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Outline

I k − NN, Tangent distance measure, invariance to rotation

I Better etalons by applying Fischer linear discriminator analysis.

I LSQ formulation of the learning task.
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K -Nearest neighbors classification

For a query x:

I Find K nearest x from the training (labeled) data.

I Classify to the class with the most exemplars in the set above.
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K− Nearest Neighbor and Bayes j∗ = argmaxj P(sj |x)
Assume data:

I N points x in total.

I Nj points in sj class. Hence,
∑

j Nj = N.

We want to classify x. Draw a sphere centered
at x containing K points irrespective of class.
V is the volume of this sphere. P(sj |x) =?

x1

x2

(a)

P(sj |x) =
P(x|sj)P(sj)

P(x)

Kj is the number of points of class sj among
the K nearest neighbors.

P(sj) =
Nj

N

P(x) =
K

NV

P(x|sj) =
Kj

NjV

P(sj |x) =
P(x|sj)P(sj)

P(x)
=

Kj

K
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NN classification example
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NN classification example
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What is nearest? Metrics for NN classification . . .
Metrics : a function D which is

I nonnegative,

I reflexive,

I symmetrical,

I satisfying triangle inequality:

D(x1, x2) ≥ 0

D(x1, x2) = 0 iff x1 = x2

D(x1, x2) = D(x1, x2)

D(x1, x2) + D(x2, x3) ≥ D(x1, x3)

D(x1, x2) = ‖x1 − x2‖ just fine, but
. . .
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s

FIGURE 4.20. The uncritical use of Euclidean metric cannot address the problem of
translation invariance. Pattern x′ represents a handwritten 5, and x′(s = 3) represents the
same shape but shifted three pixels to the right. The Euclidean distance D(x′, x′(s = 3))

is much larger than D(x′, x8), where x8 represents the handwritten 8. Nearest-neighbor
classification based on the Euclidean distance in this way leads to very large errors.
Instead, we seek a distance measure that would be insensitive to such translations, or
indeed other known invariances, such as scale or rotation. From: Richard O. Duda, Peter
E. Hart, and David G. Stork, Pattern Classification. Copyright c⃝ 2001 by John Wiley &
Sons, Inc.

Invariance to geometrical transformations? (figure from [2])
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Tangent space

Consider continuous tranformation:
e.g. rotation or translation not mirror reflection.

x = [x1, x2]> move along manifold M
α is a tranformation parameter (e.g. angle)
Tangent vector τ is a linearization

x1

x2

xn

τn

ξ

M
α

Figure from [1], slightly adapted
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Approximating image rotation by adding tangent vector
(a) (b)

(c) (d)

τ

x + 15τ

x

15◦

Figures from [1], slighly adapted.
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Combining more transformations
Approximate derivative by difference.
For all exemplars x′

and all r tranformations Fi

I τi = Fi (x
′, αi )− x′

For each exemplar we have d × r matrix T

T = [τ1, τ2, · · · , τr ]

Grouping coefficients a = [a1, a2]>

Right image visualizes x′ + Ta 0 281 0 694

641 660 924 1283

0 973 1535 1856

1628 1767 2122 2373

TV2
(thinning)

TV1
(rotation)
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Figures from [2], slighly adapted.
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Minimizing distance to tangent space
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TV1
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Ta
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2 )
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Dtan(x′, x) = min
a
‖(x′ + Ta)− x‖

Gradient descent will do.

Figures from [2], slighly adapted.
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Linear classifiers II

g(x) = w>x + w0

Decide s1 if g(x) > 0 and s2 if g(x) < 0

x0 =1

x1

. . .
w2

w0

w1

wd

g(x)

x2 xd
. . .

bias unit

input units

output unit

FIGURE 5.1. A simple linear classifier having d input units, each corresponding to the
values of the components of an input vector. Each input feature value xi is multiplied
by its corresponding weight wi; the effective input at the output unit is the sum all these
products,

∑
wixi. We show in each unit its effective input-output function. Thus each of

the d input units is linear, emitting exactly the value of its corresponding feature value.
The single bias unit unit always emits the constant value 1.0. The single output unit
emits a +1 if wtx + w0 > 0 or a −1 otherwise. From: Richard O. Duda, Peter E. Hart,
and David G. Stork, Pattern Classification. Copyright c⃝ 2001 by John Wiley & Sons,
Inc.

