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Supervised Learning

A training multi-set of examples is available. Correct answers (hidden state, class, the quantity
we want to predict) are known for all training examples.
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Supervised Learning

A training multi-set of examples is available. Correct answers (hidden state, class, the quantity
we want to predict) are known for all training examples.

Classification
» Nominal dependent variable

» Examples: predict spam/ham based on email contents, predict 0/1/.../9 based on the
image of a number, etc.

Regression
» Quantitative/continuous dependent variable

> Examples: predict temperature in Prague based on date and time, predict height of a
person based on weight and gender, etc.
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Learning by minimization of empirical risk

> Given the set of parametrized strategies 6: X — D, penalty/loss function ¢: S x D — R,
the quality of each strategy ¢ could be described by the risk

R(6) = > P(x,5)l(s,8(x)),
seS xeX
but P is unknown.
» We thus use the empirical risk Remp error on training (multi)set
T = {(X("),s("))}f\lzl, xeX,seS8:
1 . .
_ () ()
Remp(8) = 1 Z 0(s, 5(x0).
(X('),S(I))ET
» Optimal strategy 6* = argming Remp(6).
» We assume data 7 are from distribution P(x,s).
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Quiz: Line fitting

We would like to fit a line of the form y = wy + wyx to the following data:

4
3
%
S ° o
L <
wh. .3
%
1
0
0 1 2 3 4

The parameters of a line with a good fit will likely be
A wy=-1 w =-2
B wy= —%, wp =1
C wo = 3, wip = —%
D wy=2 w = %
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Linear regression: lllustration

Given a dataset of input vectors x(7) and the respective values of output variable y() ...
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Linear regression: lllustration

.we would like to find a linear model of this dataset ...
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Linear regression: lllustration

o

gt
TR

gt

. minimizing the errors between target values and the model predictions.
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Regression

Reformulating Linear algebra in a machine learning language.

Regression task is a supervised learning task, i.e.

> a training (multi)set 7 = {(x(M), yM) ... (x| y(M)1 is available, where

> the labels y() are quantitative, often continuous (as opposed to classification tasks where
y() are nominal).

> Its purpose is to model the relationship between independent variables (inputs)
x = (x1,...,xp) and the dependent variable (output) y.
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Linear Regression

Linear regression uses a particular regression model which assumes (and learns) linear
relationship between the inputs and the output:

Y=0(x)=wo+wixi + ... + wpxp = wo + (W, x) = wg +w'x,

where
> Y is the model prediction (estimate of the true value y),
> §(x) is the decision strategy (a linear model in this case),
> wp,...,wp are the coefficients of the linear function (weights), wy is the bias,
> (w,x) is a dot product of vectors w and x (scalar product),

» which can be also computed as a matrix product w' x if w and x are column vectors, i.
matrices of size [D x 1].

o
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Notation remarks
Homogeneous coordinates :

> If we add "“1" as the first element of x so that x = (1, x1,...,xp), and
» include the bias term wy in the vector w so that w = (wp, wy, ..., wp), then
T

y=06(x)=wo-1+wixi+...+wpxp = (W,x) =w x
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Notation remarks
Homogeneous coordinates :
> If we add "“1" as the first element of x so that x = (1, x1,...,xp), and

» include the bias term wy in the vector w so that w = (wp, wy, ..., wp), then

Y=06(x)=wo -1+ wixi + ...+ wpxp = (w,x) =w'x.

Matrix notation: If we organize the data 7 into matrices X and y, such that
1 ... 1
- = (yW (’V)>
X (x(l) x(N)> and y (y N % ,

and similarly with y, then we can write a batch computation of predictions for all data in X as
y= ((5(x(1)), ce (5(x(N))) = (wa(l), e ,wa(N)> =w'X.
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Two operation phases

Any ML model has 2 operation phases:

1. learning (training, fitting) of § and
2. application of § (testing, making predictions). o™ .. Wi
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11/54



Two operation phases

Any ML model has 2 operation phases:

1. learning (training, fitting) of § and
2. application of § (testing, making predictions). o™ .. Wi
esting data ode! rediction

The dec. strategy ¢ can be viewed as a function of 2 variables: (x,w).

