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Example: Digit recognition/classification

I Input: 8-bit image 13× 13, pixel intensities 0− 255. (0 means black, 255 means white)

I Output: Digit 0− 9. Decision about the class, classification.

I Features: Pixel intensities . . .

Decision/classification problem : What cipher is in the (query) image?
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Notes

Digit recognition is a very classical example of classification problem. It has been used for decades, and it is used

till today, see e.g. MNIST demo at PyTorch

https://pytorch.org/docs/stable/torchvision/datasets.html
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Classification as a special case of statistical decision theory

I Attribute vector ~x = [x1, x2, . . . ]
>: pixels 1, 2, . . . .

I State set S = decision set D = {0, 1, . . . 9}.
I State = actual class, Decision = recognized class

I Loss function: l(s, d) =

{
0, d = s
1, d 6= s

Optimal decision strategy:

δ∗(~x) = arg min
d

∑
s

l(s, d)︸ ︷︷ ︸
0 if d=s

P(s|~x) = arg min
d

∑
s 6=d

P(s|~x)

Obviously
∑

s P(s|~x) = 1, then: P(d |~x) +
∑

s 6=d P(s|~x) = 1
Inserting into above:

δ∗(~x) = arg min
d

(
1− P(d |~x)

)
= arg max

d
P(d |~x)
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Notes

We are using different word – classification instead of decision but the reasoning and methods can be well applied

in both. In classification problem we usually treat all mistakes – wrong classificaions – equally painful, contrary

to decision problem – remember “What to cook for dinner” problem?
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Optimal (Bayes) Classification

δ∗( ) = arg max
d

P(d | )
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Notes



Machine Learnine: Prepare training data , let (an) algorithm learn itself
data for cipher 0

Training samples: (~x i , s = 0)
5 / 27

Notes



Machine Learnine: Prepare training data , let (an) algorithm learn itself
data for cipher 1

Training samples: (~x i , s = 1)
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Machine Learnine: Prepare training data , let (an) algorithm learn itself
data for cipher 2

Training samples: (~x i , s = 2)
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Notes



Bayes classification in practice; P(s|~x) =?
I Usually, we are not given P(s|~x)
I It has to be estimated from already classified examples – training data
I For discrete ~x , training examples (~x1, s1), (~x2, s2), . . . (~x l , sl)

I every (~xi , s) is drawn independently from P(~x , s), i.e. sample i does not depend on
1, · · · , i − 1

I so-called i.i.d (independent, identically distributed) multiset
I Without knowing anything about the distribution, a non-parametric estimate:

P(s|~x) =
P(~x , s)

P(~x)
≈ # examples where ~x i = ~x and si = s

# examples where ~x i = ~x

I Hard in practice:

I To reliably estimate P(s|~x), the number of examples grows
exponentially with the number of elements of ~x .

I e.g. with the number of pixels in images
I curse of dimensionality
I denominator often 0
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Notes
Why hard? Way too many various ~x .
What is the difference between set and multiset?

Reminder about math notation. In literature, vectors are mostly denoted by bold lower case x. In lectures, we

use ~x to match notation used on blackboard. It is difficult to write bold with a chalk.
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How many images?

8-bit image 13× 13, pixel intensities 0− 255. (0 means black, 255 means white)

A: 169256

B: 256169

C: 1313

D: 169× 256

E: different quantity
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Notes



Näıve Bayes classification
I For efficient classification we must thus rely on additional assumptions.

I In the exceptional case of statistical independence between components of ~x for each
class s it holds

P(~x |s) = P(x [1]|s) · P(x [2]|s) · . . .

I Use simple Bayes law and maximize:

P(s|~x) =
P(~x |s)P(s)

P(~x)
=

P(s)

P(~x)
P(x [1]|s) · P(x [2]|s) · . . . =

I No combinatorial curse in estimating P(s) and P(x [i ]|s) separately for each i and s.

I No need to estimate P(~x). (Why?)

