Sequential decisions under uncertainty Markov Decision Processes (MDP)

Tomáš Svoboda

[Vision for Robots and Autonomous Systems,](http://cyber.felk.cvut.cz/vras) [Center for Machine Perception](http://cmp.felk.cvut.cz) [Department of Cybernetics](http://cyber.felk.cvut.cz) [Faculty of Electrical Engineering,](http://fel.cvut.cz) [Czech Technical University in Prague](http://cvut.cz)

March 27, 2023

Unreliable actions in observable grid world

Unreliable actions in observable grid world

States $s \in \mathcal{S}$, actions $a \in \mathcal{A}$ (Transition) Model $T(s, a, s') \equiv p(s'|s, a) =$ probability that a in s leads to s'

Unreliable (results of) actions

- In deterministic world: $Plan$ sequence of actions from Start to Goal.
-
-
-

- In deterministic world: $Plan$ sequence of actions from Start to Goal.
- Im MDPs, we need a policy $\pi : \mathcal{S} \to \mathcal{A}$.

- In deterministic world: $Plan$ sequence of actions from Start to Goal.
- Im MDPs, we need a policy $\pi : \mathcal{S} \to \mathcal{A}$.
- \blacktriangleright An action for each possible state. Why each?
-

- In deterministic world: $Plan$ sequence of actions from Start to Goal.
- Im MDPs, we need a policy $\pi : \mathcal{S} \to \mathcal{A}$.
- \blacktriangleright An action for each possible state. Why each?
- \blacktriangleright What is the *best* policy?

Rewards

Reward function $r(s)$ (or $r(s, a)$, $r(s, a, s')$) Reward : Robot/Agent takes an action a and it is immediately rewarded. = \int -0.04 (small penalty) for nonterminal states ± 1 for terminal states

Markov Decision Processes (MDPs)

Markov Decision Processes (MDPs)

Model $T(s, a, s') \equiv p(s'|s, a) =$ probability that a in s leads to s' Reward function $r(s)$ (or $r(s, a)$, $r(s, a, s')$) = \int -0.04 (small penalty) for nonterminal states ± 1 for terminal states

 $\mathcal{S}_0, \mathcal{A}_0, \mathcal{R}_1, \mathcal{S}_1, \mathcal{A}_1, \mathcal{R}_2, \mathcal{S}_2, \mathcal{A}_2 \ldots$

 \mathcal{S}_0 , A_0 , R_1 , \mathcal{S}_1 , A_1 , R_2 , S_2 , A_2 . . .

 S_0 , A_0 , R_1 , S_1 , A_1 , R_2 , S_2 , A_2

Episode : one walk from S_0 to terminal.

Markovian property

- \triangleright Given the present state, the future and the past are independent.
- I MDP: Markov means action depends only on the current state.
- In search: successor function (transition model) depends on the current state only.

Desired robot/agent behavior specified through rewards

- \blacktriangleright Before: shortest/cheapest path
- \blacktriangleright Solution found by search.
-
-

Desired robot/agent behavior specified through rewards

- \blacktriangleright Before: shortest/cheapest path
- \blacktriangleright Solution found by search.
- \blacktriangleright Environment/problem is defined through the reward function.
- \triangleright Optimal policy is to be computed/learned.

Desired robot/agent behavior specified through rewards

- \blacktriangleright Before: shortest/cheapest path
- \blacktriangleright Solution found by search.
- \blacktriangleright Environment/problem is defined through the reward function.
- \triangleright Optimal policy is to be computed/learned.

We come back to this in more detail when discussing RL.

