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Reinforcement learning

2

Reinforcement#Learning#

! ! Basic#idea:#
! ! Receive#feedback#in#the#form#of#rewards#
! ! Agent’s#u)lity#is#defined#by#the#reward#func)on#
! ! Must#(learn#to)#act#so#as#to#maximize#expected#rewards#
! ! All#learning#is#based#on#observed#samples#of#outcomes!#

Environment#

#

Agent#

Ac)ons:#a#
State:#s#
Reward:#r#

Agent acts - executes an action 
• Receives feedback in the form of rewards
• Must learn to act so as to maximize expected rewards
• All learning based on what it observes
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Learning from failures



MDPs and Reinforcement Learning
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Now, we do not know T and R
• We do not know what states are good 
• We must try and learn from the result(s)

Markov decision process Ð MDPs

¥ A set of statess ! S

¥ A set of actions per state

¥ A transition modelT(s, a, s!) or P(s!|s, a)

¥ A reward functionR(s, a, s!)

Looking for the optimal policy⇡(s).



off-line (MDPs) vs on-line (RL)
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Model-based learning
• The main idea:

• learn an approximate model from experiences

• solve as if the learned model were corrent

• Learning MPD model

• count s’ for each s,a

• normalize to get an estimate of T(s,a,s’)

• Solve the learned MDP (e.g Value iteration)
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Example of learning model
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Example:#ModelcBased#Learning#

Input#Policy#!   

!""#$%&'"#=#1#

Observed#Episodes#(Training) Learned#Model 

!"

#" $# %#

&#

B,#east,#C,#c1#
C,#east,#D,#c1#
D,#exit,##x,#+10#

B,#east,#C,#c1#
C,#east,#D,#c1#
D,#exit,##x,#+10#

E,#north,#C,#c1#
C,#east,###A,#c1#
A,#exit,####x,#c10#

Episode#1# Episode#2#

Episode#3# Episode#4#
E,#north,#C,#c1#
C,#east,###D,#c1#
D,#exit,####x,#+10#

T(s,a,s’).#
#

T(B,#east,#C)#=#1.00#
T(C,#east,#D)#=#0.75#
T(C,#east,#A)#=#0.25#

…#
#

R(s,a,s’).#
#

R(B,#east,#C)#=#c1#
R(C,#east,#D)#=#c1#
R(D,#exit,#x)#=#+10#

…#



Adaptive dynamic programming
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834 Chapter 21. Reinforcement Learning

function PASSIVE-ADP-AGENT(percept) returns an action
inputs: percept, a percept indicating the current states! and reward signalr !

persistent: ! , a Þxed policy
mdp, an MDP with modelP, rewardsR, discount"
U , a table of utilities, initially empty
Nsa , a table of frequencies for stateÐaction pairs, initially zero
Ns! |sa , a table of outcome frequencies given stateÐaction pairs, initially zero
s, a, the previous state and action, initially null

if s! is newthen U [s!] ! r ! ; R[s!] ! r !

if s is not nullthen
incrementNsa [s,a] andNs! |sa [s!, s,a]
for each t such thatNs! |sa [t , s,a] is nonzerodo

P(t | s, a) ! Ns! |sa [t , s,a] / Nsa [s,a]
U ! POLICY-EVALUATION (! ,U ,mdp)
if s!.TERMINAL ? then s,a ! null elses,a ! s!, ! [s! ]
return a

Figure 21.2 A passive reinforcement learning agent based on adaptive dynamic program-
ming. The POLICY-EVALUATION function solves the Þxed-policy Bellman equations, as
described on page 657.

21.2.2 Adaptive dynamic programming

An adaptive dynamic programming (or ADP) agent takes advantage of the constraintsADAPTIVE DYNAMIC
PROGRAMMING

among the utilities of states by learning the transition model that connects them and solv-
ing the corresponding Markov decision process using a dynamic programming method. For
a passive learning agent, this means plugging the learned transition modelP(s! | s, ! (s)) and
the observed rewardsR(s) into the Bellman equations (21.2) to calculate the utilities of the
states. As we remarked in our discussion of policy iteration in Chapter 17, these equations
are linear (no maximization involved) so they can be solved using any linear algebra pack-
age. Alternatively, we can adopt the approach ofmodiÞed policy iteration (see page 657),
using a simpliÞed value iteration process to update the utility estimates after each change to
the learned model. Because the model usually changes only slightly with each observation,
the value iteration process can use the previous utility estimates as initial values and should
converge quite quickly.