I P(s) may be provided apriori.

I näıve = when used despite statistical dependence
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Notes
Why näıve at all? Consider N−dimensional feature space and 8 − bit values. Instead of considering 8N combi-
nations (joint prob. distribution), we can consider only N × 8—treating every feature separately.

Think about statistical independence. Example1: person’s weight and height. Are they independent? Example2:

pixel values in images.



Example: Digit recognition/classification

I Input: 8-bit image 13× 13, pixel intensities 0− 255. (0 means black, 255 means white)

I Output: Digit 0− 9. Decision about the class, classification.

I Features: Pixel intensities . . .

Collect data , . . .

I P(~x). What is the dimension of ~x? How many possible images?

I Learn P(~x |s) per each class (digit).

I Classify s∗ = argmaxs P(s|~x).
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Notes
We can create many more features than just pixel intensities. But first things first.
We are assuming all errors are equally important - minimizing the number of wrong decisions.

Dimension of ~x is 13× 13 = 169. There are 256169 possible images. (we already know)



Example: Digit recognition/classification

I Input: 8-bit image 13× 13, pixel intensities 0− 255. (0 means black, 255 means white)

I Output: Digit 0− 9. Decision about the class, classification.

I Features: Pixel intensities . . .

Collect data , . . .

I P(~x). What is the dimension of ~x? How many possible images?

I Learn P(~x |s) per each class (digit).

I Classify s∗ = argmaxs P(s|~x).

9 / 27

Notes
We can create many more features than just pixel intensities. But first things first.
We are assuming all errors are equally important - minimizing the number of wrong decisions.

Dimension of ~x is 13× 13 = 169. There are 256169 possible images. (we already know)



From images to ~x
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Notes



Conditional probabilities, likelihoods

I Apriori digit probabilities P(sk)

I Likelihoods for pixels. P(xr ,c = Ii |sk)
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Notes
A lexical note, especially for Czech speakers. probability as well as likelihood can be translated as pravděpodobnost.
I suggest the following mental model than can work for our purposes.

� Probability is related to the future events (unknown outcome). E.g. what is the probability of selecting
blue box? What is the probability that a random ZIP Code number begins with 7?

� Likelihood refers to past events (known outcome). In my data, how many images of 7 have dark pixel in
top right corner? We can think about relative frequency (relativńı četnost).



Conditional likelihoods

sk
<latexit sha1_base64="C2UhSh+AHUBw+BBk9hN+U3W+Mzs=">AAACJnicZVDLSgNBEJz1GRMfiR69DCaCp7AbD3oMevEYwUTBDaF3tleHzMwuM7NKWPINXvUP/BpvIt78FCcP8dXQUFR1Q1VFmeDG+v67t7C4tLyyWlorV9Y3Nreqte2eSXPNsMtSkeqrCAwKrrBruRV4lWkEGQm8jIanE/3yDrXhqbqwowz7Em4UTzgD66huwwyGjUG17jf96dD/IJiDOplPZ1DzKmGcslyiskyAMdeBn9l+AdpyJnBcDnODGbAh3OC1gwokmn4xdTum+46JaZJqt8rSKfvzowBpzEhG7lKCvTV/tQn5rWlUeM9SKUHFRZiA5GIUYwK5sOMiNMkX/u3JJsf9gqsst6jYzFKSC2pTOimJxlwjs2LkADDNXSrKbkEDs67KcpiB5ip24amLXXb1BX/L+g96rWZw2Gydt+rtk3mRJbJL9sgBCcgRaZMz0iFdwggnD+SRPHnP3ov36r3NThe8+c8O+TXexycihaUi</latexit>