- A: A-a, B-b, C-c
- B: A-b, B-a, C-c
- C: A-b, B-c, C-a

D: A-c, B-a, C-b

- State reward at time/step t, R_t .
- State at time t, S_t . State sequence $[S_0, S_1, S_2, \ldots,]$

- State reward at time/step t, R_t .
- State at time t, S_t . State sequence $[S_0, S_1, S_2, \ldots,]$

Typically, consider stationary preferences on reward sequences:

$$
[R, R_1, R_2, R_3, \ldots] \succ [R, R'_1, R'_2, R'_3, \ldots] \Leftrightarrow [R_1, R_2, R_3, \ldots] \succ [R'_1, R'_2, R'_3, \ldots]
$$

- State reward at time/step t, R_t .
- State at time t, S_t . State sequence $[S_0, S_1, S_2, \ldots,]$

Typically, consider stationary preferences on reward sequences:

 $[R, R_1, R_2, R_3, \ldots] \succ [R, R'_1, R'_2, R'_3, \ldots] \Leftrightarrow [R_1, R_2, R_3, \ldots] \succ [R'_1, R'_2, R'_3, \ldots]$

If stationary preferences : Utility (h-history) $U_h([S_0, S_1, S_2, \ldots, I]) = R_1 + R_2 + R_3 + \cdots$

- State reward at time/step t, R_t .
- State at time t, S_t . State sequence $[S_0, S_1, S_2, \ldots,]$

Typically, consider stationary preferences on reward sequences:

 $[R, R_1, R_2, R_3, \ldots] \succ [R, R'_1, R'_2, R'_3, \ldots] \Leftrightarrow [R_1, R_2, R_3, \ldots] \succ [R'_1, R'_2, R'_3, \ldots]$

If stationary preferences : Utility (h-history) $U_h([S_0, S_1, S_2, \ldots]) = R_1 + R_2 + R_3 + \cdots$

If the horizon is finite - limited number of steps - preferences are nonstationary (depends on how many steps left).

Finite walk - Episode - and its Return (by introducing Terminal state) and continuing tasks. We have defined the return as a sum over a finite number of terms of terms of terms of t

- Executing policy sequence of states and rewards.
- \blacktriangleright Episode starts at t, ends at T (ending in a terminal state).
- **EXECUTE:** FRETURE THAT (Utility) of the episode (policy execution)

$$
G_t = R_{t+1} + R_{t+2} + R_{t+3} + \cdots + R_T
$$

-
-
-

$$
G_t = R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \dots = \sum_{k=0}^{\infty} \gamma^k R_{t+k+1} \le \frac{R_{\max}}{1-\gamma}
$$

$$
G_t = R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \gamma^3 R_{t+4} + \cdots
$$

= $R_{t+1} + \gamma (R_{t+2} + \gamma^1 R_{t+3} + \gamma^2 R_{t+4} + \cdots)$
= $R_{t+1} + \gamma G_{t+1}$

- **Finite horizon: termination at a fixed time** \Rightarrow nonstationary policy, $\pi(s)$ depends on the time left.
-
-

$$
G_t = R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \dots = \sum_{k=0}^{\infty} \gamma^k R_{t+k+1} \le \frac{R_{\max}}{1-\gamma}
$$

$$
G_t = R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \gamma^3 R_{t+4} + \cdots
$$

= $R_{t+1} + \gamma (R_{t+2} + \gamma^1 R_{t+3} + \gamma^2 R_{t+4} + \cdots)$
= $R_{t+1} + \gamma G_{t+1}$

- **Finite horizon: termination at a fixed time** \Rightarrow nonstationary policy, $\pi(s)$ depends on the time left.
- ▶ Absorbing (terminal) state. (sooner or later walk ends here)

$$
G_t = R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \dots = \sum_{k=0}^{\infty} \gamma^k R_{t+k+1} \le \frac{R_{\max}}{1 - \gamma}
$$

$$
G_t = R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \gamma^3 R_{t+4} + \cdots
$$

= $R_{t+1} + \gamma (R_{t+2} + \gamma^1 R_{t+3} + \gamma^2 R_{t+4} + \cdots)$
= $R_{t+1} + \gamma G_{t+1}$

- **Finite horizon: termination at a fixed time** \Rightarrow nonstationary policy, $\pi(s)$ depends on the time left.
- ▶ Absorbing (terminal) state. (sooner or later walk ends here)
- \triangleright Discounted return, γ < 1, R_t ≤ R_{max}

$$
G_t = R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \dots = \sum_{k=0}^{\infty} \gamma^k R_{t+k+1} \le \frac{R_{\text{max}}}{1 - \gamma}
$$

$$
G_t = R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \gamma^3 R_{t+4} + \cdots
$$

= $R_{t+1} + \gamma (R_{t+2} + \gamma^1 R_{t+3} + \gamma^2 R_{t+4} + \cdots)$
= $R_{t+1} + \gamma G_{t+1}$

Problem: Infinite lifetime \Rightarrow additive utilities are infinite.

