)$	$(B, \leftarrow, A, -1)$	$(C, \rightarrow, D, -3)$	$(C, \leftarrow, B, -1)$	$(B, \leftarrow, C, -3)$	$(B, \rightarrow, A, -1)$	$(C, \rightarrow, B, -1)$	$(C, \rightarrow, D, -3)$
$(C, \rightarrow, D, -3)$ $(D, \leftarrow, exit, 6)$	$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$ $(C \leftarrow B -1)$	$(C, \leftarrow, B, -1)$ $(B, \leftarrow, A, -1)$	$(A, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$ $(C, \leftarrow, D, -3)$	$(D, \rightarrow, exit, 6)$
$(D, \leftarrow, ext, 0)$			$(C, \leftarrow, B, -1)$ $(B, \leftarrow, A, -1)$	$(B, \leftarrow, A, -1)$ $(A, \leftarrow, exit, 6)$		$(C, \leftarrow, D, -3)$ $(D, \leftarrow, exit, 6)$	
			$(A, \leftarrow, exit, 6)$	(, ,, . ,		(-, , , , , . , . ,	

Policy evaluation:

 $\begin{array}{l} \leftarrow, \rightarrow \quad q(B, \leftarrow) = ?, q(C, \rightarrow) = ?\\ \rightarrow, \rightarrow \quad q(B, \rightarrow) = ?, q(C, \rightarrow) = ?\\ \rightarrow, \leftarrow \quad q(B, \rightarrow) = ?, q(C, \leftarrow) = ?\\ \leftarrow, \leftarrow \quad q(B, \leftarrow) = ?, q(C, \leftarrow) = ?\end{array}$

Episode 1	Episode 2	Episode 3	Episode 4	Episode 5	Episode 6	Episode 7	Episode 8
$(B, \rightarrow, C, -3)$ $(C, \rightarrow, D, -3)$ $(D, \leftarrow, exit, 6)$	$(B, \leftarrow, A, -1)$ $(A, \rightarrow, exit, 6)$	$(C, \rightarrow, D, -3)$ $(D, \rightarrow, exit, 6)$	$(C, \leftarrow, B, -1)$ $(B, \rightarrow, C, -3)$ $(C, \leftarrow, B, -1)$ $(B, \leftarrow, A, -1)$ $(A, \leftarrow, exit, 6)$	$(B, \leftarrow, C, -3)$ $(C, \leftarrow, B, -1)$ $(B, \leftarrow, A, -1)$ $(A, \leftarrow, exit, 6)$	$(B, \rightarrow, A, -1)$ $(A, \rightarrow, exit, 6)$	$(C, \rightarrow, B, -1)$ $(B, \rightarrow, C, -3)$ $(C, \leftarrow, D, -3)$ $(D, \leftarrow, exit, 6)$	$(C, \rightarrow, D, -3)$ $(D, \rightarrow, exit, 6)$

A single policy computation:

 $\begin{array}{l} \leftarrow, \rightarrow \ q(B, \leftarrow) = ?, q(C, \rightarrow) = ? \\ A \ q(B, \leftarrow) = 0.5 \cdot (-1) + 0.5 \cdot (-3), \\ q(C, \rightarrow) = 0.5 \cdot (-1) + 0.5 \cdot (-3) \\ B \ q(B, \leftarrow) = 0.25 \cdot (6 - 1) + 0.75 \cdot (-3 + V(C)), \\ q(C, \rightarrow) = 0.25 \cdot (-1) + 0.75 \cdot (-3 + V(B)) \\ C \ q(B, \leftarrow) = 0.75 \cdot (6 - 1) + 0.25 \cdot (-3 + V(C)), \\ q(C, \rightarrow) = 0.75 \cdot (-3 + 6) + 0.25 \cdot (-1 + V(B)) \\ D \ q(B, \leftarrow) = 0.75 \cdot (6 - 1) + 0.25 \cdot (-3), \\ q(C, \rightarrow) = 0.5 \cdot (-1) + 0.25 \cdot (-3) \end{array}$

Episode 1	Episode 2	Episode 3	Episode 4	Episode 5	Episode 6	Episode 7	Episode 8
$(B, \rightarrow, C, -3)$ $(C, \rightarrow, D, -3)$ $(D, \leftarrow, exit, 6)$	$(B, \leftarrow, A, -1)$ $(A, \rightarrow, exit, 6)$	$(C, \rightarrow, D, -3)$ $(D, \rightarrow, exit, 6)$	$(C, \leftarrow, B, -1)$ $(B, \rightarrow, C, -3)$ $(C, \leftarrow, B, -1)$ $(B, \leftarrow, A, -1)$ $(A, \leftarrow, exit, 6)$	$(B, \leftarrow, C, -3)$ $(C, \leftarrow, B, -1)$ $(B, \leftarrow, A, -1)$ $(A, \leftarrow, exit, 6)$	$(B, \rightarrow, A, -1)$ $(A, \rightarrow, exit, 6)$	$(C, \rightarrow, B, -1)$ $(B, \rightarrow, C, -3)$ $(C, \leftarrow, D, -3)$ $(D, \leftarrow, exit, 6)$	$(C, \rightarrow, D, -3)$ $(D, \rightarrow, exit, 6)$