The process of learning the model itself is easy, because the environment is fully ob-
servable. This means that we have a supervised learning task where the input is a stateÐaction
pair and the output is the resulting state. In the simplest case, we can represent the tran-
sition model as a table of probabilities. We keep track of how often each action outcome
occurs and estimate the transition probabilityP(s! | s, a) from the frequency with whichs!

is reached when executinga in s. For example, in the three trials given on page 832,Right
is executed three times in (1,3) and two out of three times the resulting state is (2,3), so
P((2, 3) | (1, 3), Right ) is estimated to be 2/3.



Model-free learning
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Passive learning
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21.2 PASSIVE REINFORCEMENTLEARNING

To keep things simple, we start with the case of a passive learning agent using a state-based
representation in a fully observable environment. In passive learning, the agentÕs policy!
is Þxed: in states, it always executes the action! (s). Its goal is simply to learn how good
the policy isÑthat is, to learn the utility functionU! (s). We will use as our example the
4! 3 world introduced in Chapter 17. Figure 21.1 shows a policy for that world and the
corresponding utilities. Clearly, the passive learning task is similar to thepolicy evaluation
task, part of thepolicy iteration algorithm described in Section 17.3. The main difference
is that the passive learning agent does not know thetransition model P(s! | s, a), which
speciÞes the probability of reaching states! from states after doing actiona; nor does it
know thereward function R(s), which speciÞes the reward for each state.
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Figure 21.1 (a) A policy ! for the 4! 3 world; this policy happens to be optimal with
rewards ofR(s) = " 0.04 in the nonterminal states and no discounting. (b) The utilities of
the states in the4! 3 world, given policy! .

The agent executes a set oftrials in the environment using its policy! . In each trial, theTRIAL

agent starts in state (1,1) and experiences a sequence of state transitions until it reaches one
of the terminal states, (4,2) or (4,3). Its percepts supply both the current state and the reward
received in that state. Typical trials might look like this:

(1, 1)-.04! (1, 2)-.04! (1, 3)-.04! (1, 2)-.04! (1, 3)-.04! (2, 3)-.04! (3, 3)-.04! (4, 3)+1

(1, 1)-.04! (1, 2)-.04! (1, 3)-.04! (2, 3)-.04! (3, 3)-.04! (3, 2)-.04! (3, 3)-.04! (4, 3)+1

(1, 1)-.04! (2, 1)-.04! (3, 1)-.04! (3, 2)-.04! (4, 2)-1 .

Note that each state percept is subscripted with the reward received. The object is to use the
information about rewards to learn the expected utilityU! (s) associated with each nontermi-
nal states. The utility is deÞned to be the expected sum of (discounted) rewards obtained if
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Figure 21.1 (a) A policy ! for the 4! 3 world; this policy happens to be optimal with
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The agent executes a set oftrials in the environment using its policy! . In each trial, theTRIAL

agent starts in state (1,1) and experiences a sequence of state transitions until it reaches one
of the terminal states, (4,2) or (4,3). Its percepts supply both the current state and the reward
received in that state. Typical trials might look like this:

(1, 1)-.04! (1, 2)-.04! (1, 3)-.04! (1, 2)-.04! (1, 3)-.04! (2, 3)-.04! (3, 3)-.04! (4, 3)+1

(1, 1)-.04! (1, 2)-.04! (1, 3)-.04! (2, 3)-.04! (3, 3)-.04! (3, 2)-.04! (3, 3)-.04! (4, 3)+1
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Note that each state percept is subscripted with the reward received. The object is to use the
information about rewards to learn the expected utilityU! (s) associated with each nontermi-
nal states. The utility is deÞned to be the expected sum of (discounted) rewards obtained if

¥ Input: a Þxed policy! (s)

¥ Execute policy . . .