P (sk)
<latexit sha1_base64="WVzbxd3h6HjEfWhlUmKkgdwlBAs=">AAACKXicZVDLSgNBEJz1GeMzevQyGAW9hN140KPoxWMEYwLZEHpne3XIzOwyM6uEJT/hVf/Ar/GmXv0RJzGiMQ0NRVU3VFWUCW6s7797c/MLi0vLpZXy6tr6xuZWZfvGpLlm2GSpSHU7AoOCK2xabgW2M40gI4GtqH8x0lv3qA1P1bUdZNiVcKt4whlYR7X3G4em1z/a721V/Zo/HjoLggmoksk0ehVvNYxTlktUlgkwphP4me0WoC1nAoflMDeYAevDLXYcVCDRdIux4SE9cExMk1S7VZaO2b8fBUhjBjJylxLsnfmvjchfTaPCB5ZKCSouwgQkF4MYE8iFHRahSX7wtCebnHYLrrLcomLflpJcUJvSUU805hqZFQMHgGnuUlF2BxqYdW2Wwww0V7ELT13ssqsv+F/WLLip14LjWv2qXj07nxRZIrtkjxySgJyQM3JJGqRJGBHkkTyRZ+/Fe/XevI/v0zlv8rNDpsb7/AKvBKXh</latexit>

1 0.1

2 0.1

3 0.1

4 0.1

5 0.1

6 0.1

7 0.1

8 0.1

9 0.1

0 0.1

P (x0,0 = 25|sk)
<latexit sha1_base64="8WLmnubK+1r91CP9S9PPICxpOuw=">AAACNnicZVDLSiNBFK32bZzRRJduCuOAwhC6I6IbQXQzywhGBTs0t6tva5Gq6qaqWm3afItb/QN/ZTazG9z6CVZixNeFC4dz7oVzTpwLbqzv//UmJqemZ2bn5msLP34uLtUbyycmKzTDLstEps9iMCi4wq7lVuBZrhFkLPA07h8O9dMr1IZn6tiWOfYkXCiecgbWUVF9Zb2zcRNV/m9/sNfevjVRf3M9qjf9lj8a+h0EY9Ak4+lEDW8hTDJWSFSWCTDmPPBz26tAW84EDmphYTAH1ocLPHdQgUTTq0buB/SXYxKaZtqtsnTEfvyoQBpTythdSrCX5qs2JN81jQqvWSYlqKQKU5BclAmmUAg7qEKTvuHPnmy626u4yguLir1aSgtBbUaHpdGEa2RWlA4A09ylouwSNDDrqq2FOWiuEheeutg1V1/wtazv4KTdCrZa7aN2c/9gXOQcWSVrZIMEZIfskz+kQ7qEkZLckXvy4D16/7z/3tPr6YQ3/lkhn8Z7fgEC5Kn7</latexit>
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<latexit sha1_base64="C2UhSh+AHUBw+BBk9hN+U3W+Mzs=">AAACJnicZVDLSgNBEJz1GRMfiR69DCaCp7AbD3oMevEYwUTBDaF3tleHzMwuM7NKWPINXvUP/BpvIt78FCcP8dXQUFR1Q1VFmeDG+v67t7C4tLyyWlorV9Y3Nreqte2eSXPNsMtSkeqrCAwKrrBruRV4lWkEGQm8jIanE/3yDrXhqbqwowz7Em4UTzgD66huwwyGjUG17jf96dD/IJiDOplPZ1DzKmGcslyiskyAMdeBn9l+AdpyJnBcDnODGbAh3OC1gwokmn4xdTum+46JaZJqt8rSKfvzowBpzEhG7lKCvTV/tQn5rWlUeM9SKUHFRZiA5GIUYwK5sOMiNMkX/u3JJsf9gqsst6jYzFKSC2pTOimJxlwjs2LkADDNXSrKbkEDs67KcpiB5ip24amLXXb1BX/L+g96rWZw2Gydt+rtk3mRJbJL9sgBCcgRaZMz0iFdwggnD+SRPHnP3ov36r3NThe8+c8O+TXexycihaUi</latexit>