A single policy computation:

 $\leftarrow, \rightarrow q(B, \leftarrow) = ?, q(C, \rightarrow) = ?$

A
$$q(B, \leftarrow) = 0.5 \cdot (-1) + 0.5 \cdot (-3),$$

 $q(C, \rightarrow) = 0.5 \cdot (-1) + 0.5 \cdot (-3)$
B $q(B, \leftarrow) = 0.25 \cdot (6-1) + 0.75 \cdot (-3 + V(C)),$
 $q(C, \rightarrow) = 0.25 \cdot (-1) + 0.75 \cdot (-3 + V(B))$
C $q(B, \leftarrow) = 0.75 \cdot (6-1) + 0.25 \cdot (-3 + V(C)),$
 $q(C, \rightarrow) = 0.75 \cdot (-3 + 6) + 0.25 \cdot (-1 + V(B))$
D $q(B, \leftarrow) = 0.75 \cdot (6-1) + 0.25 \cdot (-3),$
 $q(C, \rightarrow) = 0.5 \cdot (-1) + 0.25 \cdot (-3)$

Episode 1	Episode 2	Episode 3	Episode 4	Episode 5	Episode 6	Episode 7	Episode 8
$(B, \rightarrow, C, -3)$	$(B, \leftarrow, A, -1)$	$(C, \rightarrow, D, -3)$	$(C, \leftarrow, B, -1)$	$(B, \leftarrow, C, -3)$	$(B, \rightarrow, A, -1)$	$(C, \rightarrow, B, -1)$	$(C, \rightarrow, D, -3)$
$(C, \rightarrow, D, -3)$	$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$	$(C, \leftarrow, B, -1)$	$(A, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$	$(D, \rightarrow, exit, 6)$
$(D, \leftarrow, exit, 6)$			$(C, \leftarrow, B, -1)$	$(B, \leftarrow, A, -1)$		$(C, \leftarrow, D, -3)$	
			$(B, \leftarrow, A, -1)$	$(A, \leftarrow, exit, 6)$		$(D, \leftarrow, exit, 6)$	
			$(A, \leftarrow, exit, 6)$			• • • • •	

A single policy computation. As the policy is fixed $V(B) = q(B, \leftarrow), V(C) = q(C, \rightarrow)$:

▶
$$q(B, \leftarrow) = 0.75 \cdot (6 - 1) + 0.25 \cdot (-3 + q(C, \rightarrow))$$

▶
$$q(C, \rightarrow) = 0.75 \cdot (-3 + 6) + 0.25 \cdot (-1 + q(B, \leftarrow))$$

Therefore:

▶
$$q(B, \leftarrow) = 0.75 \cdot 5 + 0.25 \cdot (-3 + .75 \cdot 3 + 0.25 \cdot (-1 + q(B, \leftarrow))) = ... \approx 3.72$$

▶
$$q(C, \rightarrow) = 0.75 \cdot 3 + 0.25 \cdot (-1 + 3.72) \approx 2.93$$

And we calculate for the remaining policies.

[Episode 1	Episode 2	Episode 3	Episode 4	Episode 5	Episode 6	Episode 7	Episode 8
	$(B, \rightarrow, C, -3)$ $(C, \rightarrow, D, -3)$	$(B, \leftarrow, A, -1)$ $(A, \rightarrow, exit, 6)$	$(C, \rightarrow, D, -3)$ $(D, \rightarrow, exit, 6)$	$(C, \leftarrow, B, -1)$ $(B, \rightarrow, C, -3)$	$(B, \leftarrow, C, -3)$	$(B, \rightarrow, A, -1)$	$(C, \rightarrow, B, -1)$ $(B, \rightarrow, C, -3)$	
	$(C, \rightarrow, D, -3)$ $(D, \leftarrow, exit, 6)$	$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 0)$	$(B, \rightarrow, C, -3)$ $(C, \leftarrow, B, -1)$	$(C, \leftarrow, B, -1)$ $(B, \leftarrow, A, -1)$	$(A, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$ $(C, \leftarrow, D, -3)$	$(D, \rightarrow, exit, 6)$
	(_, , , ,, , ,)			$(B, \leftarrow, A, -1)$	$(A, \leftarrow, exit, 6)$		$(D, \leftarrow, exit, 6)$	
l				$(A, \leftarrow, exit, 6)$	• • • •			

- $\leftarrow,
 ightarrow ~ q(B, \leftarrow) pprox 3.73, \ q(C,
 ightarrow) pprox 2.93$
- $egin{array}{lll}
 ightarrow,
 ightarrow \ q(B,
 ightarrow)pprox 0.62, \ q(C,
 ightarrow)pprox 2.15 \end{array}$
- $ightarrow, \leftarrow q(B,
 ightarrow) pprox -2.29, \ q(C, \leftarrow) pprox -1.71 \ \leftarrow, \leftarrow q(B, \leftarrow) pprox 3.70, \ q(C, \leftarrow) pprox 2.77
 ightarrow$

And we can determine the best policy: $\pi(B) = \leftarrow, \pi(C) = \rightarrow$