Model application (Inference): Given w, we can manipulate x to make predictions:

y = 6(x,w) = dy(x).

11/54



Two operation phases

Any ML model has 2 operation phases:

1. learning (training, fitting) of § and
2. application of § (testing, making predictions). o™ .. Wi
esting data ode! rediction

The dec. strategy ¢ can be viewed as a function of 2 variables: (x,w).
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Two operation phases

Any ML model has 2 operation phases:

1. learning (training, fitting) of § and
2. application of § (testing, making predictions). o™ .. Wi
esting data ode! rediction

The dec. strategy ¢ can be viewed as a function of 2 variables: (x,w).

Model application (Inference): Given w, we can manipulate x to make predictions:

y = 6(x,w) = dy(x).

Model learning: Given T, we can tune the model parameters w to fit the model to the data:
w* = argmin Remp(dw) = argmin J(w, 7))
w w
J(w,T) and ¢(w,T) are closely related. Optimization criterium J() is a broader term. ¢()

essentially measures discrepancy between true data and the predictions. How to train the
model? 11/54



Simple (univariate) linear regression

Simple regression

> x() = x() je. the examples are described by a single feature (they are 1-dimensional).

» Find parameters wy, wy of a linear model y = wy + wyx
given a training (multi)set 7 = {(x(), y(N)}N
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Simple (univariate) linear regression

Simple regression

> x() = x() je. the examples are described by a single feature (they are 1-dimensional).

» Find parameters wy, wy of a linear model y = wy + wyx
given a training (multi)set 7 = {(x(), y(N)}N

How to fit a line depending on the number of training examples N:
» N =1 (1 equation, 2 parameters) = oo linear functions with zero error
» N =2 (2 equations, 2 parameters) = 1 linear function with zero error
» N > 3 (> 2 equations, 2 parameters) = no linear function with zero error (in general)

= a line which minimizes the “size” of error y — y can be fitted:

w* = (wg, wy) = argmin Remp(wo, wi) = argmin J(wo, wi, T).

wo, w1 wo, w1
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The least squares method

Choose such parameters w which minimize the mean squared error (MSE)

Y

Imse(w) =

(ym N ym)z

(yo') N 5w(x(">))2 ,

=2~
.MZ

1

|
=~
.MZ

]

Is there a (closed-form) solution?

1 wo

[y — 5|

w1
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[y — ]
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@,y )
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The least squares method
Choose such parameters w which minimize the mean squared error (MSE)

Y

1 N 2 @®,y@) Uk
_ = (N _ () @ _5@ W@ =y
JMSE(W) = N Z (y y ly(2) —3(2)) @®, y®)
i=1
N hwy
1 ( (0) y)°
1 B @05
y 5w(x )) .
N lz_; [y® —y W]
= W
’ (M), yM)
0 x

Is there a (closed-form) solution? Explicit solution:

Z,N:l(x(") — )y —7p) _ Sxy _ covariance of X and Y T sk
Z,,'Vzl(x(i) — x)2 52 variance of X 0=y !

wp =
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Universal fitting method: minimization of cost function J
The landscape of J in the space of parameters wy and wy:

,
o 80
100 0.0

20 30 60 80 100
w,

Gradually better linear models found by an optimization method (BFGS):
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Gradient descent algorithm

Given a function J(wp, wi) that should be minimized,
> start with a guess of wy and w; and
» change it, so that J(wp, wy) decreases, i.e.

> update our current guess of wy and wy by taking a step in the direction opposite to the
gradient:

w < w —aVJ(w, wi), ie.