P (x7,5 = 25|sk)
<latexit sha1_base64="qUu9kGuTiO/PHxFa29Mv4+j8Enc="></latexit>

1 0.0009

2 0.05

3 0.00006

4 0.0005

5 0.004

6 0.07

7 0.1

8 0.006

9 0.08

0 0.005

P (x7,5 = 25|sk)
<latexit sha1_base64="qUu9kGuTiO/PHxFa29Mv4+j8Enc=">AAACNnicZVBdaxNBFJ1ttdaktkn76MtgUoggYXclpC9C0RcfI5gPyIbl7uzddsjM7DIzq13W/BZf9R/4V3zxTXz1JzhJI5r2woXDOffCOScpBDfW9797e/sPHh48OnzcaB49OT5ptU8nJi81wzHLRa5nCRgUXOHYcitwVmgEmQicJss3a336AbXhuXpvqwIXEq4UzzgD66i4ddYd9W7ievhisHoVDj6ZePm8G7c6ft/fDL0Pgi3okO2M4rbXjNKclRKVZQKMmQd+YRc1aMuZwFUjKg0WwJZwhXMHFUg0i3rjfkXPHZPSLNdulaUb9v+PGqQxlUzcpQR7be5qa/KfplHhR5ZLCSqtowwkF1WKGZTCrurIZH/xriebXSxqrorSomK3lrJSUJvTdWk05RqZFZUDwDR3qSi7Bg3MumobUQGaq9SFpy52w9UX3C3rPpiE/eBlP3wXdi5fb4s8JE/JM9IjARmSS/KWjMiYMFKRz+QL+ep98354P71ft6d73vbnjOyM9/sPGFKqBw==</latexit>

sk
<latexit sha1_base64="C2UhSh+AHUBw+BBk9hN+U3W+Mzs=">AAACJnicZVDLSgNBEJz1GRMfiR69DCaCp7AbD3oMevEYwUTBDaF3tleHzMwuM7NKWPINXvUP/BpvIt78FCcP8dXQUFR1Q1VFmeDG+v67t7C4tLyyWlorV9Y3Nreqte2eSXPNsMtSkeqrCAwKrrBruRV4lWkEGQm8jIanE/3yDrXhqbqwowz7Em4UTzgD66huwwyGjUG17jf96dD/IJiDOplPZ1DzKmGcslyiskyAMdeBn9l+AdpyJnBcDnODGbAh3OC1gwokmn4xdTum+46JaZJqt8rSKfvzowBpzEhG7lKCvTV/tQn5rWlUeM9SKUHFRZiA5GIUYwK5sOMiNMkX/u3JJsf9gqsst6jYzFKSC2pTOimJxlwjs2LkADDNXSrKbkEDs67KcpiB5ip24amLXXb1BX/L+g96rWZw2Gydt+rtk3mRJbJL9sgBCcgRaZMz0iFdwggnD+SRPHnP3ov36r3NThe8+c8O+TXexycihaUi</latexit>

P (x0,0 = 25|sk)
<latexit sha1_base64="8WLmnubK+1r91CP9S9PPICxpOuw="></latexit>

1 0.0009

2 0.05

3 0.00006

4 0.0005

5 0.07

6 0.0007

7 0.1

8 0.0006

9 0

0 0
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Notes

For each pixel (position) and possible instensity (image/pixel value) we create such a table.



Unseen events

Images 13× 13, intensities 0− 255, 100 exemplars per each class.

... =
...

P(x0,0 = 100 | s = 7) = 0.05

P(x0,0 = 101 | s = 7) = 0

P(x0,0 = 102 | s = 7) = 0.06

... =
...

A new (not in training) query image with x0,0 = 101. How would you classify?

13 / 27

Notes
Think about the problem of classifying numerals. Some P(xr,c = I | s) = 0. What about an example:
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Unseen event, how to decide?

A new (not in training) query image with x0,0 = 101. How would you classify?

P(x0,0 = 101 | sj) = 0, for all classes

14 / 27

Notes



Laplace smoothing (“additive smoothing”)

Think about a particular pixel with intensity x

P(x) =
count(x)

total samples

Problem: count(x) = 0
Pretend you see the (any) sample one more time.

