Linear Classifiers II, and Tangent Space for $k-N N$

Tomáš Svoboda

Vision for Robots and Autonomous Systems, Center for Machine Perception Department of Cybernetics
Faculty of Electrical Engineering, Czech Technical University in Prague

May 23, 2022

Outline

- $k-N N$, Tangent distance measure, invariance to rotation
- Better etalons by applying Fischer linear discriminator analysis.
- LSQ formulation of the learning task.

K-Nearest neighbors classification

For a query \mathbf{x} :

- Find K nearest \mathbf{x} from the training (labeled) data.
- Classify to the class with the most exemplars in the set above.

Notes

Some properties:

- A nonparametric method - does not assume anything about the distribution (that it is Gaussian etc.).
- Can be used for classification or regression. Here: classification.
- Training: Only store feature vectors and their labels.
- Very simple and suboptimal. With unlimited nr. prototypes, error never worse than twice the Bayes rate (optimum).
- instance-based or lazy learning - function only approximated locally; computation only during inference.
- Limitations
- Curse of dimensionality - for every additional dimension, one needs exponentially more points to cover the space.
- Comp. complexity - has to look through all the samples all the time. Some speed-up is possible. E.g., storing data in a K-d tree.
- Noise. Missclassified examples will remain in the database....

$K-$ Nearest Neighbor and Bayes $j^{*}=\operatorname{argmax}_{j} P\left(s_{j} \mid \mathbf{x}\right)$

Assume data:

- N points \mathbf{x} in total.
- N_{j} points in s_{j} class. Hence, $\sum_{j} N_{j}=N$.

We want to classify \mathbf{x}. Draw a sphere centered at \mathbf{x} containing K points irrespective of class. V is the volume of this sphere. $P\left(s_{j} \mid \mathbf{x}\right)=$?

$$
P\left(s_{j} \mid \mathbf{x}\right)=\frac{P\left(\mathbf{x} \mid s_{j}\right) P\left(s_{j}\right)}{P(\mathbf{x})}
$$

K_{j} is the number of points of class s_{j} among the K nearest neighbors.

$$
\begin{aligned}
P\left(s_{j}\right) & =\frac{N_{j}}{N} \\
P(\mathbf{x}) & =\frac{K}{N V} \\
P\left(\mathbf{x} \mid s_{j}\right) & =\frac{K_{j}}{N_{j} V} \\
P\left(s_{j} \mid \mathbf{x}\right) & =\frac{P\left(\mathbf{x} \mid s_{j}\right) P\left(s_{j}\right)}{P(\mathbf{x})}=\frac{K_{j}}{K}
\end{aligned}
$$

NN classification example

(a)

(b)
${ }^{1}$ Figs from [1]

Left: $\mathrm{k}=3$.
Right: Decision boundary for $\mathrm{k}=1$.

NN classification example

Fast on "learning", very slow on decision.
There are ways for speeding it up, search for NN editing - making training data sparser, keeping only representative points.

What is nearest? Metrics for NN classification ...

Metrics : a function D which is

- nonnegative,
- reflexive,
- symmetrical,
- satisfying triangle inequality:
$D\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right) \geq 0$
$D\left(\mathbf{x}_{\mathbf{1}}, \mathbf{x}_{\mathbf{2}}\right)=0$ iff $\mathbf{x}_{\mathbf{1}}=\mathbf{x}_{\mathbf{2}}$
$D\left(\mathbf{x}_{\mathbf{1}}, \mathbf{x}_{\mathbf{2}}\right)=D\left(\mathbf{x}_{\mathbf{1}}, \mathbf{x}_{\mathbf{2}}\right)$
$D\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)+D\left(\mathbf{x}_{\mathbf{2}}, \mathbf{x}_{3}\right) \geq D\left(\mathbf{x}_{\mathbf{1}}, \mathbf{x}_{3}\right)$
$D\left(\mathbf{x}_{\mathbf{1}}, \mathbf{x}_{2}\right)=\left\|\mathbf{x}_{1}-\mathbf{x}_{\mathbf{2}}\right\|$ just fine, but

Notes

Note, the minimum distance calculation can be reformulated into maximum similarity obtained by a dot product between the feature vector and the training examples.
When taking x as all the intensities, a " 5 " shifted 3 pixels left is farther from its etalon than to etalon " 8 ". One could consider preprocessing:

1. shift query image to all possible positions and compute min distances
2. take the $\min (\min ($ distance $))$
3. perform NN classification

Costly ...

What is nearest? Metrics for NN classification ...