W +— W — « J(wo, wy),

ow;

where all w;s are updated simultaneously and « is a learning rate (step size).
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Gradient descent for MSE minimization

For the cost function

N
J(Wo, W1 Z (
the gradient can be computed as

owg

J(wg, wr) =
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Multivariate linear regression

> x() = fi), e ,xg))T, i.e. the examples are described by more than 1 feature (they are
D-dimensional).
» Find parameters w = (wp, ..., wp)' of a linear model y = w'x

given the training (multi)set 7 = {(x(), y(D)}N .

Training: foreach (i): y() = wTx().
In the matrix form:

The model is a hyperplane in the (D + 1) di-
mensional space.

y:wTX

17/54



Multivariate linear regression
> x() = ( (1 (/))T

1 XD

, i.e. the examples are described by more than 1 feature (they are
D-dimensional).

» Find parameters w = (wp, ..., wp)' of a linear model y = w '
given the training (multi)set 7 = {(x(), y(D)}N .
Training: foreach (i): y() = wTx().
In the matrix form:

X

The model is a hyperplane in the (D + 1) di-
mensional space.

y:wTX

What is the dimension of X?
A (D+1)x(D+1)
B(D+1)xN
C Nx(D+1)

D NxN
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Multivariate linear regression: learning

1. Numeric optimization of J(w, T):

» Works as for simple regression, it only searches a space with more dimensions.

P> Sometimes one needs to tune some parameters of the optimization algorithm to work
properly (learning rate in gradient descent, etc.).

> May be slow (many iterations needed), but works even for very large D.
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Multivariate linear regression: learning

1. Numeric optimization of J(w, T):

» Works as for simple regression, it only searches a space with more dimensions.

P> Sometimes one needs to tune some parameters of the optimization algorithm to work
properly (learning rate in gradient descent, etc.).

> May be slow (many iterations needed), but works even for very large D.

2. Normal equation:

wt = (XxT)—lxyT

» Method to solve for the optimal w* analytically!
» No need to choose optimization algorithm parameters. No iterations.
> Needs to compute (XX )™, which is O((D + 1)3). Becomes intractable for large D.
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Classification

Binary classification

Discriminant function

What is the right loss function?

|
>
» Classification as a regression problem (linear, logistic regression)
| 4
> Etalon classifier (meeting nearest neighbour and linear classifier)
>

Acuracy vs precision
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Quiz: Importance of training examples

Intuitively, which of the training data points should have the biggest influence on the decision
whether a new, unlabeled data point shall be red or blue?

A Those which are closest to data points with the opposite color.

B Those which are farthest from the data points of the opposite color.
C Those which are near the middle of the points with the same color.
D None. All of the data points have the same importance.
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Binary classification task

Let's have a training dataset T = {(x(1),y(D), ... (x(N), y(M).
» each example described by a vector x = (xi,...,xp),
> labeled with the correct class y € {+1,—1}.

The goal:

» Find the classifier (decision strategy/rule) § that minimizes the empirical risk Remp(6).
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Discriminant function

Discriminant function f(x):

> It assigns a real number to each observation x, may
be linear or non-linear.

» For 2 classes, 1 discriminant function is enough.

» It is used to create a decision rule (which then
assigns a class to an observation):

<)

[ 41 iff  f(x)>0,and
5(")_{ ~1 iff f(x) <O0.

i.e. y = d(x) = sign (f(x)).

f(x)

0.5
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Discriminant function

Discriminant function f(x):

> It assigns a real number to each observation x, may
be linear or non-linear.

» For 2 classes, 1 discriminant function is enough.

» It is used to create a decision rule (which then
assigns a class to an observation):

Yz&(x):{—i_l iff  f(x) >0, and

~1 iff f(x)<0.

i.e. y = d(x) = sign (f(x)).
Decision boundary: {x|f(x) =0}

Linear classification: the decision boundaries must be linear.