PLAP(x) =
c(x) + 1∑
x [c(x) + 1]

PLAP(x) =
c(x) + 1

N + |X |
where N is the number of (total) observations; |X | is the number of possible values X can
take (cardinality).

15 / 27

Notes



Laplace smoothing (“additive smoothing”)

Think about a particular pixel with intensity x

P(x) =
count(x)

total samples

Problem: count(x) = 0
Pretend you see the (any) sample one more time.

PLAP(x) =
c(x) + 1∑
x [c(x) + 1]

PLAP(x) =
c(x) + 1

N + |X |
where N is the number of (total) observations; |X | is the number of possible values X can
take (cardinality).

15 / 27

Notes



Laplace smoothing (“additive smoothing”)

Think about a particular pixel with intensity x

P(x) =
count(x)

total samples

Problem: count(x) = 0
Pretend you see the (any) sample one more time.

PLAP(x) =
c(x) + 1∑
x [c(x) + 1]

PLAP(x) =
c(x) + 1

N + |X |
where N is the number of (total) observations; |X | is the number of possible values X can
take (cardinality).

15 / 27

Notes



Laplace smoothing - as a hyperparameter k
Pretend you see every sample k extra times:

PLAP(x) =
c(x) + k∑
x [c(x) + k]

PLAP(x) =
c(x) + k

N + k |X |
For conditional, smooth each condition independently

PLAP(x |s) =
c(x , s) + k

c(s) + k |X |

What is |X | equal to?

A: 10

B: 2

C: 256

D: None of the above
16 / 27

Notes
Hyperparameter would be tuned along with your classifier
For k = 100 and blue and red, you would get:

� PLAP(red) = (2 + 100)/(3 + 100 ∗ 2) = 102/203

� PLAP(blue) = (1 + 100)/(3 + 100 ∗ 2) = 101/203

In this case, smoothing (”prior”) would dominate over the observations - shifting estimate from empirical to
uniform.
In the digit recognition from pixels example: 256 intensity values; 13 × 13 = 169 pixels: Applying Laplace
smoothing with k = 1 to P(x) (prior probability of a particular pixel will take an intensity value i): P(xr,c = i) =
(c(x) + 1)/(N + 256)

Conditional: relevant for the Näıve Bayes case.
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What is the right degree of polynomial (hyperparameter of a regressor)

-2 -1 0 1 2 3 4 5 6 7
0.6

0.7

0.8

0.9

1

1.1

1.2
Fitting n-degree polynomial to training data

1: 0.00143

2: 0.00088

3: 0.00011

4: 0.00000

training
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Notes
See the tuning hyper parameter.m demo. The small values depict sum of square errors on training data.
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Generalization and overfiting

I Data: training, validating, testing . Wanted classifier performs well on what data?

I Overfitting: too close to training, poor on testing.

-2 -1 0 1 2 3 4 5 6 7
0.6

0.7

0.8

0.9

1

1.1

1.2
Fitting n-degree polynomial to training data

1: 0.00143

2: 0.00088

3: 0.00011

4: 0.00000

training

validation
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Notes



Training and testing

Data labeled instances.

I Training set

I Held-out (validation) set

I Testing set.

Features : Attribute-value pairs.

Learning cycle:

I Learn parameters (e.g. probabilities) on training set.

I Tune hyperparameters on held-out (validation) set.

I Evaluate performance on testing set.

19 / 27

Notes
Training set - biggest part.



K− Nearest Neighbor and Bayes j∗ = argmaxj P(sj |~x)

Assume data:

I N samples ~x in total.

I Nj samples in sj class. Hence,
∑

j Nj = N.

We want classify to ~x . We draw a circle (hypher-sphere) cen-
tered at ~x containing K points irrespective of class. V is the
volume of this sphere. P(sj |~x) =?