- **Finite horizon: termination at a fixed time** \Rightarrow nonstationary policy, $\pi(s)$ depends on the time left.
- ▶ Absorbing (terminal) state. (sooner or later walk ends here)
- \triangleright Discounted return, γ < 1, R_t ≤ R_{max}

$$
G_t = R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \dots = \sum_{k=0}^{\infty} \gamma^k R_{t+k+1} \leq \frac{R_{\text{max}}}{1 - \gamma}
$$

Returns are successive steps related to each other

$$
G_t = R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \gamma^3 R_{t+4} + \cdots
$$

= $R_{t+1} + \gamma (R_{t+2} + \gamma^1 R_{t+3} + \gamma^2 R_{t+4} + \cdots)$
= $R_{t+1} + \gamma G_{t+1}$

Problem: Infinite lifetime \Rightarrow additive utilities are infinite.

- **Finite horizon: termination at a fixed time** \Rightarrow nonstationary policy, $\pi(s)$ depends on the time left.
- ▶ Absorbing (terminal) state. (sooner or later walk ends here)
- \triangleright Discounted return, γ < 1, R_t ≤ R_{max}

$$
G_t = R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \dots = \sum_{k=0}^{\infty} \gamma^k R_{t+k+1} \leq \frac{R_{\text{max}}}{1 - \gamma}
$$

Returns are successive steps related to each other

$$
G_t = R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \gamma^3 R_{t+4} + \cdots
$$

= $R_{t+1} + \gamma (R_{t+2} + \gamma^1 R_{t+3} + \gamma^2 R_{t+4} + \cdots)$
= $R_{t+1} + \gamma G_{t+1}$

Problem: Infinite lifetime \Rightarrow additive utilities are infinite.

- **Finite horizon: termination at a fixed time** \Rightarrow nonstationary policy, $\pi(s)$ depends on the time left.
- ▶ Absorbing (terminal) state. (sooner or later walk ends here)
- \triangleright Discounted return, γ < 1, R_t ≤ R_{max}

$$
G_t = R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \dots = \sum_{k=0}^{\infty} \gamma^k R_{t+k+1} \leq \frac{R_{\text{max}}}{1 - \gamma}
$$

Returns are successive steps related to each other

$$
G_t = R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \gamma^3 R_{t+4} + \cdots
$$

= $R_{t+1} + \gamma (R_{t+2} + \gamma^1 R_{t+3} + \gamma^2 R_{t+4} + \cdots)$
= $R_{t+1} + \gamma G_{t+1}$

MDPs recap

Markov decision processes (MDPs):

- \blacktriangleright Set of states S
- \blacktriangleright Set of actions A
- \blacktriangleright Transitions $p(s'|s, a)$ or $T(s, a, s')$
- Reward function $r(s, a, s')$; and discount γ
- Alternative to last two: $p(s', r | s, a)$.

-
-

MDPs recap

Markov decision processes (MDPs):

- \blacktriangleright Set of states S
- \triangleright Set of actions A
- \blacktriangleright Transitions $p(s'|s, a)$ or $T(s, a, s')$
- Reward function $r(s, a, s')$; and discount γ
- Alternative to last two: $p(s', r | s, a)$.

MDP quantities:

- \blacktriangleright (deterministic) Policy $\pi(s)$ choice of action for each state
- \triangleright Return (Utility) of an episode (sequence) sum of (discounted) rewards.

Expected Return of a policy π

Executing policy $\pi \to$ sequence of states (and rewards).

