Linear Classifiers II, and Tangent Space for k - NN

Tomáš Svoboda

Vision for Robots and Autonomous Systems, Center for Machine Perception
Department of Cybernetics
Faculty of Electrical Engineering, Czech Technical University in Prague

May 23, 2022

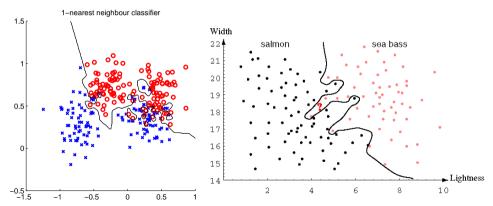
Outline

- ightharpoonup k-NN, Tangent distance measure, invariance to rotation
- Better etalons by applying Fischer linear discriminator analysis.
- ► LSQ formulation of the learning task.

K-Nearest neighbors classification

For a query x:

- Find K nearest x from the training (labeled) data.
- ▶ Classify to the class with the most exemplars in the set above.

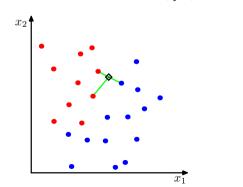


K – Nearest Neighbor and Bayes $j^* = \operatorname{argmax}_i P(s_i | \mathbf{x})$

Assume data:

- N points x in total.
- ▶ N_j points in s_j class. Hence, $\sum_i N_j = N$.

We want to classify \mathbf{x} . Draw a sphere centered at \mathbf{x} containing K points irrespective of class. V is the volume of this sphere. $P(s_i|\mathbf{x}) = ?$



$$P(s_j|\mathbf{x}) = \frac{P(\mathbf{x}|s_j)P(s_j)}{P(\mathbf{x})}$$

 K_j is the number of points of class s_j among the K nearest neighbors.

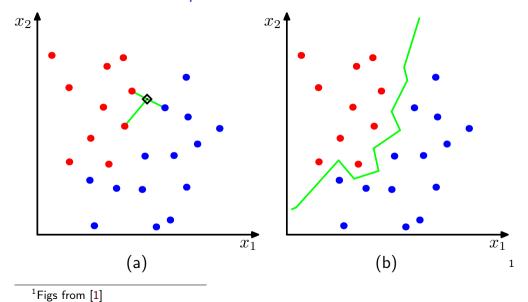
$$P(s_j) = \frac{N_j}{N}$$

$$P(\mathbf{x}) = \frac{K}{NV}$$

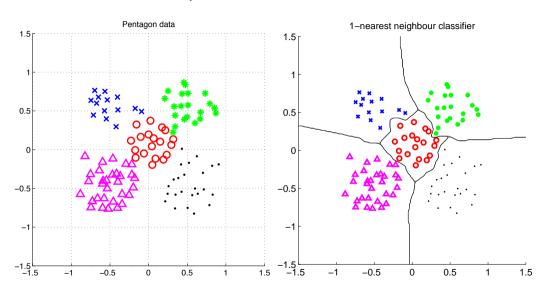
$$P(\mathbf{x}|s_j) = \frac{K_j}{N_j V}$$

$$P(s_j|\mathbf{x}) = \frac{P(\mathbf{x}|s_j)P(s_j)}{P(\mathbf{x})} = \frac{K_j}{K}$$

NN classification example



NN classification example



What is nearest? Metrics for NN classification . . .

Metrics: a function D which is

- nonnegative,
- reflexive,
- symmetrical,
- satisfying triangle inequality:

$$\begin{split} &D(\mathbf{x_1},\mathbf{x_2}) \geq 0 \\ &D(\mathbf{x_1},\mathbf{x_2}) = 0 \text{ iff } \mathbf{x_1} = \mathbf{x_2} \\ &D(\mathbf{x_1},\mathbf{x_2}) = D(\mathbf{x_1},\mathbf{x_2}) \\ &D(\mathbf{x_1},\mathbf{x_2}) + D(\mathbf{x_2},\mathbf{x_3}) \geq D(\mathbf{x_1},\mathbf{x_3}) \\ &D(\mathbf{x_1},\mathbf{x_2}) = \|\mathbf{x_1} - \mathbf{x_2}\| \text{ just fine, but} \\ &\dots \end{split}$$

What is *nearest?* Metrics for NN classification . . .

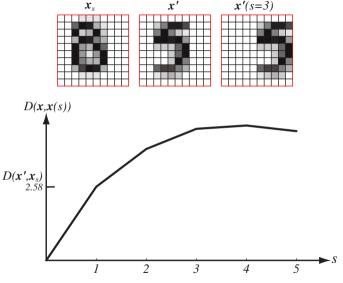
Metrics: a function D which is

- nonnegative.
- reflexive.
- symmetrical.
- satisfying triangle inequality:

$$D(\mathbf{x}_1, \mathbf{x}_2) \ge 0$$

 $D(\mathbf{x}_1, \mathbf{x}_2) = 0$ iff $\mathbf{x}_1 = \mathbf{x}_2$
 $D(\mathbf{x}_1, \mathbf{x}_2) = D(\mathbf{x}_1, \mathbf{x}_2)$
 $D(\mathbf{x}_1, \mathbf{x}_2) + D(\mathbf{x}_2, \mathbf{x}_3) \ge D(\mathbf{x}_1, \mathbf{x}_3)$

 $D(x_1, x_2) = ||x_1 - x_2||$ just fine, but



Invariance to geometrical transformations? (figure from [2]) $_{7/21}$

Tangent space

Consider continuous tranformation: e.g. rotation or translation not mirror reflection.

