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Outline

I Graph search

I Heuristics (how to search faster)

I Greedy

I A∗. A-star search.
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A Maze, what could possibly go wrong?
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https://youtu.be/WKSoedfRZQ4
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Notes
Analyze the demo run (BFS). What happened? Why did it take that long?
Because it is TREE SEARCH...
Many loops are created and all nodes with depth < 7 need to be expanded first. Goal is at depth 8.
Notes for teacher:
Working note for demo:
python3 easy search agents.py

’n’ for next

’s’ for skip

code settings:
MAP = ’maps/easy/easy2.bmp’

TREE SEARCH = True

node type = ’BFS’

How to decode printout on command line:

� Every iteration ends with: print(’End of while loop: length of the

frontier:’,len(frontier), ’length of the expanded:’, len(expanded states), frontier,

frontier.is empty())

� But note that the algo is written in a general way (like UCS), stopping after expanding the goal node –
that is why you see also depth 9 in the frontier notes at the end.

� Size of the visualiation can be altered in ./kuimaze/maze.py, look for MAX CELL SIZE

https://youtu.be/WKSoedfRZQ4


Tree search the maze

function tree search(env) return a solution or
failure

initialize the frontier
while frontier do

node = frontier.pop()
if goal in node then return node
end if
child nodes = env.expand(node.state)
Add child nodes to frontier

end while
end function
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Notes
Make a frontier and expand columns on a paper and follow the algorithm by putting and removing (scratching
out) nodes from the list.
Note that there are many more nodes than states (search tree vs. state space).

Tree search seems hugely ineffective. Note that this is (also) because of the state space. It’s a maze with

undirected egdes. If we had directed edges, there would be much much fewer cycles.



A graph search
function graph search(env) return a solution or failure

init frontier by the start state
initialize the explored set to be empty
while frontier do

node = frontier.pop()
add node.state to explored
if goal in node then return node
end if
child nodes = env.expand(node.state)
for all child nodes do

if child node.state not in explored then . What about frontier?
add nodes to frontier

end if
end for

end while
end function

Do not forget: node is not the same as state!
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Notes
Think about what is node and what state. What is main difference? How are they connected? Where do they
appear? What is node/state in the maze problem?
The main idea: Do not expand a state twice.
What would be a good data structure to implement the explored set? Yes, it would be a set ;) – where every
element is present only once. Unlike list.

”What about frontier?” - if you can ensure that the first time you add a node to frontier, the state will be reached

by an optimal path from start, you can also check frontier here (e.g., BFS). If you can’t guarantee that, you have

to be more careful.



A graph search
function graph search(env) return a solution or failure

init frontier by the start state
initialize the explored set to be empty
while frontier do

node = frontier.pop()
add node.state to explored
if goal in node then return node
end if
child nodes = env.expand(node.state)
for all child nodes do

if child node.state not in explored then . What about frontier?
add nodes to frontier

end if
end for

end while
end function

Do not forget: node is not the same as state!

5 / 24

Notes
Think about what is node and what state. What is main difference? How are they connected? Where do they
appear? What is node/state in the maze problem?
The main idea: Do not expand a state twice.
What would be a good data structure to implement the explored set? Yes, it would be a set ;) – where every
element is present only once. Unlike list.

”What about frontier?” - if you can ensure that the first time you add a node to frontier, the state will be reached

by an optimal path from start, you can also check frontier here (e.g., BFS). If you can’t guarantee that, you have

to be more careful.



A graph search
function graph search(env) return a solution or failure

init frontier by the start state
initialize the explored set to be empty
while frontier do

node = frontier.pop()
add node.state to explored
if goal in node then return node
end if
child nodes = env.expand(node.state)
for all child nodes do

if child node.state not in explored then . What about frontier?
add nodes to frontier

end if
end for

end while
end function

Do not forget: node is not the same as state!

