
Linear Classifiers II,
and Tangent Space for k − NN

Tomáš Svoboda

Vision for Robots and Autonomous Systems, Center for Machine Perception
Department of Cybernetics

Faculty of Electrical Engineering, Czech Technical University in Prague

May 23, 2022

1 / 21

Notes

http://cyber.felk.cvut.cz/vras
http://cmp.felk.cvut.cz
http://cyber.felk.cvut.cz
http://fel.cvut.cz
http://cvut.cz

Outline

I k − NN, Tangent distance measure, invariance to rotation

I Better etalons by applying Fischer linear discriminator analysis.

I LSQ formulation of the learning task.

2 / 21

Notes

K -Nearest neighbors classification

For a query x:

I Find K nearest x from the training (labeled) data.

I Classify to the class with the most exemplars in the set above.

−1.5 −1 −0.5 0 0.5 1
−0.5

0

0.5

1

1.5
1−nearest neighbour classifier

3 / 21

Notes

Some properties:

� A nonparametric method – does not assume anything about the distribution (that it is Gaussian etc.).

� Can be used for classification or regression. Here: classification.

� Training: Only store feature vectors and their labels.

� Very simple and suboptimal. With unlimited nr. prototypes, error never worse than twice the Bayes rate
(optimum).

� instance-based or lazy learning – function only approximated locally; computation only during inference.

� Limitations

– Curse of dimensionality - for every additional dimension, one needs exponentially more points
to cover the space.

– Comp. complexity - has to look through all the samples all the time. Some speed-up is
possible. E.g., storing data in a K-d tree.

– Noise. Missclassified examples will remain in the database....

K− Nearest Neighbor and Bayes j∗ = argmaxj P(sj |x)
Assume data:

I N points x in total.

I Nj points in sj class. Hence,
∑

j Nj = N.

We want to classify x. Draw a sphere centered
at x containing K points irrespective of class.
V is the volume of this sphere. P(sj |x) =?

x1

x2

(a)

P(sj |x) =
P(x|sj)P(sj)

P(x)

Kj is the number of points of class sj among
the K nearest neighbors.

P(sj) =
Nj

N

P(x) =
K

NV

P(x|sj) =
Kj

NjV

P(sj |x) =
P(x|sj)P(sj)

P(x)
=

Kj

K

4 / 21

Notes

NN classification example

x1

x2

(a)
x1

x2

(b) 1

1Figs from [1]
5 / 21

Notes
Left: k = 3.
Right: Decision boundary for k = 1.

NN classification example

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5
Pentagon data

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5
1−nearest neighbour classifier

6 / 21

Notes
Fast on “learning”, very slow on decision.

There are ways for speeding it up, search for NN editing – making training data sparser, keeping only representative

points.

What is nearest? Metrics for NN classification . . .
Metrics : a function D which is

I nonnegative,

I reflexive,

I symmetrical,

I satisfying triangle inequality:

D(x1, x2) ≥ 0

D(x1, x2) = 0 iff x1 = x2

D(x1, x2) = D(x1, x2)

D(x1, x2) + D(x2, x3) ≥ D(x1, x3)

D(x1, x2) = ‖x1 − x2‖ just fine, but
. . .

1 2 3 4 5

2.58

x8 x' x'(s=3)

D(x,x(s))

D(x',x8)

s

FIGURE 4.20. The uncritical use of Euclidean metric cannot address the problem of
translation invariance. Pattern x′ represents a handwritten 5, and x′(s = 3) represents the
same shape but shifted three pixels to the right. The Euclidean distance D(x′, x′(s = 3))

is much larger than D(x′, x8), where x8 represents the handwritten 8. Nearest-neighbor
classification based on the Euclidean distance in this way leads to very large errors.
Instead, we seek a distance measure that would be insensitive to such translations, or
indeed other known invariances, such as scale or rotation. From: Richard O. Duda, Peter
E. Hart, and David G. Stork, Pattern Classification. Copyright c⃝ 2001 by John Wiley &
Sons, Inc.

Invariance to geometrical transformations? (figure from [2])

7 / 21

Notes
Note, the minimum distance calculation can be reformulated into maximum similarity obtained by a dot product
between the feature vector and the training examples.
When taking x as all the intensities, a “5” shifted 3 pixels left is farther from its etalon than to etalon of “8”.
One could consider preprocessing:

1. shift query image to all possible positions and compute min distances

2. take the min(min(distance))

3. perform NN classification

Costly . . .