¥ and learn on the way

¥ Goal: learn the state valuesU! (s)

U! (s) = E

!
!"

t =0

! t R(St )

#



Direct utility estimation

• Act according to the policy

• When visiting a state, remeber what the sum of 
discounted rewards turned out to be

• Compute average
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Figure 21.1 (a) A policy ! for the 4! 3 world; this policy happens to be optimal with
rewards ofR(s) = " 0.04 in the nonterminal states and no discounting. (b) The utilities of
the states in the4! 3 world, given policy! .

The agent executes a set oftrials in the environment using its policy! . In each trial, theTRIAL

agent starts in state (1,1) and experiences a sequence of state transitions until it reaches one
of the terminal states, (4,2) or (4,3). Its percepts supply both the current state and the reward
received in that state. Typical trials might look like this:

(1, 1)-.04! (1, 2)-.04! (1, 3)-.04! (1, 2)-.04! (1, 3)-.04! (2, 3)-.04! (3, 3)-.04! (4, 3)+1
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Note that each state percept is subscripted with the reward received. The object is to use the
information about rewards to learn the expected utilityU! (s) associated with each nontermi-
nal states. The utility is deÞned to be the expected sum of (discounted) rewards obtained if

• Utility of a state - expected total reward from that 
state onward

• Each trial provides a sample of this quantity



Direct utility estimation
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What is U(3,2) after 3 trials?



Direct utility estimation - what is good and what is bad

• The good:

• Simple, easy to implement and understand

• Does not need T, R and it computes true U

• The bad:

• Each state utility learned separately

• It does not use information about the state connection!

• State utilities are not independent

13

U! (s) = R(s) + !
!

s!

P(s!|s, " (s))U! (s!)



What about policy evaluation
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Problem: bothT(s, ! (s), s!) and R(s, ! (s), s!) unknown!

In each round, replaceU with a one-step-look-ahead

U⇡
0 (s) = 0

U⇡
i+1(s) !

!
s! T(s, ! (s), s!)

"
R(s, ! (s), s!) + " U⇡

i (s
!)

#



Use samples for evaluating policy?
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MDP (T,R known) : Update U estimate by a weighted average:

U⇡
i+1(s) 

P
s0 T (s,⇡(s), s

0)
⇥
R(s,⇡(s), s0) + �U⇡

i (s
0)

⇤

What about: try (sample) and average:

trial1 = R(s, ! (s), s01) + " U⇡
i (s01)

trial2 = R(s, ! (s), s02) + " U⇡
i (s02)

... =
...

trialn = R(s, ! (s), s0n) + " U⇡
i (s0n)

U⇡
i+1(s)  1

n

X

i

triali



Temporal-
difference learning
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U(2, 3) = 0 .92, U(1, 3) = 0 .84

The current U(1, 3) estimate, 0.84, should be increased.

U(1, 3) = R(1, 3) + U(2, 3) = ! 0.04 + 0.92 = 0.88

U(s) U(s) + ↵([R(s) + �U(s0)]� U(s))

where ↵ is the learning rate.



Problems with temporal difference 
learning
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Utilities learned through policy evaluation by mimicking 
Bellman updates
How to construct a new policy?

⇡(s) = argmax

a
Q(s, a)

Q(s, a) =
X

s!

T(s, a, s!)
⇥
R(s, a, s!) + �U(s!)

⇤



Active reinforcement 
learning
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Q-learning
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Value/Utility and Q-value iteration
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Value/Utility iteration (depth limited evaluation):

¥ Start: U0(s) = 0

¥ In each step updateU by looking one step ahead:

Ui+1 (s) ! max
a

!
s! T (s, a, s!) [R(s, a, s!) + ! Ui(s!)]

Q values more useful (think about updating⇡)

¥ Start: Q0(s, a) = 0

¥ In each step updateU by looking one step ahead:

Qi+1 (s, a) !
!

s! T (s, a, s!)
"
R(s, a, s!) + � max

a!
Qi(s!, a!)