5 / 24

Notes
Think about what is node and what state. What is main difference? How are they connected? Where do they
appear? What is node/state in the maze problem?
The main idea: Do not expand a state twice.
What would be a good data structure to implement the explored set? Yes, it would be a set ;) – where every
element is present only once. Unlike list.

”What about frontier?” - if you can ensure that the first time you add a node to frontier, the state will be reached

by an optimal path from start, you can also check frontier here (e.g., BFS). If you can’t guarantee that, you have

to be more careful.



A graph search
function graph search(env) return a solution or failure

init frontier by the start state
initialize the explored set to be empty
while frontier do

node = frontier.pop()
add node.state to explored
if goal in node then return node
end if
child nodes = env.expand(node.state)
for all child nodes do

if child node.state not in explored then . What about frontier?
add nodes to frontier

end if
end for

end while
end function

Do not forget: node is not the same as state!

5 / 24

Notes
Think about what is node and what state. What is main difference? How are they connected? Where do they
appear? What is node/state in the maze problem?
The main idea: Do not expand a state twice.
What would be a good data structure to implement the explored set? Yes, it would be a set ;) – where every
element is present only once. Unlike list.

”What about frontier?” - if you can ensure that the first time you add a node to frontier, the state will be reached

by an optimal path from start, you can also check frontier here (e.g., BFS). If you can’t guarantee that, you have

to be more careful.



A graph search
function graph search(env) return a solution or failure

init frontier by the start state
initialize the explored set to be empty
while frontier do

node = frontier.pop()
add node.state to explored
if goal in node then return node
end if
child nodes = env.expand(node.state)
for all child nodes do

if child node.state not in explored then . What about frontier?
add nodes to frontier

end if
end for

end while
end function

Do not forget: node is not the same as state!

5 / 24

Notes
Think about what is node and what state. What is main difference? How are they connected? Where do they
appear? What is node/state in the maze problem?
The main idea: Do not expand a state twice.
What would be a good data structure to implement the explored set? Yes, it would be a set ;) – where every
element is present only once. Unlike list.

”What about frontier?” - if you can ensure that the first time you add a node to frontier, the state will be reached

by an optimal path from start, you can also check frontier here (e.g., BFS). If you can’t guarantee that, you have

to be more careful.



A graph search
function graph search(env) return a solution or failure

init frontier by the start state
initialize the explored set to be empty
while frontier do

node = frontier.pop()
add node.state to explored
if goal in node then return node
end if
child nodes = env.expand(node.state)
for all child nodes do

if child node.state not in explored then . What about frontier?
add nodes to frontier

end if
end for

end while
end function

Do not forget: node is not the same as state!

5 / 24

Notes
Think about what is node and what state. What is main difference? How are they connected? Where do they
appear? What is node/state in the maze problem?
The main idea: Do not expand a state twice.
What would be a good data structure to implement the explored set? Yes, it would be a set ;) – where every
element is present only once. Unlike list.

”What about frontier?” - if you can ensure that the first time you add a node to frontier, the state will be reached

by an optimal path from start, you can also check frontier here (e.g., BFS). If you can’t guarantee that, you have

to be more careful.



A graph search
function graph search(env) return a solution or failure

init frontier by the start state
initialize the explored set to be empty
while frontier do

node = frontier.pop()
add node.state to explored
if goal in node then return node
end if
child nodes = env.expand(node.state)
for all child nodes do

if child node.state not in explored then . What about frontier?
add nodes to frontier

end if
end for

end while
end function

Do not forget: node is not the same as state!

5 / 24

Notes
Think about what is node and what state. What is main difference? How are they connected? Where do they
appear? What is node/state in the maze problem?
The main idea: Do not expand a state twice.
What would be a good data structure to implement the explored set? Yes, it would be a set ;) – where every
element is present only once. Unlike list.

”What about frontier?” - if you can ensure that the first time you add a node to frontier, the state will be reached

by an optimal path from start, you can also check frontier here (e.g., BFS). If you can’t guarantee that, you have

to be more careful.