What is nearest? Metrics for NN classification . . .
Metrics : a function D which is

I nonnegative,

I reflexive,

I symmetrical,

I satisfying triangle inequality:

D(x1, x2) ≥ 0

D(x1, x2) = 0 iff x1 = x2

D(x1, x2) = D(x1, x2)

D(x1, x2) + D(x2, x3) ≥ D(x1, x3)

D(x1, x2) = ‖x1 − x2‖ just fine, but
. . .

1 2 3 4 5

2.58

x8 x' x'(s=3)

D(x,x(s))

D(x',x8)

s

FIGURE 4.20. The uncritical use of Euclidean metric cannot address the problem of
translation invariance. Pattern x′ represents a handwritten 5, and x′(s = 3) represents the
same shape but shifted three pixels to the right. The Euclidean distance D(x′, x′(s = 3))

is much larger than D(x′, x8), where x8 represents the handwritten 8. Nearest-neighbor
classification based on the Euclidean distance in this way leads to very large errors.
Instead, we seek a distance measure that would be insensitive to such translations, or
indeed other known invariances, such as scale or rotation. From: Richard O. Duda, Peter
E. Hart, and David G. Stork, Pattern Classification. Copyright c⃝ 2001 by John Wiley &
Sons, Inc.

Invariance to geometrical transformations? (figure from [2])
7 / 21

Notes
Note, the minimum distance calculation can be reformulated into maximum similarity obtained by a dot product
between the feature vector and the training examples.
When taking x as all the intensities, a “5” shifted 3 pixels left is farther from its etalon than to etalon of “8”.
One could consider preprocessing:

1. shift query image to all possible positions and compute min distances

2. take the min(min(distance))

3. perform NN classification

Costly . . .

Tangent space

Consider continuous tranformation:
e.g. rotation or translation not mirror reflection.

x = [x1, x2]> move along manifold M
α is a tranformation parameter (e.g. angle)
Tangent vector τ is a linearization

x1

x2

xn

τn

ξ

M
α

Figure from [1], slightly adapted

8 / 21

Notes

Approximating image rotation by adding tangent vector
(a) (b)

(c) (d)

τ

x + 15τ

x

15◦

Figures from [1], slighly adapted.

9 / 21

Notes
The right figure is just enhnanced version of the left one, for better visualisation.

a) orginal image x

b) tangent vector τ corresponding to clockwise rotation

c) result of x + 15τ ; simulating 15◦ rotation

d) actually rotated image, clockwise 15◦.

Combining more transformations
Approximate derivative by difference.
For all exemplars x′

and all r tranformations Fi

I τi = Fi (x
′, αi)− x′

For each exemplar we have d × r matrix T

T = [τ1, τ2, · · · , τr]

Grouping coefficients a = [a1, a2]>

Right image visualizes x′ + Ta 0 281 0 694

641 660 924 1283

0 973 1535 1856

1628 1767 2122 2373

TV2
(thinning)

TV1
(rotation)

0 0.5 1.5

0

0.5

1.5

prototype a1

a2

τ2

τ1

Figures from [2], slighly adapted.
10 / 21

Notes

Minimizing distance to tangent space

x3

x'
TV1

T
V

2 tangent space
Ta

x1

D
tan (x',x

2)

x2

x1

x2

τ2

τ1

Dtan(x′, x) = min
a
‖(x′ + Ta)− x‖

Gradient descent will do.

Figures from [2], slighly adapted.

11 / 21

Notes

Linear classifiers II

g(x) = w>x + w0

Decide s1 if g(x) > 0 and s2 if g(x) < 0

x0 =1

x1

. . .
w2

w0

w1

wd

g(x)

x2 xd
. . .

bias unit

input units

output unit

FIGURE 5.1. A simple linear classifier having d input units, each corresponding to the
values of the components of an input vector. Each input feature value xi is multiplied
by its corresponding weight wi; the effective input at the output unit is the sum all these
products,

∑
wixi. We show in each unit its effective input-output function. Thus each of

the d input units is linear, emitting exactly the value of its corresponding feature value.
The single bias unit unit always emits the constant value 1.0. The single output unit
emits a +1 if wtx + w0 > 0 or a −1 otherwise. From: Richard O. Duda, Peter E. Hart,
and David G. Stork, Pattern Classification. Copyright c⃝ 2001 by John Wiley & Sons,
Inc.