 $\mathbf{x} = [x_1, x_2]^{\top}$ move along manifold \mathcal{M} α is a tranformation parameter (e.g. angle) Tangent vector $\boldsymbol{\tau}$ is a linearization

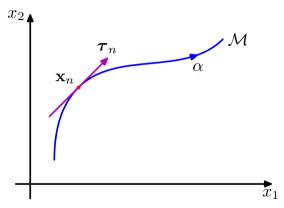
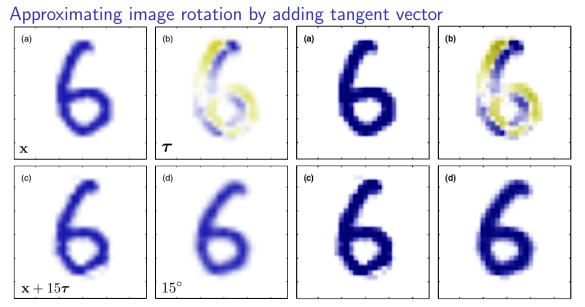


Figure from [1], slightly adapted



Figures from [1], slighly adapted.

Combining more transformations

Approximate derivative by difference.

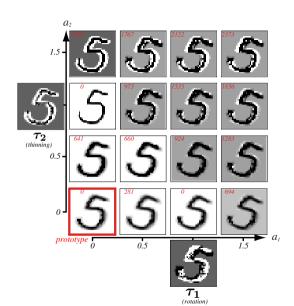
For all exemplars \mathbf{x}' and all r tranformations \mathcal{F}_i

$$au_i = \mathcal{F}_i(\mathbf{x}', \alpha_i) - \mathbf{x}'$$

For each exemplar we have $d \times r$ matrix T

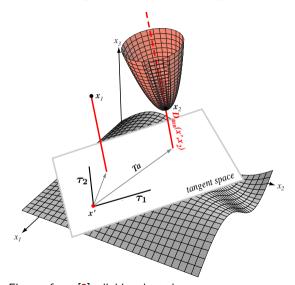
$$\mathtt{T} = [au_1, au_2, \cdots, au_r]$$

Grouping coefficients $\mathbf{a} = [a_1, a_2]^{\top}$ Right image visualizes $\mathbf{x}' + T\mathbf{a}$



Figures from [2], slighly adapted.

Minimizing distance to tangent space



$$D_{tan}(\mathbf{x}',\mathbf{x}) = \min_{\mathbf{a}} \| (\mathbf{x}' + T\mathbf{a}) - \mathbf{x} \|$$
 Gradient descent will do.

Figures from [2], slighly adapted.

Linear classifiers II

$$g(\mathbf{x}) = \mathbf{w}^{\top} \mathbf{x} + w_0$$

Decide s_1 if $g(\mathbf{x}) > 0$ and s_2 if $g(\mathbf{x}) < 0$

Figure from [2]

Linear classifiers II

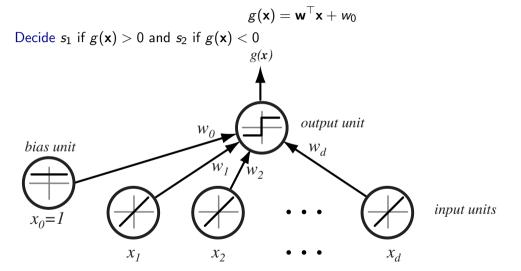
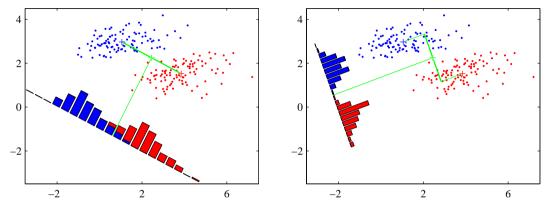


Figure from [2]

Fischer linear discriminant



- Dimensionality reduction
- Maximize distance between means, . . .
- ▶ ...and minimize within class variance. (minimize overlap)

Figures from [1]