The BFS graph search
function BFS graph search(env) return a solution or failure

node ← env.observe()
frontier ← FIFOqueue(node)
explored ← set()
while frontier not empty do

node ← frontier.pop()
explored.add(node.state) . Add state, not node!
child nodes ← env.expand(node.state)
for all child nodes do

if child node.state not in explored and not in frontier then
if child node contains Goal then return child node
end if
frontier.insert(child node)

end if
end for

end while
end function 6 / 24

Notes
Why adding/checking state and not node in explored data structure? Can I do the simple presence check for
all kind of graph search algorithms?
Run demo again with BFS graph search.
Notes for teacher:
TREE SEARCH = False
Working note for demo:
python3 easy search agents.py

’n’ for next

’s’ for skip

code settings:
MAP = ’maps/easy/easy2.bmp’

TREE SEARCH = False

node type = ’BFS’

Result can be also seen at: https://youtu.be/4yu nsWZ2ck

https://youtu.be/4yu_nsWZ2ck
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What about uniform costs graph search?
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Notes
When following the algorithm (animation) use the paper list of frontier and explored

Note the extra features of UCS vs. BFS in action:

1. Update of cost:

– “b,2” disappears as “b,1.7” appears – update with lower cost.
– Similarly, “e,2.7” and “f,3.7” appear to immediately disappear again – their cost is higher

than already available for those states.

2. Termination only after expanding node with goal state.
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– “b,2” disappears as “b,1.7” appears – update with lower cost.
– Similarly, “e,2.7” and “f,3.7” appear to immediately disappear again – their cost is higher

than already available for those states.

2. Termination only after expanding node with goal state.
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The UCS graph search
function UCS graph search(env) return a solution or failure

node ← env.observe()
frontier ← priority queue(node) . path cost for ordering
explored ← set()
while frontier not empty do

node ← frontier.pop()
if node contains Goal then return node . check here!
end if
explored.add(node.state)
child nodes ← env.expand(node.state)
for all child nodes do

if child node.state not in explored and not in frontier then
frontier.insert(child node)

else if child node.state in frontier with higher cost then
replace that node with the child node

end if
end for

end while
end function 8 / 24

Notes

Does the algorithm always find the best (cheapest) path? Are there any requirements for the path optimality

function?
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Few examples of search strategies so far
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Run the demos.
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Notes



What is wrong with UCS and other strategies?
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Notes

https://youtu.be/TT5MY8xCgAg


Node selection, take argmin f (n)

Selecting next node to expand/visit:

node← argmin
n∈frontier

f (n)

What is f (n) for DFS, BFS, and UCS?

I DFS:

I BFS:

I UCS:

I f (n) = n.path cost

I f (n) = n.depth

I f (n) = −n.depth

The good: (one) frontier as a priority queue
(I.e., priority queue will work universally. Still, stack (LIFO) and queue (FIFO) are
(conceptually) the perfect data structures for DFS and BFS, respectively.)
The bad: All the f (n) correspond to the cost from n to the start - only backward cost;
cost-to-come (to n).

11 / 24

Notes

� DFS: f (n) = −n.depth
� BFS: f (n) = n.depth

� UCS: f (n) = n.path cost

Do humans look back when planing path? Is looking back important at all? If yes, when?
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How far are we from the goal cost-to-go ? – Heuristics

I A function that estimates how close a state is to the goal.

I Designed for a particular problem.

I We will use h(n) – heuristic value of node n.

12 / 24

Notes

What happens if h(n) = true cost?



Example of heuristics
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Notes
Straight-line distance to Bucharest.