Figure from [2] 12 / 21

Notes
g(x) = 0 is the separating hyperplane. Its dimension is one less that that of the input space – for 2D space, it is
a line. (This is a bit counterintuitive - “hyper” normally means above, more...)
What is the geometric meaning of the weight vector w?

One could mention the metaphor of the biological neuron here.

Linear classifiers II

g(x) = w>x + w0

Decide s1 if g(x) > 0 and s2 if g(x) < 0

x0 =1

x1

. . .
w2

w0

w1

wd

g(x)

x2 xd
. . .

bias unit

input units

output unit

FIGURE 5.1. A simple linear classifier having d input units, each corresponding to the
values of the components of an input vector. Each input feature value xi is multiplied
by its corresponding weight wi; the effective input at the output unit is the sum all these
products,

∑
wixi. We show in each unit its effective input-output function. Thus each of

the d input units is linear, emitting exactly the value of its corresponding feature value.
The single bias unit unit always emits the constant value 1.0. The single output unit
emits a +1 if wtx + w0 > 0 or a −1 otherwise. From: Richard O. Duda, Peter E. Hart,
and David G. Stork, Pattern Classification. Copyright c⃝ 2001 by John Wiley & Sons,
Inc.

Figure from [2] 12 / 21

Notes
g(x) = 0 is the separating hyperplane. Its dimension is one less that that of the input space – for 2D space, it is
a line. (This is a bit counterintuitive - “hyper” normally means above, more...)
What is the geometric meaning of the weight vector w?

One could mention the metaphor of the biological neuron here.

Fischer linear discriminant

−2 2 6

−2

0

2

4

−2 2 6

−2

0

2

4

I Dimensionality reduction

I Maximize distance between means, . . .

I . . . and minimize within class variance. (minimize overlap)

Figures from [1]

13 / 21

Notes

Projections to lower dimensions y = w>x

0.5 1 1.5

0.5

1

1.5

2

0.5 1 1.5
x1

-0.5

0.5

1

1.5

2

x2

w

w

x1

x2

FIGURE 3.5. Projection of the same set of samples onto two different lines in the di-
rections marked w. The figure on the right shows greater separation between the red
and black projected points. From: Richard O. Duda, Peter E. Hart, and David G. Stork,
Pattern Classification. Copyright c⃝ 2001 by John Wiley & Sons, Inc.

Figure from [2]
14 / 21

Notes

Keep in mind we assume normalized w hence, ‖w‖ = 1.

Projection to lower dimension y = W>x

W1

W2

FIGURE 3.6. Three three-dimensional distributions are projected onto two-dimensional
subspaces, described by a normal vectors W1 and W2. Informally, multiple discriminant
methods seek the optimum such subspace, that is, the one with the greatest separation of
the projected distributions for a given total within-scatter matrix, here as associated with
W1. From: Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern Classification.
Copyright c⃝ 2001 by John Wiley & Sons, Inc.

Figure from [2]
15 / 21

Notes

Finding the best projection y = w>x, y ≥ −w0 ⇒ C1, otherwise C2

w

−w0

�w�

g(x) < 0g(x) > 0

g(x) = w�x + w0 = 0
x2

x1

y = w�x −2 2 6

−2

0

2

4

16 / 21

Notes

This is just to make sure we understand geometric meaning of w,w0 and the separating hyperplane. Remind the

vector notation w means the same as ~w .

Finding the best projection y = w>x, y ≥ −w0 ⇒ C1, otherwise C2

m2 −m1 = w>(m2 −m1)

Within class scatter of projected samples

s2
i =

∑

y∈Ci

(y −mi)
2

Fischer criterion:

J(w) =
(m2 −m1)2

s2
1 + s2

2

−2 2 6

−2

0

2

4

17 / 21

Notes

Fischer criterion, max or min?