Projections to lower dimensions $y = \mathbf{w}^{\mathsf{T}} \mathbf{x}$

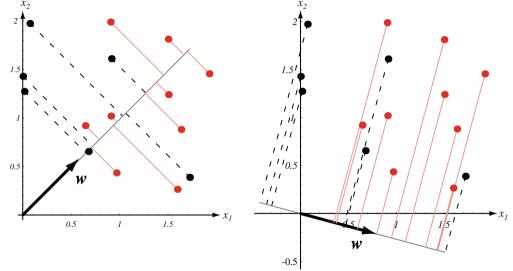


Figure from [2] $_{14/21}$

Projection to lower dimension $\mathbf{y} = \mathbf{W}^{\top}\mathbf{x}$

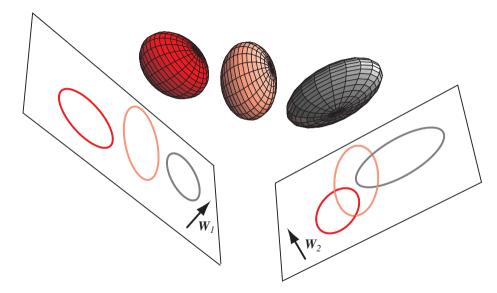
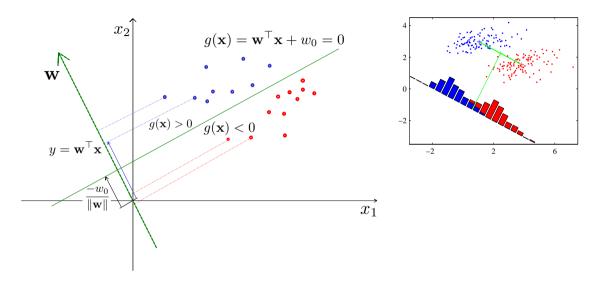


Figure from [2]

Finding the best projection $y = \mathbf{w}^{\top} \mathbf{x}$, $y \ge -w_0 \Rightarrow C_1$, otherwise C_2



Finding the best projection $y = \mathbf{w}^{\top} \mathbf{x}$, $y \ge -w_0 \Rightarrow C_1$, otherwise C_2

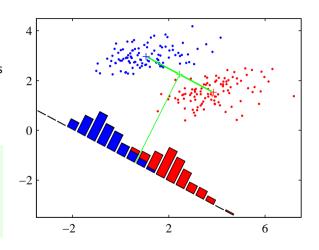
$$m_2 - m_1 = \mathbf{w}^{\top} (\mathbf{m}_2 - \mathbf{m}_1)$$

Within class scatter of projected samples

$$s_i^2 = \sum_{y \in C_i} (y - m_i)^2$$

Fischer criterion:

$$J(\mathbf{w}) = \frac{(m_2 - m_1)^2}{s_1^2 + s_2^2}$$



Finding the best projection
$$y = \mathbf{w}^{\top}\mathbf{x}$$
, $y \ge -w_0 \Rightarrow C_1$, otherwise C_2

$$m_2 - m_1 = \mathbf{w}^{\top}(\mathbf{m}_2 - \mathbf{m}_1)$$

$$s_i^2 = \sum_{y \in C_i} (y - m_i)^2$$

$$S_W = S_1 + S_2$$

$$J(\mathbf{w}) = \frac{(m_2 - m_1)^2}{s_1^2 + s_2^2}$$

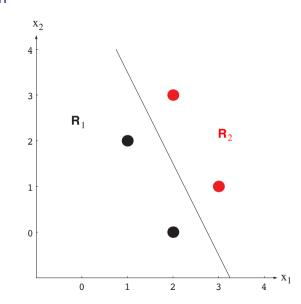
$$\frac{\partial J(\mathbf{w})}{\partial \mathbf{w}} = 0$$

$$S_B = (\mathbf{m}_2 - \mathbf{m}_1)(\mathbf{m}_2 - \mathbf{m}_1)^{\top}$$

$$J(\mathbf{w}) = \frac{\mathbf{w}^{\top}S_B\mathbf{w}}{\mathbf{w}^{\top}S_W\mathbf{w}}$$

LSQ approach to linear classification

$$\mathbf{w} = \begin{bmatrix} w_0 \\ \mathbf{w} \end{bmatrix}$$
$$X\mathbf{w} = \mathbf{b}$$
$$J(\mathbf{w}) = \|X\mathbf{w} - \mathbf{b}\|^2$$



LSQ approach, better margins b?

$$X = \left[egin{array}{ccc} 1_1 & X_1 \ -1_2 & -X_2 \end{array}
ight]$$
 $\mathbf{b} = \left[egin{array}{ccc} rac{n}{n_1} 1_1 \ rac{n}{n_2} 1_2 \end{array}
ight]$

References I

Further reading: Chapter 4 of [1], or chapter 3 and 5 of [2].

[1] Christopher M. Bishop.

Pattern Recognition and Machine Learning.

Springer Science+Bussiness Media, New York, NY, 2006.

https://www.microsoft.com/en-us/research/uploads/prod/2006/01/Bishop-Pattern-Recognition-and-Machine-Learning-2006.pdf.

[2] Richard O. Duda, Peter E. Hart, and David G. Stork.

Pattern Classification.

John Wiley & Sons, 2nd edition, 2001.