» Learning then amounts to finding (suitable parameters of) function f.
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Example: Female/Male classification based on height
Training (multi)set 7 = {(x(), sONN  x() € x, s0) € S = {F, M}

i 1 2 3 4 5 6 7 8 9 10 11 12
Height x() 115 125 130 140 150 155 165 170 175 180 185 190
Genders F F F F F F F M M M M M

01 Female/Male classification

0.08 -

0.06

0.04

0.02 -

or O OO0 O OO DOxxxxx

002 | | | | | | | |
60 80 100 120 140 160 180 200 220
2 = height [cm]
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Example: Female/Male classification based on height
Training (multi)set 7 = {(x(), sONN  x() € x, s0) € S = {F, M}

i 1 2 3 4 5 6 7 8 9 10 11 12
Height x() 115 125 130 140 150 155 165 170 175 180 185 190
Genders F F F F F F F M M M M M

01 Female/Male classification

A new point to clasify: x? = 163

0.08
Which class does x9 belong to? dQ =?
0.06
0.04 |

0.02

or O OO0 O OO0 DOxxxxx

002 | | | | | | | |
60 80 100 120 140 160 180 200 220
2 = height [cm]
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Linear function LSQ fit

Female/Male classification, linear classifiers
T

150

O Female
x Male

f(z) =wiz 4+ wp

05

X X X x »

80

100 120 140 160 180
x = height [cm]

200

220
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Linear function LSQ fit, discriminant function

Female/Male classification, linear classifiers
T

2 T T T

O Female
1.5+ x Male n
f(z) =wiz + wp
H|—d() = sign(f(x)) T

05 —

-1.5 - -

2 | | | | | | |
60 80 100 120 140 160 180 200 220

2 = height [cm]
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Can we do better than fitting a linear function?

Recap the naive linear approach first.

27 /54



Learning linear classifier: naive approach, illustration

1r

05F

T
o

-0.5 1

Given a dataset of input vectors x(!) and their classes y() ...

o © ° o o°
° ° e & °®
°
° .o ° * e o °
o®® @
< °
° o ° °
° °
®e
e o ® o. °
° ° °
° L4 ° oo
° R N .o.
% o o0
e ©
e o ° ° y L4 °
) ° °
° ° ° °ce °
0.5 0 0.5 1
Ty

28 /54



Learning linear classifier: naive approach, illustration

1 0ep OO
o Pate % o oy
o %o o® 800 Y g
0 %

...we shall encode the class labelasy = —land y =1 ...
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Learning linear classifier: naive approach, illustration

..and fit a linear discriminant function by minimizing MSE as in regression. The contour line

y=0...
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Learning linear classifier: naive approach, illustration
1

0.5

-1 -0.5 0 0.5 1

...then forms a linear decision boundary in the original 2D space.
But is such a classifier good in general?
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Fitting a better function: Logistic regression

1r

05F

T
o

-0.5 1

Given a dataset of input vectors x(!) and their classes y() ...

o © ¢ LI N4
° ° e ® °
°
e e ° « o’
°
< °
° s ° °
° °
e, . °
°
o ® : oo, °
° 4 ° oo
° °
° ° ° ..
% o o o0
e ©
o O ° ° [ ] ¢ [ ) °
) .° °
® ° ° o e N °
0.5 0 0.5 1
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Fitting a better function: Logistic regression

15
1 . Sae e
00”0~o.0’h s .‘”#”.
. .
05 + +o 4t ¢ Lo ot ;.
> $ 8 .
-
0
+ @
-057 .'0 . E . o’. »
1 Tar v, taer + ¥ 0 v
0
- N
-1 0 0.5 1
X9 1 -0.5
x1

.. we shall encode the class labelas y =0and y =1 ...

29 /54



—a
.