Finding the best projection y = w>x, y ≥ −w0 ⇒ C1, otherwise C2
m2 −m1 = w>(m2 −m1)

s2
i =

∑

y∈Ci

(y −mi)
2

J(w) =
(m2 −m1)2

s2
1 + s2

2

∂J(w)

∂w
= 0

Si =
∑

x∈Ci

(x−mi)(x−mi)
>

SW = S1 + S2

SB = (m2 −m1)(m2 −m1)>

J(w) =
w>SBw

w>SWw

18 / 21

Notes
SB stands for the between class scatter matrix. Remind(

f

g

)′
=

f ′g − fg ′

g 2

hence we seek:
2SBw(w>SWw) = (w>SBw)2SWw

the expressions within bracket are (unknown) scalars

SBw = λSWw

leading to eigenvalue problem
S
−1
W SBw = λw

However, SBw is always in direction (m2 −m1), and scale is not important

w = S
−1
W (m2 −m1)

LSQ approach to linear classification

w =

[
w0

w

]

Xw = b

J(w) = ‖Xw − b‖2

30 CHAPTER 5. LINEAR DISCRIMINANT FUNCTIONS

0 1 2 3 4

0

1

2

3

4

R1
R2

x1

x2

Four training points and the decision boundary at

⎛
⎝

1
x1

x2

⎞
⎠ = 0, where a was found

by means of a pseudoinverse technique.

We arbitrarily let all the margins be equal, i.e., b = (1, 1, 1, 1)t. Our solution is
a = Y†b = (11/3,−4/3,−2/3)t, and leads to the decision boundary shown in the
figure. Other choices for b would typically lead to different decision boundaries, of
course.

5.8.2 Relation to Fisher’s Linear Discriminant

In this section we shall show that with the proper choice of the vector b, the MSE
discriminant function aty is directly related to Fisher’s linear discriminant. To do
this, we must return to the use of linear rather than generalized linear discriminant
functions. We assume that we have a set of n d-dimensional samples x1, ...,xn, n1 of
which are in the subset D1 labelled ω1, and n2 of which are in the subset D2 labelled
ω2. Further, we assume that a sample yi is formed from xi by adding a threshold
component x0 = 1 to make an augmented pattern vector. Further, if the sample isaugmented

pattern
vector

labelled ω2, then the entire pattern vector is multiplied by −1 — the “normlization”
we saw in Sect. 5.4.1. With no loss in generality, we can assume that the first n1

samples are labelled ω1 and the second n2 are labelled ω2. Then the matrix Y can
be partitioned as follows:

Y =

[
11 X1

−12 −X2

]
,

where 1i is a column vector of ni ones, and Xi is an ni-by-d matrix whose rows are
the samples labelled ωi. We partition a and b correspondingly, with

a =

[
w0

w

]

and with

19 / 21

Notes
Write dimensions to each symbol, n may stand for the number of points, d for dimensionality of the feature
space.
Solving

∂J(w)

∂w
= 0

yields w = (X>X)−1X>b Try to solve the above figure. We are looking for a separating hyperplane

w>

 1
x1

x2

 = 0

and we want points in training set distant from the hyperplane

X =

1 1 2
1 2 0
−1 −3 −1
−1 −2 −3

b = [1 1 1 1]>

Linear least squares not guaranteed to correctly classify everything on the training set. It’s objective function not
perfect for classification. Margins b were set quite arbitrarily.

Outliers can shift the decision boundary.

LSQ approach, better margins b?

X =

[
11 X1

−12 −X2

]

b =

[n
n1
11

n
n2
12

]

20 / 21

Notes
After some derivation it can be shown the LSQ solution is equivalent to Fisher linear discriminant
insert into intermediate result when solving ∂J(w)

∂w = 0

X
>
Xw = X

>b

References I

Further reading: Chapter 4 of [1], or chapter 3 and 5 of [2].

[1] Christopher M. Bishop.

Pattern Recognition and Machine Learning.

Springer Science+Bussiness Media, New York, NY, 2006.

https://www.microsoft.com/en-us/research/uploads/prod/2006/01/
Bishop-Pattern-Recognition-and-Machine-Learning-2006.pdf.

[2] Richard O. Duda, Peter E. Hart, and David G. Stork.

Pattern Classification.

John Wiley & Sons, 2nd edition, 2001.

21 / 21

Notes

https://www.microsoft.com/en-us/research/uploads/prod/2006/01/Bishop-Pattern-Recognition-and-Machine-Learning-2006.pdf
https://www.microsoft.com/en-us/research/uploads/prod/2006/01/Bishop-Pattern-Recognition-and-Machine-Learning-2006.pdf

	Improving k-NN classifier
	Linear classifiers
	References