 \blacktriangleright Utility of a state sequence.

$$
U^{\pi}(S_t) \doteq \mathbb{E}^{\pi} \left[\sum_{k=0}^{\infty} \gamma^k R_{t+k+1} \right]
$$

Expected Return of a policy π

- Executing policy $\pi \rightarrow$ sequence of states (and rewards).
- \blacktriangleright Utility of a state sequence.
- \blacktriangleright But actions are unreliable environment is stochastic.
-

Expected Return of a policy π

- Executing policy $\pi \to$ sequence of states (and rewards).
- \blacktriangleright Utility of a state sequence.
- \blacktriangleright But actions are unreliable environment is stochastic.
- Expected return of a policy π .

Starting at time t , i.e. S_t ,

$$
U^{\pi}(S_t) \doteq \mathsf{E}^{\pi}\left[\sum_{k=0}^{\infty} \gamma^k R_{t+k+1}\right]
$$

Value functions

Value function

$$
v^{\pi}(s) \doteq E^{\pi} [G_t | S_t = s] = E^{\pi} \left[\sum_{k=0}^{\infty} \gamma^k R_{t+k+1} | S_t = s \right]
$$

Action-value function (q-function)

$$
q^{\pi}(s, a) \doteq E^{\pi} [G_t | S_t = s, A_t = a] = E^{\pi} \left[\sum_{k=0}^{\infty} \gamma^k R_{t+k+1} | S_t = s, A_t = a \right]
$$

 $v^*(s)$ = expected (discounted) sum of rewards (until termination) assuming optimal actions.

 $v^*(s)$ = expected (discounted) sum of rewards (until termination) assuming *optimal* actions.

Example 1, Robot deterministic: $r(s) = \{-0.04, 1, -1\}, \gamma = 0.999999, \epsilon = 0.03$

 $v^*(s)$ = expected (discounted) sum of rewards (until termination) assuming *optimal* actions.

Example 2, Robot non-deterministic: $r(s) = \{-0.04, 1, -1\}$, $\gamma = 0.999999$, $\epsilon = 0.03$

 $v^*(s)$ = expected (discounted) sum of rewards (until termination) assuming *optimal* actions.

Example 3, Robot non-deterministic: $r(s) = \{-0.01, 1, -1\}, \gamma = 0.999999, \epsilon = 0.03$

MDP search tree

MDP search tree

The value of a q -state (s, a) :

$$
q^*(s, a) = \sum_{s'} p(s'|a, s) [r(s, a, s') + \gamma v^*(s'))]
$$

MDP search tree

The value of a q -state (s, a) :

$$
q^*(s, a) = \sum_{s'} p(s'|a, s) [r(s, a, s') + \gamma v^*(s'))]
$$

The value of a state s:

$$
v^*(s) = \max_a q^*(s, a)
$$

Bellman (optimality) equation

$$
v^*(s) = \max_{a \in A(s)} \sum_{s'} p(s'|a, s) \left[r(s, a, s') + \gamma v^*(s') \right]
$$

Start with arbitrary $V_0(s)$ (except for terminals)

$$
V_{k+1}(s) \leftarrow R(s) + \gamma \max_{a \in A(s)} \sum_{s'} p(s'|s, a) V_k(s')
$$

$$
v^*(s) = \max_{a \in A(s)} \sum_{s'} p(s'|a, s) \left[r(s, a, s') + \gamma v^*(s') \right]
$$

Start with arbitrary $V_0(s)$ (except for terminals)

Compute Bellman update (one ply of expectimax from each state)

$$
V_{k+1}(s) \leftarrow R(s) + \gamma \max_{a \in A(s)} \sum_{s'} p(s'|s,a) V_k(s')
$$

$$
v^*(s) = \max_{a \in A(s)} \sum_{s'} p(s'|a, s) \left[r(s, a, s') + \gamma v^*(s') \right]
$$

Start with arbitrary $V_0(s)$ (except for terminals)

 \triangleright Compute Bellman update (one ply of expectimax from each state)

$$
V_{k+1}(s) \leftarrow R(s) + \gamma \max_{a \in A(s)} \sum_{s'} p(s'|s,a) V_k(s')
$$