Illustration of greedy failing: Imagine going from Iasi to Fagaras. Neamt will be chosen for expansion. This will

add Iasi back. Iasi is closer to Fagaras than Vaslui is and will be expanded again. Infinite loop... (3.5.1. in [2])



Greedy, take the node argmin h(n)
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What is wrong (and nice) with the Greedy?
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Notes
Also called “Greedy best-first search” [2].
What will happen in this example:

1. Expand “S”. Add “a” to frontier.

2. Expand “a”. Add “b”,“d”,“e”.

3. Expand “e” (h = 1). Get “G”.

Wrong:

� not optimal

� not complete (tree search version) (Can be shown on the Romania example – go back.)

� (graph search version is complete only in finite state spaces)

Nice: it is simple.
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A∗ combines UCS and Greedy
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UCS orders by backward (path) cost g(n)
Greedy uses heuristics (goal proximity) h(n)

A∗ orders nodes by: f (n) = g(n) + h(n)
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When to stop A∗?
When#should#A*#terminate?#

!  Should#we#stop#when#we#enqueue#a#goal?#

!  No:#only#stop#when#we#dequeue#a#goal#

S 

B 

A 

G 

2 

3 

2 

2 
h = 1 

h = 2 

h = 0 h = 3 

1

1Graph example: Dan Klein and Pieter Abbeel
16 / 24

Notes
1. S

– f (S) = g(S) + h(S) = 0 + 3 = 3
– expanding/poping this one and crossing out (removing from frontier)

2. S → A

– f (A) = g(A) + h(A) = 2 + 2 = 4

3. S → B

– f (B) = g(B) + h(B) = 2 + 1 = 3
– expanding this one and crossing out

4. S → B → G

– f (G ) = g(G ) + h(G ) = 5 + 0 = 5
– Should I stop now? No. Pop S → A with f = 4.

5. S → A→ G

– f (G ) = g(G ) + h(G ) = 4 + 0 = 4
– This is now cheapest on the frontier. I pop/expand and I’m done.

Note: h is a function of the state. g is a function of a node (the path matters).



Is A∗ optimal?

Is#A*#Op)mal?#

!  What#went#wrong?#
!  Actual#bad#goal#cost#<#es)mated#good#goal#cost#
!  We#need#es)mates#to#be#less#than#actual#costs!#
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1 3 
h = 6 

h = 0 
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2

What is the problem?

2Graph example: Dan Klein and Pieter Abbeel
17 / 24

Notes
Try to answer the question before going to the next slide.

1. S

– f (S) = g(S) + h(S) = 0 + 7 = 7
– expanding/poping this one and crossing out (removing from frontier)

2. S → A

– f (A) = g(A) + h(A) = 1 + 6 = 7

3. S → G

– f (G ) = g(G ) + h(G ) = 5 + 0 = 5
– This is now cheapest on the frontier. I pop/expand and I’m done.

Ooops! That’s not cheapest! What went wrong?
What follows – keep for next slide. Problem with h(A) = 6. Overestimating the expense. (Same problem for
h(S).)
Estimates need to be ≤ actual costs.
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Admissible heuristics

A heuristic function h is admissible if:

h(n) ≤ h∗(n)

h(Goal) = 0

where h∗(n) is the true cost of going from n to the nearest goal.

18 / 24

Notes



Optimality of A∗ tree search

A* is optimal if h(n) is admissible.

19 / 24

Notes



A* graph search

function graph search(env)
frontier.insert(startnode)
explored = set()
while frontier do

node = frontier.pop()
if goal in node then return node
end if
child nodes = env.expand(node.state)
explored.add(node.state)
for all child nodes do

if child node.state not in explored then
frontier.insert(child node)

end if
end for

end while
end function

A*#Graph#Search#Gone#Wrong?#
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State#space#graph# Search#tree#

What went wrong?
Graph example: Dan Klein and Pieter Abbeel.

