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Reinforcement learning

>/Agent \ \\
State: s .
Reward: r Actions: a
kEnvironmerD<}y

Agent acts - executes an action

- Receives feedback in the form of rewards

+ Must learn to act so as to maximize expected rewards
- All learning based on what it observes




Learning from failures
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MDPs and Reinforcement Learning

Markov decision process b MDPs
¥ A set of statess! S
¥ A set of actions per state
¥ A transition modelT (s, a,s) or P(s'|s, @)
¥ A reward functionR(s, a, S)
Looking for the optimal policyr(s).

Now, we do not know 7T and R
- We do not know what states are good
- We must try and learn from the result(s)



off-line (MDPs) vs on-line (RL)
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Model-based learning

- The main idea:

- learn an approximate model from experiences
- solve as if the learned model were corrent

-+ Learning MPD model

-+ count s’ for each s,a

-+ normalize to get an estimate of T(s,a,s’)

-+ Solve the learned MDP (e.g Value iteration)



Example of learning model

Input Policy ! Observed Episodes (Training) Learned Model
Episode 1 Episode 2 T(s,a,s")
N - N
B, east, C, -1 B, east, C, -1 T(B, east, C) = 1.00
C, east, D, -1 C, east, D, -1 Igg z:z:' 2; ) 8;?
L D, exit, X, +10) _ D, exit, X, +10) _ y
Episode 3 Episode 4 R(s,a,s")
4 N N - — 1)
E, north, C, -1 E, north, C, -1 EEE' 222:' g)):'ll
g - 1 C, ea:st, D, -1 C, ea§t, A, -1 R(D, exit, x) = +10
! & = _
\D’ exit, X, "'10/ &A’ exit, X, 10) _ y




Adaptive dynamic programming

function PAssIVE-ADP-AGENT(percept) returns an action
inputs: percept, a percept indicating the current stateand reward signal’
persistent ! , a bxed policy

if s'is newthenU[s']! r';R[s']! r’

mdp, an MDP with modeP, rewardsR, discount’

U, a table of utilities, initially empty

Nsa, a table of frequencies for statebaction pairs, initially zero

Nsisa, @ table of outcome frequencies given statebaction pairs, initially
S, a, the previous state and action, initially null

If sis not nullthen
incrementNsa[s,a] andNg: s [S', S, @]
for eacht such thalNg:s4[t,S,a] Is nonzerado
P(t]s,a)! Ngsalt,s,a]/ Nsals,a]
U! PoLICcY-EVALUATION (! ,U,mdp)
if s.TERMINAL?thens,a! nullelses,a! s',![s']

return a



Model-free learning



Passive learning

¥ Input: a bxed policy (Ss)
¥ Execute policy ...

¥ and learn on the way

¥ Goal: learn the state value$)' (s) * f
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(1’ 1)-.04! (1’ 2)-.04! (1’ 3)-.04! (1’ 2)-.04! (1’ 3)-.04! (2’ 3)-.04! (3’ 3)-.04! (41 3)+1
(1’ 1)-.04! (1’ 2)-.04! (1’ 3)-.04! (2’ 3)-.04! (3! 3)-.04! (31 2)-.04! (3’ 3)-.04! (41 3)+1
(1, 1)-0a! (2,1)-04! (3,1)-04 (3,2)-04 (4,2)1.
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Direct utility estimation

(1’ 1)-.04! (1’ 2)-.04! (1’ 3)-.04! (1’ 2)-.04! (1’ 3)-.04! (2’ 3)-.04! (3’ 3)-.04! (4’ 3)+1
(1,1)-04! (1,2)-04! (1,3)-04 (2,3)-04 (3,3)-04 (3,2)-04 (3,3)-04 (4,3)+1
(1’ 1)-.04! (2’ 1)-.04! (3’ 1)-.04! (3’ 2)-.04! (4’ 2)-1 -

- Act according to the policy

- When visiting a state, remeber what the sum of
discounted rewards turned out to be

- Compute average

- Utility of a state - expected total reward from that
state onward

- Each trial provides a sample of this quantity
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Direct utility estimation

What is U(3,2) after 3 trials? s | | | — | 3

| b | =

1 t e S — -

1 2 3 4

(1’ 1)-.04! (1’ 2)-.04! (1’ 3)-.04! (1’ 2)-.04! (1’ 3)-.04! (21 3)-.04! (3’ 3)-.04! (41 3)+l
(1,1)-04 (1,2)-04" (1,3)-04! (2,3)-04 (3,3)-04 (3,2)-04! (3,3)-04 (4,3)41
(1’ 1)-.04! (2’ 1)-.04! (3’ 1)-.04! (3’ 2)-.04! (4’ 2)-1 -
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Direct utility estimation - what is good and what is bad
- The good:
- Simple, easy to implement and understand
- Does not need T, R and it computes true U
-+ The bad:
- Each state utility learned separately
- It does not use information about the state connection!