Metrics : a function D which is

- nonnegative,
- reflexive,
- symmetrical,

- satisfying triangle inequality:
$D\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right) \geq 0$
$D\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)=0$ iff $\mathbf{x}_{1}=\mathbf{x}_{\mathbf{2}}$
$D\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)=D\left(\mathbf{x}_{\mathbf{1}}, \mathbf{x}_{\mathbf{2}}\right)$
$D\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)+D\left(\mathbf{x}_{\mathbf{2}}, \mathbf{x}_{3}\right) \geq D\left(\mathbf{x}_{\mathbf{1}}, \mathbf{x}_{3}\right)$
$D\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)=\left\|\mathbf{x}_{1}-\mathbf{x}_{\mathbf{2}}\right\|$ just fine, but

Invariance to geometrical transformations? (figure from [2])

Notes

Note, the minimum distance calculation can be reformulated into maximum similarity obtained by a dot product between the feature vector and the training examples.
When taking x as all the intensities, a " 5 " shifted 3 pixels left is farther from its etalon than to etalon " 8 ". One could consider preprocessing:

1. shift query image to all possible positions and compute min distances
2. take the $\min (\min ($ distance $))$
3. perform NN classification

Costly ...

Tangent space

Consider continuous tranformation:
e.g. rotation or translation not mirror reflection.
$\mathbf{x}=\left[x_{1}, x_{2}\right]^{\top}$ move along manifold \mathcal{M}
α is a tranformation parameter (e.g. angle)
Tangent vector $\boldsymbol{\tau}$ is a linearization

Figure from [1], slightly adapted

Approximating image rotation by adding tangent vector

Figures from [1], slighly adapted.

The right figure is just enhnanced version of the left one, for better visualisation.
a) orginal image x
b) tangent vector $\boldsymbol{\tau}$ corresponding to clockwise rotation
c) result of $x+15 \tau$; simulating 15° rotation
d) actually rotated image, clockwise 15°.

Combining more transformations

Approximate derivative by difference.
For all exemplars \mathbf{x}^{\prime}
and all r tranformations \mathcal{F}_{i}

- $\boldsymbol{\tau}_{\boldsymbol{i}}=\mathcal{F}_{i}\left(\mathbf{x}^{\prime}, \alpha_{i}\right)-\mathbf{x}^{\prime}$

For each exemplar we have $d \times r$ matrix T

$$
\mathrm{T}=\left[\tau_{1}, \tau_{2}, \cdots, \tau_{r}\right]
$$

Grouping coefficients $\mathbf{a}=\left[a_{1}, a_{2}\right]^{\top}$
Right image visualizes $\mathbf{x}^{\prime}+\mathrm{Ta}$

Figures from [2], slighly adapted.

$10 / 21$

Minimizing distance to tangent space

$$
D_{\tan }\left(\mathbf{x}^{\prime}, \mathbf{x}\right)=\min _{\mathbf{a}}\left\|\left(\mathbf{x}^{\prime}+\mathrm{Ta}\right)-\mathbf{x}\right\|
$$

Gradient descent will do.

Figures from [2], slighly adapted.

Linear classifiers II

$$
g(\mathbf{x})=\mathbf{w}^{\top} \mathbf{x}+w_{0}
$$

Decide s_{1} if $g(\mathbf{x})>0$ and s_{2} if $g(\mathbf{x})<0$

Figure from [2]
Notes
$g(\mathbf{x})=0$ is the separating hyperplane. Its dimension is one less that that of the input space - for 2 D space, it is a line. (This is a bit counterintuitive - "hyper" normally means above, more...)
What is the geometric meaning of the weight vector \mathbf{w} ?
One could mention the metaphor of the biological neuron here.

Linear classifiers II

Figure from [2]
Notes
$g(\mathbf{x})=0$ is the separating hyperplane. Its dimension is one less that that of the input space - for 2 D space, it is a line. (This is a bit counterintuitive - "hyper" normally means above, more...)
What is the geometric meaning of the weight vector \mathbf{w} ?
One could mention the metaphor of the biological neuron here.

Fischer linear discriminant

- Dimensionality reduction
- Maximize distance between means, ...
- and minimize within class variance. (minimize overlap)

Figures from [1]

Projections to lower dimensions $y=\mathbf{w}^{\top} \mathbf{x}$

Figure from [2]
Notes
Keep in mind we assume normalized \mathbf{w} hence, $\|\mathbf{w}\|=1$.

Projection to lower dimension $\mathbf{y}=W^{\top} \mathbf{x}$

Figure from [2]

Finding the best projection $y=\mathbf{w}^{\top} \mathbf{x}, y \geq-w_{0} \Rightarrow C_{1}$, otherwise C_{2}

$16 / 21$
Notes
This is just to make sure we understand geometric meaning of \mathbf{w}, w_{0} and the separating hyperplane. Remind the vector notation \mathbf{w} means the same as \vec{w}.

