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Outline

» k — NN, Tangent distance measure, invariance to rotation
> Better etalons by applying Fischer linear discriminator analysis.

> LSQ formulation of the learning task.
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K-Nearest neighbors classification

For a query x:

» Find K nearest x from the training (labeled) data.

» Classify to the class with the most exemplars in the set above.

1-nearest neighbour classifier
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K — Nearest Neighbor and Bayes j* = argmax; P(s;|x)

Assume data:

> N points x in total.

» N; points in s; class. Hence, Zj N; = N.
We want to classify x. Draw a sphere centered

at x containing K points irrespective of class.
V' is the volume of this sphere. P(sj|x) =7
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K is the number of points of class s; among
the K nearest neighbors.
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NN classification example
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NN classification example

s Pentagon data 1-nearest neighbour classifier
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What is nearest? Metrics for NN classification . ..
Metrics : a function D which is

» nonnegative,

> reflexive,

> symmetrical,

P satisfying triangle inequality:

D(x1,%x2) >0

D(x1,x2) = 0 iff x3 = x2
D(x1,x%2) = D(x1,x2)

D(x1,x2) + D(x2,x3) > D(x1,x3)

D(x1,x2) = ||x1 — x2]| just fine, but
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What is nearest? Metrics for NN classification . ..

Metrics : a function D which is a xx, B x' i x’(s,=3)
> nonnegative, - o IR
> reflexive, H H H am a
> symmetrical, _|||||I _|||||I NN
> satisfying triangle inequality: D(x,x(s))
A
D(x1,%x2) >0
D(x1,x2) = 0 iff x3 = x2
D(x1,%2) = D(x1,%2) Pk
D(x1,x2) + D(x2,x3) > D(x1,x3)
D(x1,x2) = ||x1 — x2]| just fine, but
1 2 3 4 5 >

Invariance to geometrical transformations? (sigure from [2]) 12



Tangent space

Consider continuous tranformation:
e.g. rotation or translation not mirror reflection.

x = [x1,x2] " move along manifold M
« is a tranformation parameter (e.g. angle)
Tangent vector T is a linearization

L2 a

Figure from [1], slightly adapted
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Approximating image rotation by adding tangent vector
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Figures from [1], slighly adapted.
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Combining more transformations

Approximate derivative by difference. "
For all exemplars x’
and all r tranformations F;

> 7 = Fi(x, i) =X

For each exemplar we have d X r matrix T

T
(thinning)

0.5

T= [TlaTza"' 7Tr]

Grouping coefficients a = [ay, ag]T
Right image visualizes x’ + Ta

prototype b_

O

Figures from [2], slighly adapted.

(rotation)
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Minimizing distance to tangent space

Dta,,(x',x) = min ||(x’ + Ta) — x||
a

Gradient descent will do.

Figures from [2], slighly adapted.
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Linear classifiers Il

g(x) =w'x+ wp
Decide s; if g(x) > 0 and s, if g(x) <0

Figure from [2] 1221



Linear classifiers Il

g(x) =w'x+ wp
Decide s; if g(x) > 0 and s, if g(x) <0
8(x)
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Figure from [2] 1221



Fischer linear discriminant
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» Dimensionality reduction
P> Maximize distance between means, ...
» ...and minimize within class variance. (minimize overlap)

Figures from [1]
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Projections to lower dimensions y = w
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Projection to lower dimension y = W'x

Figure from [2] 15/21



Finding the best projection y =w'x, y > —wy = C;, otherwise G,

)

x1
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Finding the best projection y = w'x, y > —wy = C;, otherwise G,

my —m =W

Within class scatter

T(my —my)

of projected samples

sS=> (y—m)

yeq

Fischer criterion:
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Finding the best projection y = w'x, y > —wy = C;, otherwise G,

my —mp = wT(mz — m1)

s = Z(y — m;)?

yeG;
(my — my)?
J(w) = s2 4 s2
115
0J(w)

ow =0

Si=) (x—m)(x—m)"
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Sw =81+ 52
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LSQ approach to linear classification
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LSQ approach, better margins b?
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