#



Q-learning
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Qi +1 (s, a) !
!

s0 T(s, a, s!)
"
R(s, a, s!) + ! max

a0
Qi (s!, a!)

#

Learn Q values as the robot/agent goes (temporal di! erence)

¥ Drive the robot and fetch:s, a, s!, r

¥ We know old estimatesQ(s, a)

¥ A new trial/sample estimate
trial = r + � max

a!
Qi (s!, a!)

¥ ↵ update
Q(s, a) ! Q(s, a) + ↵(trial " Q(s, a))
Q(s, a) ! (1 " ↵)Q(s, a) + ↵ trial
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Standard Q-learning:
from a learned value: trial= r + ! max

a!
Qi (s!, a!)

we update with" rate: Q(s, a) ! Q(s, a) + " (trial " Q(s, a))

Modify the learned value byboosting yet overlooked areas:
trial = r + ! max

a!
f (Qi (s!, a!), N (s!, a!))

wheref is anexploration function. It returns a more optimistic
utility from a value estimateu and visit countn, e.g.:
f (u, v) = u + i/n (i is iteration)
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844 Chapter 21. Reinforcement Learning

function Q-LEARNING-AGENT(percept) returns an action
inputs: percept, a percept indicating the current states! and reward signalr !

persistent: Q, a table of action values indexed by state and action, initially zero
Nsa , a table of frequencies for stateÐaction pairs, initially zero
s, a, r , the previous state, action, and reward, initially null

if TERMINAL ?(s) then Q[s,None] ! r !

if s is not nullthen
incrementNsa [s,a]
Q[s,a] ! Q[s, a] + ! (Nsa [s, a])( r + " maxa! Q[s!, a! ] " Q[s, a])

s,a, r ! s!,argmaxa! f (Q[s!, a! ], Nsa [s! , a!]), r !

return a

Figure 21.8 An exploratory Q-learning agent. It is an active learner that learns the value
Q(s, a) of each action in each situation. It uses the same exploration functionf as the ex-
ploratory ADP agent, but avoids having to learn the transition model because the Q-value of
a state can be related directly to those of its neighbors.

it needs are theQ values. The update equation for TD Q-learning is

Q(s, a) ! Q(s, a) + ! (R(s) + " max
a!

Q(s!, a!) " Q(s, a)) , (21.8)

which is calculated whenever actiona is executed in states leading to states!.
The complete agent design for an exploratory Q-learning agent using TD is shown in

Figure 21.8. Notice that it uses exactly the same exploration functionf as that used by the
exploratory ADP agentÑhence the need to keep statistics on actions taken (the tableN ). If
a simpler exploration policy is usedÑsay, acting randomly on some fraction of steps, where
the fraction decreases over timeÑthen we can dispense with the statistics.

Q-learning has a close relative calledSARSA(for State-Action-Reward-State-Action).SARSA

The update rule for SARSA is very similar to Equation (21.8):

Q(s, a) ! Q(s, a) + ! (R(s) + " Q(s!, a!) " Q(s, a)) , (21.9)

where a! is the actionactually takenin states!. The rule is applied at the end of each
s, a, r, s!, a! quintupletÑhence the name. The difference from Q-learning is quite subtle:
whereas Q-learning backs up thebestQ-value from the state reached in the observed transi-
tion, SARSA waits until an action is actually taken and backs up the Q-value for that action.
Now, for a greedy agent that always takes the action with best Q-value, the two algorithms
are identical. When exploration is happening, however, they differ signiÞcantly. Because
Q-learning uses the best Q-value, it pays no attention to the actual policy being followedÑit
is anoff-policy learning algorithm, whereas SARSA is anon-policy algorithm. Q-learning isOFF-POLICY

ON-POLICY more ßexible than SARSA, in the sense that a Q-learning agent can learn how to behave well
even when guided by a random or adversarial exploration policy. On the other hand, SARSA
is more realistic: for example, if the overall policy is even partly controlled by other agents, it
is better to learn a Q-function for what will actually happen rather than what the agent would
like to happen.
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• We can estimate Q(s,a) and thus the policy while 
executing an exploration policy

• More at the last lecture?
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