—
W
—=

e —

-'l:éé:i
5=
(Al
e
=
——
e
=

=

“a%
é’
aes
i
e
=

_ De—
.t

Fitting a better function: Logistic regression

Ty

..and fit a sigmoidal discriminant function with the threshold 0.5 ...
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Fitting a better function: Logistic regression
1

0.5

-1 -0.5 0 0.5 1

...which forms a linear decision boundary in the original 2D space.
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Logistic regression model

Logistic regression uses a discriminant function which is a nonlinear transformation of the

values of a linear function 1
_ T\ —
fw(x) - g(W X) - 1 _|_ e_w-rxa

where g(z) = is the sigmoid function (a.k.a logistic function).

1+ e 2
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Logistic regression model

Logistic regression uses a discriminant function which is a nonlinear transformation of the
values of a linear function

1
fu(x) = g(w'x) = Trewr

1
where g(z) = ———— is the sigmoid function (a.k.a logistic function).

C14e2

Interpretation of the model:

| 2

>
>
>

\4

fw(x) is interpretted as an estimate of the probability that x belongs to class 1.
The decision boundary is defined using a different level-set: {x : fy(x) = 0.5}.
Logistic regression is a classification model!

The discriminant function f,(x) itself is not linear anymore; but the decision boundary is
still linear!

Thanks to the sigmoidal transformation, logistic regression is much less influenced by
examples far from the decision boundary!
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Sigmoid LSQ fit

Sigmoid fit to the data
I

1.5 I T f
o Female
x Male
_ 1
1 f(m) T 14 (wiztwg) e =
0.5 |
0 o] S—-C o c-C <} -
05 \ \ \ \ \ \ \
60 80 100 120 140 160 180 200 220

x = height [cm)]
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Comparing Linear and Sigmoid LSQ fit

) Comparing Linear LSQ with Sigmoid LSQ
I I I

o Female
x Male
15 f(z) = wiz +wp 1
—d(z) = sign(f(z))
i fu@) =2 (o) - 1
—d(z) = sign(fs(z))
05| -
o+ _
.05 J ]
1 = —e & o—o & —
15— -
2 \ \ \ \ \ \ \
60 80 100 120 140 160 180 200 220

2 = height [cm]
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What is the proper loss function ¢7

To train the logistic regression model, one can minimize the Jysg criterion:

» results in a non-convex, multimodal landscape which is hard to optimize.

—log(1)

——log(1-3)
35
3
25
=
22
Z
S5
1
05
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What is the proper loss function ¢7

To train the logistic regression model, one can minimize the Jysg criterion:
» results in a non-convex, multimodal landscape which is hard to optimize.

Log. reg. uses a loss function called cross-entropy : — —log(1 - §)
=N Z x(0)), where %9
-1 3
Iog ify=1 =28
—log(1 — ify=0"~ 5 2

which can be rewritten in a single expression as ’

Uy,y) =~y log(y)—(1 —y) - log(1 —Y).

» simpler to optimize for numerical solvers.
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MSE vs cross entropy loss

Various loss functions

Sigmoid fit to the data
5 = 15 T T T T
45 _1(” 4 o Female
x Male
4 *103(3/) 1H x % EIR PP =
. ——log(1— ) f@) = o
—{(x) by cross-entropy loss
05+ -
0 < cC—C—CC o (]
_05 L L L L L L L
: : 60 80 100 120 140 160 180 200 220
0 0.2 0.4 0.6 0.8 1

i

2 = height [cm)]

Sigmoidal f(x) can be also interpreted as p(s = Male | x) — learning a Discriminative model

directly.

Cross-entropy loss strongly penalizes hard errors, complete mismatches.
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Alternative idea: F/M classification — Etalons

Represent each class by a single example called etalon! (Or by a very small number of etalons.)

0.8

0.6

0.4

0.2

-0.2

-0.4

-0.6

-0.8 |

60

Female/Male classification

O Female
®  Male
O Female-etalon
n Male-etalon
O OO0 O 00 OxxEhxx
80 100 120 140 160 180
height [cm]

eF = ave({x(i) - s() = F}) =140
em = ave({x() : s() = M}) =180
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Alternative idea: F/M classification — Etalons

Represent each class by a single example called etalon! (Or by a very small number of etalons.)

