Reinforcement
learning

Tomas Svoboda, BE5B33KUI
2017-04-24

Slide material partly from CS 188: Artificial Intelligence at UCB
by Dan Klein, and Pieter Abbeel, used with permision.
Some figures from the AIMA book 3rd edition

Reinforcement learning

>/Agent \ \\
State: s .
Reward: r Actions: a
kEnvironmerD<}y

Agent acts - executes an action

- Receives feedback in the form of rewards

+ Must learn to act so as to maximize expected rewards
- All learning based on what it observes

Learning from failures

Autonomous Flipper Control with Safety Constraints

Martin Pecka, Vojtéch Salansky,
Karel ZIimmermann, Tomas Svoboda

experiments utilizing
Constrained Relative Entropy Policy Search

MDPs and Reinforcement Learning

Markov decision process b MDPs
¥ A set of statess! S
¥ A set of actions per state
¥ A transition modelT (s, a,s) or P(s'|s, @)
¥ A reward functionR(s, a, S)
Looking for the optimal policyr(s).

Now, we do not know 7T and R
- We do not know what states are good
- We must try and learn from the result(s)

off-line (MDPs) vs on-line (RL)

"#3$%&23/453%& 15/#3%&1%6 7$#S8&

Model-based learning

- The main idea:

- learn an approximate model from experiences
- solve as if the learned model were corrent

-+ Learning MPD model

-+ count s’ for each s,a

-+ normalize to get an estimate of T(s,a,s’)

-+ Solve the learned MDP (e.g Value iteration)

Example of learning model

Input Policy ! Observed Episodes (Training) Learned Model
Episode 1 Episode 2 T(s,a,s")
N - N
B, east, C, -1 B, east, C, -1 T(B, east, C) = 1.00
C, east, D, -1 C, east, D, -1 Igg z:z:' 2;) 8;?
L D, exit, X, +10) _ D, exit, X, +10) _ y
Episode 3 Episode 4 R(s,a,s")
4 N N - — 1)
E, north, C, -1 E, north, C, -1 EEE' 222:' g)):'ll
g - 1 C, ea:st, D, -1 C, ea§t, A, -1 R(D, exit, x) = +10
! & = _
\D’ exit, X, "'10/ &A’ exit, X, 10) _ y

Adaptive dynamic programming

function PAssIVE-ADP-AGENT(percept) returns an action
inputs: percept, a percept indicating the current stateand reward signal’
persistent ! , a bxed policy

if s'is newthenU[s']! r';R[s']! r’

mdp, an MDP with modeP, rewardsR, discount’

U, a table of utilities, initially empty

Nsa, a table of frequencies for statebaction pairs, initially zero

Nsisa, @ table of outcome frequencies given statebaction pairs, initially
S, a, the previous state and action, initially null

If sis not nullthen
incrementNsa[s,a] andNg: s [S', S, @]
for eacht such thalNg:s4[t,S,a] Is nonzerado
P(t]s,a)! Ngsalt,s,a]/ Nsals,a]
U! PoLICcY-EVALUATION (! ,U,mdp)
if s.TERMINAL?thens,a! nullelses,a! s',![s']

return a

Model-free learning

Passive learning

¥ Input: a bxed policy (Ss)
¥ Execute policy ...

¥ and learn on the way

¥ Goal: learn the state value$)' (s) * f

3 —

+1

|

bl

—

P

—

1

2

3

4

(1’ 1)-.04! (1’ 2)-.04! (1’ 3)-.04! (1’ 2)-.04! (1’ 3)-.04! (2’ 3)-.04! (3’ 3)-.04! (41 3)+1
(1’ 1)-.04! (1’ 2)-.04! (1’ 3)-.04! (2’ 3)-.04! (3! 3)-.04! (31 2)-.04! (3’ 3)-.04! (41 3)+1
(1, 1)-0a! (2,1)-04! (3,1)-04 (3,2)-04 (4,2)1.

U' (s)= E

t

0

'R(St)

10

Direct utility estimation

(1’ 1)-.04! (1’ 2)-.04! (1’ 3)-.04! (1’ 2)-.04! (1’ 3)-.04! (2’ 3)-.04! (3’ 3)-.04! (4’ 3)+1
(1,1)-04! (1,2)-04! (1,3)-04 (2,3)-04 (3,3)-04 (3,2)-04 (3,3)-04 (4,3)+1
(1’ 1)-.04! (2’ 1)-.04! (3’ 1)-.04! (3’ 2)-.04! (4’ 2)-1 -

- Act according to the policy

- When visiting a state, remeber what the sum of
discounted rewards turned out to be

- Compute average

- Utility of a state - expected total reward from that
state onward

- Each trial provides a sample of this quantity

11

Direct utility estimation

What is U(3,2) after 3 trials? s | | | — | 3

| b | =

1 t e S — -

1 2 3 4

(1’ 1)-.04! (1’ 2)-.04! (1’ 3)-.04! (1’ 2)-.04! (1’ 3)-.04! (21 3)-.04! (3’ 3)-.04! (41 3)+l
(1,1)-04 (1,2)-04" (1,3)-04! (2,3)-04 (3,3)-04 (3,2)-04! (3,3)-04 (4,3)41
(1’ 1)-.04! (2’ 1)-.04! (3’ 1)-.04! (3’ 2)-.04! (4’ 2)-1 -

12

Direct utility estimation - what is good and what is bad
- The good:
- Simple, easy to implement and understand
- Does not need T, R and it computes true U
-+ The bad:
- Each state utility learned separately
- It does not use information about the state connection!