20 / 24

Notes

1. – f (S) = g(S) + h(S) = 0 + 2 = 2
– expanding/poping this one and crossing out (removing from frontier); explored set: S

2. S → A; f (A) = g(A) + h(A) = 1 + 4 = 5

3. S → B; f (B) = g(B) + h(B) = 1 + 1 = 2

4. B is cheapest on the frontier. Expanding and removing from frontier; explored set: S ,B

5. B → C ; f (C) = g(C) + h(C) = 3 + 1 = 4

6. C is cheapest on the frontier. Expanding and removing from frontier; explored set: S ,B,C

7. C → G ; f (G) = f (G) + h(G) = 6 + 0 = 6

8. A is cheapest on the frontier. Expanding and removing from frontier; explored set: S ,A,B,C

9. A→ C ; f (C) = f (C) + h(C) = 2 + 1 = 3

10. C is cheapest on the frontier. But, it’s on explored set! Can’t be expanded.

11. Moving on to G , expanding and finishing.

Ooops! That’s not cheapest! cost(S → B → C → G) = 6; cost(S → A→ C → G) = 5 What went wrong?
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end if
end for

end while
end function
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What went wrong?
Graph example: Dan Klein and Pieter Abbeel.
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Notes

1. – f (S) = g(S) + h(S) = 0 + 2 = 2
– expanding/poping this one and crossing out (removing from frontier); explored set: S

2. S → A; f (A) = g(A) + h(A) = 1 + 4 = 5

3. S → B; f (B) = g(B) + h(B) = 1 + 1 = 2

4. B is cheapest on the frontier. Expanding and removing from frontier; explored set: S ,B

5. B → C ; f (C) = g(C) + h(C) = 3 + 1 = 4

6. C is cheapest on the frontier. Expanding and removing from frontier; explored set: S ,B,C

7. C → G ; f (G) = f (G) + h(G) = 6 + 0 = 6

8. A is cheapest on the frontier. Expanding and removing from frontier; explored set: S ,A,B,C

9. A→ C ; f (C) = f (C) + h(C) = 2 + 1 = 3

10. C is cheapest on the frontier. But, it’s on explored set! Can’t be expanded.

11. Moving on to G , expanding and finishing.

Ooops! That’s not cheapest! cost(S → B → C → G) = 6; cost(S → A→ C → G) = 5 What went wrong?



Consistent heuristics
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State#space#graph# Search#tree#
Admissible h:
h(A) ≤ true cost A→ G

Consistent h:
h(A)− h(C ) ≤ true cost A→ C
in general:
h(n)− h(s) ≤ true cost n→ s for any pair: node
n and its successor s

f (n) = g(n) + h(n) along a path never decreases!
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Notes
Our heuristic was admissible.
With tree search it would have worked. It would have expanded C and found the alternative, cheaper path.
For graph search, the problem is the A→ C → G subgraph where the consistent heuristic condition is violated.
The general condition means we have two constraints for (A) for this particuar graph:
h(S)− h(A) ≤ c(S ,A)
h(A)− h(C) ≤ c(A,C)
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Optimality of A∗

I admissible h for tree search

I consistent h for graph search

I What about UCS?

I Are all consistent heuristics also admissible?
h(A)− h(C ) ≤ cost(A→ C )
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Notes

Yes, all consistent heuristics are also admissible. Btw., it is not easy to invent a heuristics that is admissible but

not consistent.
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Best First Search
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Notes



References, further reading

Some figures from [2]. Chapter 2 in [1] provides a compact/dense intro into search algorithms.
(State space) Search algoritmhs are ubiquitous, explanations in many (text)books about
Algorithms.
Nice online course from UC Berkeley (CS 188 Into to AI):
http://ai.berkeley.edu/lecture videos.html Lecture: Informed Search.

[1] Steven M. LaValle.
Planning Algorithms.
Cambridge, 1st edition, 2006.
Online version available at: http://planning.cs.uiuc.edu.

[2] Stuart Russell and Peter Norvig.
Artificial Intelligence: A Modern Approach.
Prentice Hall, 3rd edition, 2010.
http://aima.cs.berkeley.edu/.
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