0.8

0.6

0.4

0.2

-0.2

-0.4

-0.6

-0.8 |

Female/Male classification

60

O Female
X Male
O Female-etalon
n Male-etalon
O OO0 O OO0 OxxExx
80 100 120 140 160 180 200

height [cm]

er = ave({x(D : s() = F}) =140
em = ave({x() : s() = M}) =180

Based on etalons: dg =7
Ad®=F
B do=M
C Both classes equally likely

D Cannot provide any decision
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Alternative idea: F/M classification — Etalons

Represent each class by a single example called etalon! (Or by a very small number of etalons.)

0.8

0.6

0.4

0.2r

-0.2

-0.4

-0.6

-0.8 |

Female/Male classification

60

O Female
X Male
O Female-etalon
n Male-etalon
0 00 [ 00 Ox [ x
80 100 120 140 160

height [cm]

eF = ave({x(i) - s() = F}) = 140
em = ave({x() : s() = M}) =180

Based on etalons: dg =7
A d®=F
B do=M
C Both classes equally likely

D Cannot provide any decision
Classify as d9 = argmin g dist(x?, es)

What type of function is dist(x?, e;)?
35/54



Etalon classifier is a Linear classifier
Assuming dist(x, ) = (x — e)?, then

argmin dist(x, e5) = argmin(x — e5)? = argmin(_ x> —2e;x + e2) =
se€S seS seS comst.
1
= argmin(—2esx + €2) = argmax(  esx — ~e2 )
s€s ses . 2

linear function of x
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Etalon classifier is a Linear classifier
Assuming dist(x, ) = (x — e)?, then

argmin dist(x, e5) = argmin(x — e5)? = argmin(_ x> —2e;x + e2) =
ses ses ses const.
1
= argmin(—2esx + €2) = argmax(  esx — ~e2 )
s€s ses . 2

linear function of x

Multiclass classification: each class s has a linear discriminant function f;(x) = asx + bs and

d(x) = argmax f5(x)
seS
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Etalon classifier is a Linear classifier
Assuming dist(x, ) = (x — e)?, then

argmin dist(x, e5) = argmin(x — e5)? = argmin(_ x> —2e;x + e2) =

ses ses ses
const.
_ : 2y _ L.
= argmin(—2esx + ;) = argmax( esx — —es )
ses ses 2,

linear function of x

Multiclass classification: each class s has a linear discriminant function f;(x) = asx + bs and

d(x) = argmax f5(x)
seS

Binary classification: a single linear discriminant function g(x) is sufficient and

[ s ifg(x)>0
5(X)_{ s; ifg(x)<0
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Example: F/M — Linear discriminant functions based on etalons

x10% Female/Male classification

Discriminant functions for 2 classes:

O Female
®  Male
Y71 O Female-etalon / fr(x) = apx + br =
n Male-etalon 1
1 | |[===Female-discr-func — epx — *6,2_— — 140x — 9800
Male-discr-func 2

[%2]
C
i)
3]
5
g
:é 05| fM(X) = ayx + by =
L2 180x — 16200
S =eyx — =€y = X —
5 ot O 00 OO0 00 OxxExx 2 M
-0.5 %
60 80 100 120 140 160 180 200
height [cm]
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Example: F/M — Linear discriminant functions based on etalons

x10* Female/Male classification i Lo .
2 Discriminant functions for 2 classes:

O Female
®  Male
Y57 [ Female-etalon / fr(x) = apx + b =
B Male-etalon 1
1 | |[===Female-discr-func — eFx — *6,2: — 140x — 9800
Male-discr-func 2

(]
s
g
2
s Etalon-sep-func f (X) = ayx + by =
£ o5 M M M
1,
2 = epmx — -ey = 180x — 16200
° of O OO0 x 2