\blacktriangleright Repeat until convergence

$$
v^*(s) = \max_{a \in A(s)} \sum_{s'} p(s'|a, s) \left[r(s, a, s') + \gamma v^*(s') \right]
$$

Start with arbitrary $V_0(s)$ (except for terminals)

 \triangleright Compute Bellman update (one ply of expectimax from each state)

$$
V_{k+1}(s) \leftarrow R(s) + \gamma \max_{a \in A(s)} \sum_{s'} p(s'|s,a) V_k(s')
$$

 \blacktriangleright Repeat until convergence

The idea: Bellman update makes local consistency with the Bellmann equation. Everywhere locally consistent \Rightarrow globally optimal.

Value iteration algorithm is an example of Dynamic Programming method.

Value iteration - Complexity of one estimation sweep

$$
V_{k+1}(s) \leftarrow R(s) + \gamma \max_{a \in A(s)} \sum_{s'} p(s'|s, a) V_k(s')
$$

- A: $O(AS)$ B: $O(S^2)$ C: $O(AS^2)$
- D: $O(A^2S^2)$

Value iteration (dynamic programming) vs. direct search

$$
V_{k+1}(s) \leftarrow R(s) + \gamma \max_{a \in A(s)} \sum_{s'} p(s'|s, a) V_k(s')
$$

Value iteration demo

$$
V_{k+1}(s) \leftarrow R(s) + \gamma \max_{a \in A(s)} \sum_{s'} P(s'|s, a) V_k(s')
$$

0 1 2 3

Convergence

$$
V_{k+1}(s) \leftarrow R(s) + \gamma \max_{a \in A(s)} \sum_{s'} P(s'|s, a) V_k(s')
$$

$$
\gamma < 1
$$

$$
-R_{\max} \leq R(s) \leq R_{\max}
$$

$$
||V|| = \max_{s} |V(s)|
$$

$$
U([s_0, s_1, s_2, \dots, s_{\infty}]) = \sum_{t=0}^{\infty} \gamma^t R(s_t) \le \frac{R_{\max}}{1 - \gamma}
$$

Convergence

$$
V_{k+1}(s) \leftarrow R(s) + \gamma \max_{a \in A(s)} \sum_{s'} P(s'|s, a) V_k(s')
$$

$$
\gamma < 1
$$

$$
-R_{\max} \leq R(s) \leq R_{\max}
$$

Max norm:

$$
||V|| = \max_{s} |V(s)|
$$

$$
U([s_0, s_1, s_2, \dots, s_{\infty}]) = \sum_{t=0}^{\infty} \gamma^t R(s_t) \le \frac{R_{\max}}{1 - \gamma}
$$

Convergence cont'd

 $V_{k+1} \leftarrow BV_k \ldots B$ as the Bellman update $V_{k+1}(s) \leftarrow R(s) + \gamma \max_{a \in A(s)}$ $\sum_{s'} p(s'|s, a) V_k(s')$

$$
\frac{\|BV_k - BV_k'\| \leq \gamma \|V_k - V_k'\|}{\|BV_k - V_{\text{true}}\| \leq \gamma \|V_k - V_{\text{true}}\|}
$$

Rewards are bounded, at the beginning then Value error is

$$
\|V_0 - V_{true}\| \leq \frac{2R_{\max}}{1-\gamma}
$$

We run N iterations and reduce the error by factor γ in each and want to stop the error is below ϵ :

$$
\gamma^N 2R_{\text{max}}/(1-\gamma) \le \epsilon
$$
 Taking logs, we find: $N \ge \frac{\log(2R_{\text{max}}/\epsilon(1-\gamma))}{\log(1/\gamma)}$
To stop the iteration we want to find a bound relating the error to the size of *one* Bellman update for any given iteration.