- State utilities are not independent

U'(s)=R(s)+! P(s's," (s))U" ()

13

What about policy evaluation

In each round, replace) with a one-step-look-ahead

Ug (S)

— () | " .
U (s)!

' T(s,! (s),s) R(s,! (s),s) +"U™(s")

S

Problem: bothT(s,! (s),s’) and R(s,! (s),s') unknown

14

Use samples for evaluating policy?

MDP (T, R known) : Update U estimate by a weighted average:

in—l—l (S) A Zs’

What about: try (sample) and averac

triall
trial2

trial,,

T'(s,

m(s),s') [R(s,m(s),s

R(s,! (s),s1) + " U (s1)
R(s,! (s),s2) + " U (s5)

R(s,! (s),sp) +

1 .
E ; trlali

Uz'7T+1(5) A

U (s,)

")+ U ()]

15

3 — e — +1

| b |

===

Temporal-
difference learning

(1, 1).04 (1,2).04' (1,3)-08' (1,2).04 (1,3).04 (2,3)-04! (3,3)-04 (4,3)s1]
(1’1)-.04! (1’2)-.04! ‘1a3)-.04! (2’3)-.04| (3’3)-.04! (3’2)-.04! (3’3)-.04! (4’3)+1
(1,1)-04 (2,1)-04! (3,1)-04! (3,2)-04 (4,2)1.

U2,3)=0.92 U(1,3) =0.84

U(1,3) = R(1,3)+ U(2,3)= ! 0.04+0.92 =0.88

The current U(1, 3) estimate, 0.84, should be increased.

U(s) < U(s) + af[R(s) +U(s")] = U(s))

where « Is the learning rate.

16

Problems with temporal difference
learning

Utilities learned through policy evaluation by mimicking
Bellman updates
How to construct a new policy?

m(s) = argmax Q(s, a)

Q(s,a)= » T(s,a,5s)[R(s,a,s)+ yU(s)]

17

Active reinforcement
learning

Q-learning

Value/Utility and Q-value iteration

Value/Utllity iteration (depth limited evaluation):
¥ Start: Up(s) =0

¥ In each step updatéJ by looking one step ahead:
I

U;+1 (S) ! maax' 2 T(s,a,8)[R(s,a,s)+ ! Uy(s))

Q values more useful (think about updating)
¥ Start: Qq(s,a)=0

¥ In each step updatéJ by looking one step ahead:
I

Qi1 (s,@! ,T(s,a5s) R(s,as)+ ymaxQ;(s', a)

20

Q-learning
Qi1 (S,a) ! | +T(s,a,s) R(s,as)+! maa/XQi (s!,a!).
Learn Q values as the robot/agent goes (temporal elfence
¥ Drive the robot and fetch:s, a, s, r

¥ We know old estimate$)(s, a)

¥ A new trial/sample estimate
trial = r + ymaxQ; (s, a’)
N

¥ « update

Q(s,a)! Q(s,a)+ «aftrial" Q(s, a))
Q(s,a)! (1" a)Q(s,a)+ «tnal

21

Exploration vs Exploitation

How to explore

Standard Q-learning:
from a learned value: tria& r + | maxQ (s',a)

we update with" rate: Q(s, a) ! Q(s a)+ " (trial" Q(s, a))

Modify the learned value b®oosting yet overlooked areas:
trial = r + | maxf (Qi(s’,a),N(s',a))
N

wheref Is anexploration function It returns a more optimisti
utility from a value estimateu and visit countn, e.g.:
f(u,v)= u+1i/n (1 Is iteration)

23

Q-learning agent

function Q-LEARNING-AGENT(percept) returns an action
inputs: percept, a percept indicating the current stateand reward signal’
persistent Q, a table of action values indexed by state and action, initially ze
Nsa, a table of frequencies for statebaction pairs, initially zero
S, a, I, the previous state, action, and reward, initially null

If TERMINAL?(S) thenQ[s,None]! r-
If sis not nullthen

IncrementNg, [S, 4]

Q[S’a]! Q[S’a] T !(NSa[S’a])(r + maxa! Q[S!1a!]) Q[S,a])
s,a,r! s',argmax, f(QJ[s',a'],Nsa[s’,al]),r’
return a

24

Reinforcement learning

- We can estimate Q(s,a) and thus the policy while
executing an exploration policy

- More at the last lecture?

25