-0.5»

A single discriminant function separating 2
1 L L L L L L | .
60 80 100 120 140 160 180 200 Classes
height [cm]

g(x) = fr(x) — f(x) =
= —40x + 6400
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Example: F/M — Can we do better etalons?

value of discriminant functions

-0.5

25

x10%

Female/Male classification

N

=
o
T

i

O Female
®  Male
B rFemale

-etalon
O Male-etalon
-discr-func

== Female

Male-discr-func
Etalon-sep-func
== Perceptron-sep-func

o
o

o

60

80

100 120 140 160 180 200
height [cm]

Etalon-based linear classifier makes some
errors.

A perceptron algorithm may be used to find
a zero-error classifier (if one exists).
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Etalon based classification

Pentagon data minimum distance from etalons
1.5
15
1 % 1F

X x * *

X x X * *:: *5; X *
0.5F X X Xy H .

x % i **F*i 05

15 i i i i i i -15 i i i i i ;
-15 -1 -0.5 0 0.5 1 1.5 -15 -1 -0.5 0 0.5 1 15
1 1

Represent X by etalon , € per each class s € S.
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Separate etalons

minimum distance from etalons

s* = arg min||X — &||?

seS
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What etalons?

If N(X|ii, X); all classes same covariance matri-
ces, then

& S s = e 2%
s |Xs| =

and separating hyperplanes halve distances be-
tween pairs.

minimum distance from etalons
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Etalon based classification,

Pentagon data

150
1L
*
x
x§§‘x K
L % Fedek
05 x))((x X **EE
x

ol

=l

-0.5 A
1t

15 i i i i i
-1.5 -1 -0.5 0 0.5 1

minimum distance from etalons
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Digit recognition - etalons € = ji,

etalon for 0 etalon for 1 etalon for 2 etalon for 3 etalon for 4 etalon for 5 etalon for 6 etalon for 7 etalon for 8 etalon for 9

D923 456789

Figures from [7].
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Bayesian Discriminant functions f(X,s), gs(X)

Pentagon data

s* = argmax f(X, s)
seS
i
Bayes: xx > :* .
P(x P 0.5f ;:x X Xy i** *i
s =ar maxP(s|i):M “x 09, 4
g =
seS P(X) ~ o Oo%b
A ZS[SA&ESO
Discriminant function: g&%{%
-0.5 A
f(%.5) = &(%) = P(%| 5)P(s) K20
1+
35 -1 -05 0 0.5 1 1.5
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Etalon classifier — Linear classifier, generalization to higher dimensions

e 32 0T aaTo =Tz
s :arggggﬂx—esﬂ :argrsnég(x X—28;,X+ ¢ €)=

1
. (ST 2T 3Tz
:argrsn€|2<x x—2(esx—§(es es))> —

VS iy
= argrsnelg(x X —2(8 X+ bs)) =

= |arg max(&] X + bs) | = arg max g,(X).
ses seS

Linear function (plus offset)

gs(x) = wsTx -+ Wep
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Learning and decision

Learning stage - learning models/function/parameters from data.

Decision stage - decide about a query X.
What to learn?

> Generative model : Learn P(X,s). Decide by computing P(s|X).
» Discriminative model : Learn P(s|X).

» Discriminant function : Learn g(X) which maps X directly into class labels.

48 /54



Contents

Accuracy and precision

49 /54



Accuracy vs precision

(b)

https://commons.wikimedia.org/wiki/File:Precision_versus_accuracy.svg 50/54
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Accuracy vs precision

Reference value

Probability Accuracy
density 3 g

>

< — » Value
Precision

https://en.wikipedia.org/wiki/Accuracy_and_precision 51/54
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Further reading: Chapter 18 of [6], or chapter 4 of [1], or chapter 5 of [2]. Many figures
created with the help of [3]. You may also play with demo functions from [7].
Human deciding and predicting under noise, [4] (in Czech [5])
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