Finding the best projection $y=\mathbf{w}^{\top} \mathbf{x}, y \geq-w_{0} \Rightarrow C_{1}$, otherwise C_{2}

$$
m_{2}-m_{1}=\mathbf{w}^{\top}\left(\mathbf{m}_{2}-\mathbf{m}_{1}\right)
$$

Within class scatter of projected samples

$$
s_{i}^{2}=\sum_{y \in C_{i}}\left(y-m_{i}\right)^{2}
$$

Fischer criterion:

$$
J(\mathbf{w})=\frac{\left(m_{2}-m_{1}\right)^{2}}{s_{1}^{2}+s_{2}^{2}}
$$

Fischer criterion, max or min?

Notes

S_{B} stands for the between class scatter matrix. Remind

$$
\left(\frac{f}{g}\right)^{\prime}=\frac{f^{\prime} g-f g^{\prime}}{g^{2}}
$$

hence we seek:

$$
2 \mathrm{~S}_{B} \mathbf{w}\left(\mathbf{w}^{\top} \mathbf{S}_{W} \mathbf{w}\right)=\left(\mathbf{w}^{\top} \mathrm{S}_{B} \mathbf{w}\right) 2 \mathrm{~S}_{W} \mathbf{w}
$$

the expressions within bracket are (unknown) scalars

$$
\mathbf{S}_{B} \mathbf{w}=\lambda \mathbf{S}_{w} \mathbf{w}
$$

leading to eigenvalue problem

$$
\mathrm{S}_{W}^{-1} \mathrm{~S}_{B} \mathbf{w}=\lambda \mathbf{w}
$$

However, $S_{B} \mathbf{w}$ is always in direction $\left(\mathbf{m}_{2}-\mathbf{m}_{1}\right)$, and scale is not important

$$
\mathbf{w}=\mathrm{S}_{W}^{-1}\left(\mathbf{m}_{2}-\mathbf{m}_{1}\right)
$$

LSQ approach to linear classification

$$
\begin{gathered}
\mathbf{w}=\left[\begin{array}{l}
w_{0} \\
\mathbf{w}
\end{array}\right] \\
\mathrm{X} \mathbf{w}=\mathbf{b} \\
J(\mathbf{w})=\|\mathrm{X} \mathbf{w}-\mathbf{b}\|^{2}
\end{gathered}
$$

Notes

Write dimensions to each symbol, n may stand for the number of points, d for dimensionality of the feature space.
Solving

$$
\frac{\partial J(\mathbf{w})}{\partial \mathbf{w}}=0
$$

yields $\mathbf{w}=\left(X^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top} \mathbf{b}$ Try to solve the above figure. We are looking for a separating hyperplane

$$
\mathbf{w}^{\top}\left[\begin{array}{c}
1 \\
x_{1} \\
x_{2}
\end{array}\right]=0
$$

and we want points in training set distant from the hyperplane

$$
\begin{gathered}
X=\left[\begin{array}{ccc}
1 & 1 & 2 \\
1 & 2 & 0 \\
-1 & -3 & -1 \\
-1 & -2 & -3
\end{array}\right] \\
\left.\mathbf{b}=\left[\begin{array}{lll}
1 & 1 & 1
\end{array}\right]\right]^{\top}
\end{gathered}
$$

Linear least squares not guaranteed to correctly classify everything on the training set. It's objective function not perfect for classification. Margins b were set quite arbitrarily.
Outliers can shift the decision boundary.

LSQ approach, better margins b?

$$
\begin{gathered}
X=\left[\begin{array}{cc}
1_{1} & X_{1} \\
-1_{2} & -X_{2}
\end{array}\right] \\
\mathbf{b}=\left[\begin{array}{c}
\frac{n}{n_{1}} 1_{1} \\
\frac{n}{n_{2}} 1_{2}
\end{array}\right]
\end{gathered}
$$

After some derivation it can be shown the LSQ solution is equivalent to Fisher linear discriminant insert into intermediate result when solving $\frac{\partial J(w)}{\partial w}=0$

$$
\mathrm{x}^{\top} \mathrm{X} \boldsymbol{w}=\mathrm{X}^{\top} \mathbf{b}
$$

References

Further reading: Chapter 4 of [1], or chapter 3 and 5 of [2].
[1] Christopher M. Bishop.
Pattern Recognition and Machine Learning.
Springer Science+Bussiness Media, New York, NY, 2006.
https://www.microsoft.com/en-us/research/uploads/prod/2006/01/
Bishop-Pattern-Recognition-and-Machine-Learning-2006.pdf.
[2] Richard O. Duda, Peter E. Hart, and David G. Stork.
Pattern Classification.
John Wiley \& Sons, 2nd edition, 2001.