Figure from [2] 12 / 21
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Fischer linear discriminant
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I Dimensionality reduction

I Maximize distance between means, . . .

I . . . and minimize within class variance. (minimize overlap)

Figures from [1]
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Projections to lower dimensions y = w>x
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FIGURE 3.5. Projection of the same set of samples onto two different lines in the di-
rections marked w. The figure on the right shows greater separation between the red
and black projected points. From: Richard O. Duda, Peter E. Hart, and David G. Stork,
Pattern Classification. Copyright c⃝ 2001 by John Wiley & Sons, Inc.

Figure from [2]
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Projection to lower dimension y = W>x

W1

W2

FIGURE 3.6. Three three-dimensional distributions are projected onto two-dimensional
subspaces, described by a normal vectors W1 and W2. Informally, multiple discriminant
methods seek the optimum such subspace, that is, the one with the greatest separation of
the projected distributions for a given total within-scatter matrix, here as associated with
W1. From: Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern Classification.
Copyright c⃝ 2001 by John Wiley & Sons, Inc.

Figure from [2]
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Finding the best projection y = w>x, y ≥ −w0 ⇒ C1, otherwise C2

w

−w0

�w�

g(x) < 0g(x) > 0

g(x) = w�x + w0 = 0
x2

x1

y = w�x −2 2 6

−2

0

2

4
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Finding the best projection y = w>x, y ≥ −w0 ⇒ C1, otherwise C2

m2 −m1 = w>(m2 −m1)

Within class scatter of projected samples

s2
i =

∑

y∈Ci

(y −mi )
2

Fischer criterion:

J(w) =
(m2 −m1)2

s2
1 + s2

2

−2 2 6

−2

0

2

4
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Finding the best projection y = w>x, y ≥ −w0 ⇒ C1, otherwise C2
m2 −m1 = w>(m2 −m1)

s2
i =

∑

y∈Ci

(y −mi )
2

J(w) =
(m2 −m1)2

s2
1 + s2

2

∂J(w)

∂w
= 0

Si =
∑

x∈Ci

(x−mi )(x−mi )
>

SW = S1 + S2

SB = (m2 −m1)(m2 −m1)>

J(w) =
w>SBw

w>SWw
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LSQ approach to linear classification

w =

[
w0

w

]

Xw = b

J(w) = ‖Xw − b‖2

30 CHAPTER 5. LINEAR DISCRIMINANT FUNCTIONS
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Four training points and the decision boundary at

⎛
⎝

1
x1

x2

⎞
⎠ = 0, where a was found

by means of a pseudoinverse technique.

We arbitrarily let all the margins be equal, i.e., b = (1, 1, 1, 1)t. Our solution is
a = Y†b = (11/3,−4/3,−2/3)t, and leads to the decision boundary shown in the
figure. Other choices for b would typically lead to different decision boundaries, of
course.

5.8.2 Relation to Fisher’s Linear Discriminant

In this section we shall show that with the proper choice of the vector b, the MSE
discriminant function aty is directly related to Fisher’s linear discriminant. To do
this, we must return to the use of linear rather than generalized linear discriminant
functions. We assume that we have a set of n d-dimensional samples x1, ...,xn, n1 of
which are in the subset D1 labelled ω1, and n2 of which are in the subset D2 labelled
ω2. Further, we assume that a sample yi is formed from xi by adding a threshold
component x0 = 1 to make an augmented pattern vector. Further, if the sample isaugmented

pattern
vector

labelled ω2, then the entire pattern vector is multiplied by −1 — the “normlization”
we saw in Sect. 5.4.1. With no loss in generality, we can assume that the first n1

samples are labelled ω1 and the second n2 are labelled ω2. Then the matrix Y can
be partitioned as follows:

Y =

[
11 X1

−12 −X2

]
,

where 1i is a column vector of ni ones, and Xi is an ni-by-d matrix whose rows are
the samples labelled ωi. We partition a and b correspondingly, with

a =

[
w0

w

]

and with
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LSQ approach, better margins b?

X =

[
11 X1

−12 −X2

]

b =

[ n
n1
11

n
n2
12

]
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