We stop if

$$
\|V_{k+1} - V_k\| \leq \frac{\epsilon(1-\gamma)}{\gamma}
$$

then also: $||V_{k+1} - V_{true}|| \leq \epsilon$ Proof on the next slide

Convergence cont'd

 $||V_{k+1} - V_{true}|| \leq \epsilon$ is the same as $||V_{k+1} - V_{\infty}|| \leq \epsilon$ Assume $||V_{k+1} - V_k|| =$ err In each of the following iteration steps we reduce the error by the factor γ (because $||BV_k - V_{true}|| \le \gamma ||V_k - V_{true}||$. Till ∞ , the total sum of reduced errors is:

total =
$$
\gamma
$$
err + γ ²err + γ ³err + γ ⁴err + ... = $\frac{\gamma$ err}{(1 - \gamma)}

We want to have total $< \epsilon$.

$$
\frac{\gamma \textsf{err}}{(1-\gamma)} < \epsilon
$$

From it follows that

$$
\textsf{err} < \frac{\epsilon (1-\gamma)}{\gamma}
$$

Hence we can stop if $||V_{k+1} - V_k|| < \epsilon(1 - \gamma)/\gamma$

```
function VALUE-ITERATION(env,\epsilon) returns: state values V
input: env - MDP problem, \epsilonV' \leftarrow 0 in all states
```

```
function VALUE-ITERATION(env,\epsilon) returns: state values V
input: env - MDP problem, \epsilonV' \leftarrow 0 in all states
repeat repeat . iterate values until convergence
```

```
function VALUE-ITERATION(env,\epsilon) returns: state values V
input: env - MDP problem, \epsilonV' \leftarrow 0 in all states
repeat repeat . iterate values until convergence
    V \leftarrow V'<br>\delta \leftarrow 0
```
 \triangleright keep the last known values \triangleright reset the max difference

```
function VALUE-ITERATION(env,\epsilon) returns: state values V
 input: env - MDP problem, \epsilonV' \leftarrow 0 in all states
 repeat \triangleright iterate values until convergence
     V \leftarrow V'<br>\delta \leftarrow 0\triangleright keep the last known values
                                                                             \triangleright reset the max difference
     for each state s in S do
          V'[s] \leftarrow R(s) + \gamma \max_{a \in A(s)}\sum_{s'} P(s'|s,a) V(s')if |V'[s] - V[s]| > \delta then \delta \leftarrow |V'[s] - V[s]|end for
```

```
function VALUE-ITERATION(env,\epsilon) returns: state values V
 input: env - MDP problem, \epsilonV' \leftarrow 0 in all states
 repeat \triangleright iterate values until convergence
     V \leftarrow V'<br>\delta \leftarrow 0\triangleright keep the last known values
                                                                               \triangleright reset the max difference
      for each state s in S do
          V'[s] \leftarrow R(s) + \gamma \max_{a \in A(s)}\sum_{s'} P(s'|s,a) V(s')if |V'[s] - V[s]| > \delta then \delta \leftarrow |V'[s] - V[s]|end for
 until \delta < \epsilon (1 - \gamma)/\gammaend function
```
Sync vs. async Value iteration

```
function VALUE-ITERATION(env,\epsilon) returns: state values V
 input: env - MDP problem, \epsilonV' \leftarrow 0 in all states
 repeat repeat \triangleright iterate values until convergence
     V \leftarrow V'<br>\delta \leftarrow 0\triangleright keep the last known values
                                                                                 \triangleright reset the max difference
      for each state s in S do
           V'[s] \leftarrow R(s) + \gamma \max_{a \in A(s)}\sum_{s'} P(s'|s,a) V(s')if |V'[s] - V[s]| > \delta then \delta \leftarrow |V'[s] - V[s]|end for
 until \delta < \epsilon (1 - \gamma)/\gammaend function
```
References

Some figures from [\[1\]](#page-64-0) (chapter 17) but notation slightly changed in order to adapt notation from [\[2\]](#page-64-1) (chapters 3, 4) which will help us in the Reinforcement Learning part of the course. Note that the book [\[2\]](#page-64-1) is available on-line.

[1] Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Approach. Prentice Hall, 3rd edition, 2010. [http://aima.cs.berkeley.edu/.](http://aima.cs.berkeley.edu/)

[2] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning; an Introduction. MIT Press, 2nd edition, 2018.

<http://www.incompleteideas.net/book/the-book-2nd.html>.