- State utilities are not independent

U'(s)=R(s)+!  P(s's," (s))U" ()
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What about policy evaluation

In each round, replace) with a one-step-look-ahead

Ug (S)

— () | " .
U (s)!

' T(s,! (s),s) R(s,! (s),s) +"U™(s")

S

Problem: bothT(s,! (s),s’) and R(s,! (s),s') unknown
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Use samples for evaluating policy?

MDP (T, R known) : Update U estimate by a weighted average:

in—l—l (S) A Zs’

What about: try (sample) and averac

triall
trial2

trial,,

T'(s,

m(s),s') [ R(s,m(s),s

R(s,! (s),s1) + " U (s1)
R(s,! (s),s2) + " U (s5)

R(s,! (s),sp) +

1 .
E ; trlali

Uz'7T+1(5) A

U (s,)

")+ U ()]
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Temporal-
difference learning

(1, 1).04 (1,2).04' (1,3)-08' (1,2).04 (1,3).04 (2,3)-04! (3,3)-04 (4,3)s1]
(1’1)-.04! (1’2)-.04! ‘1a3)-.04! (2’3)-.04| (3’3)-.04! (3’2)-.04! (3’3)-.04! (4’3)+1
(1,1)-04 (2,1)-04! (3,1)-04! (3,2)-04 (4,2)1.

U2,3)=0.92 U(1,3) =0.84

U(1,3) = R(1,3)+ U(2,3)= ! 0.04+0.92 =0.88

The current U(1, 3) estimate, 0.84, should be increased.

U(s) < U(s) + af[R(s) +U(s")] = U(s))

where « Is the learning rate.
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Problems with temporal difference
learning

Utilities learned through policy evaluation by mimicking
Bellman updates
How to construct a new policy?

m(s) = argmax Q(s, a)

Q(s,a)= » T(s,a,5s)[R(s,a,s)+ yU(s)]
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Active reinforcement
learning



Q-learning



Value/Utility and Q-value iteration

Value/Utllity iteration (depth limited evaluation):
¥ Start: Up(s) =0

¥ In each step updatéJ by looking one step ahead:
I

U;+1 (S) ! maax' 2 T(s,a,8)[R(s,a,s)+ ! Uy(s))

Q values more useful (think about updating)
¥ Start: Qq(s,a)=0

¥ In each step updatéJ by looking one step ahead:
I

Qi1 (s,@!  ,T(s,a5s) R(s,as)+ ymaxQ;(s', a)
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Q-learning
Qi1 (S,a) ! | +T(s,a,s) R(s,as)+! maa/XQi (s!,a!).
Learn Q values as the robot/agent goes (temporal elfence
¥ Drive the robot and fetch:s, a, s, r

¥ We know old estimate$)(s, a)

¥ A new trial/sample estimate
trial = r + ymaxQ; (s, a’)
N

¥ « update

Q(s,a)! Q(s,a)+ «aftrial" Q(s, a))
Q(s,a)! (1" a)Q(s,a)+ «tnal
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Exploration vs Exploitation




How to explore

Standard Q-learning:
from a learned value: tria& r + | maxQ (s',a)

we update with" rate: Q(s, a) ! Q(s a)+ " (trial" Q(s, a))

Modify the learned value b®oosting yet overlooked areas:
trial = r + | maxf (Qi(s’,a),N(s',a))
N

wheref Is anexploration function It returns a more optimisti
utility from a value estimateu and visit countn, e.g.:
f(u,v)= u+1i/n (1 Is iteration)
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Q-learning agent

function Q-LEARNING-AGENT(percept) returns an action
inputs: percept, a percept indicating the current stateand reward signal’
persistent Q, a table of action values indexed by state and action, initially ze
Nsa, a table of frequencies for statebaction pairs, initially zero
S, a, I, the previous state, action, and reward, initially null

If TERMINAL?(S) thenQ[s,None]! r-
If sis not nullthen

IncrementNg, [S, 4]

Q[S’a]! Q[S’a] T !(NSa[S’a])(r + maxa! Q[S!1a!] ) Q[S,a])
s,a,r! s',argmax, f(QJ[s',a'],Nsa[s’,al]),r’
return a
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Reinforcement learning

- We can estimate Q(s,a) and thus the policy while
executing an exploration policy

- More at the last lecture?
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