P(sj |~x) =
P(~x |sj)P(sj)

P(~x)
x1

x2

(a)
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Notes



k − NN for non-parametric density estimation

P(~x) =
K

NV

V = VdR
d
k (~x)

Rk(~x) - distance from ~x to its k−th nearest
neighbour point (radius)

Vd =
πd/2

Γ(d/2 + 1)

volume od unit d−dimensional sphere,
Γ denotes gamma function. V1 = 2,V2 =
π,V3 = 4

3π

K = 1

0 0.5 1
0

5

K = 5

0 0.5 1
0

5

K = 30

0 0.5 1
0

5
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Notes

K = 1

0 0.5 1
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K = 5

0 0.5 1
0
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K = 30

0 0.5 1
0

5

More details, including a computational example, in [?].
A K−NN belongs to non-parametric methods for density estimation, see section 2.5 from [1]. (Figure from [1])

Try yourself, https://scikit-learn.org/stable/modules/density.html#kernel-density

https://scikit-learn.org/stable/modules/density.html#kernel-density


How to evaluate a classifier? Confusion table

#times classified as

T
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e
 l
a

b
e
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Matching table for test set

 

 

94  0  0  1  0  0  0  0  5  0

 0 99  0  0  0  0  0  0  0  1

 0  0 92  0  0  0  0  4  4  0

 0  0  0 96  0  0  0  0  3  1

 0  0  0  0 99  0  0  0  1  0

 0  2  0  0  0 93  3  0  2  0

 0  0  0  0  0  1 89  0 10  0
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Figure from [5]
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Notes

A result for a one particular classifer and its setting (parameters), one particular testing set.



Precision and Recall, and . . .
Consider digit detection (is there a digit?) or SPAM/HAM
classification.
Recall :

I How many relevant items are selected?

I Are we missing some items?

I Also called: True positive rate (TPR), sensitivity, hit
rate . . .

Precision

I How many selected items are relevant?

I Also called: Positive predictive value

False positive rate (FPR)

I Probability of false alarm

relevant elements

selected elements

false positivestrue positives

false negatives true negatives

Precision = Recall =

How many selected
items are relevant?

How many relevant
items are selected?

By Walber - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=36926283
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Notes

TPR =
TP

P
=

TP

TP + FN

Precision =
TP

TP + FP

FPR =
FP

N
=

FP

FP + TN

Think about TPR vs FPR graph, what is the best classifier?

https://commons.wikimedia.org/w/index.php?curid=36926283


ROC – Receiver operating characteristics curve
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TPR =
TP

P
=
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TP + FN

FPR =
FP

N
=

FP

FP + TN
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Notes

� How do you slide along the curve?

� What is the meaning of the diagonal?

� What would be the shape of the curve for the ideal/worst classifier?

� How would you compare various curve and select the best classifier?

� Think/read about other ways to evaluate/visualise classification results.



Product of many small numbers . . .

P(s|~x) =
P(~x |s)P(s)

P(~x)
=

P(s)

P(~x)
P(x [1]|s) · P(x [2]|s) · . . .

P(~x) not needed, . . . ...

log(P(x [1]|s)P(x [2]|s) · · · ) = log(P(x [1]|s)) + log(P(x [2]|s)) + · · ·
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Notes
just try

� prod(rand(1,100)) and prod(rand(1,10000)) in Matlab.

� prod(rand(1,100)) == 0 and prod(rand(1,10000)) == 0 in Matlab.

or in python console:

� >>> import numpy as np

� >>> np.prod(np.random.rand(100))==0

� >>> np.prod(np.random.rand(1000))==0

� >>> a = np.random.rand(1000)

>>> b = np.random.rand(1000)

>>> np.prod(a)>np.prod(b)

False

>>> np.prod(a)<np.prod(b)

False

>>> np.sum(np.log(a))>np.sum(np.log(b))

True

Hitting the limit of number representation.
What is the way out?
P(~x) not needed – does not depend on the class.
Laws of logarithms...
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