Policy estimate from training episodes J. Kostlivá, Z. Straka, P. Švarný

We have:

- unknown grid world of unknown size and structure/shape
- robot/agents moves in unknown directions with unknown parameters
- \rightarrow We do not know anything

Policy estimate from training episodes J. Kostlivá, Z. Straka, P. Švarný

We have:

- unknown grid world of unknown size and structure/shape
- robot/agents moves in unknown directions with unknown parameters
- \rightarrow We do not know anything
- we only have a few episodes the robot tried

Policy estimate from training episodes J. Kostlivá, Z. Straka, P. Švarný

We have:

- unknown grid world of unknown size and structure/shape
- robot/agents moves in unknown directions with unknown parameters
- \rightarrow We do not know anything
- we only have a few episodes the robot tried

What to do?

- A: Run away :-)
- B: Examine episodes and learn
- C: Guess
- D: Try something

Policy estimate from training episodes

We have:

- unknown grid world of unknown size and structure/shape
- ▶ robot/agents moves in unknown directions with unknown parameters
- \rightarrow We do not know anything
- we only have a few episodes the robot tried

What to do?

- A: Run away :-)
- B: Examine episodes and learn
- C: Guess
- D: Try something

Episode 1	Episode 2	Episode 3	Episode 4
$(B, \rightarrow, C, -3)$	$(B,\leftarrow,A,-1)$	$(C, \rightarrow, D, -3)$	$(C,\leftarrow,B,-1)$
$(C, \rightarrow, D, -3)$	$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$
$(D,\leftarrow,exit,6)$			$(C,\leftarrow,B,-1)$
			$(B,\leftarrow,A,-1)$
			$(A, \leftarrow, exit, 6)$

each field in table is n-tuple (s, a, s', r), known discount factor $\gamma = 1$

Task: for non-terminal states determine the optimal policy. Use model-based learning.

What do we have to learn (model based learning)?

A: policy π

B: state set S, policy π

C: state set S, action set A, transition model p(s'|s,a)

D: state set S, action set A, rewards r, transition model p(s'|s,a)

Episode 1	Episode 2	Episode 3	Episode 4
$(B, \rightarrow, C, -3)$	$(B,\leftarrow,A,-1)$	$(C, \rightarrow, D, -3)$	$(C,\leftarrow,B,-1)$
$(C, \rightarrow, D, -3)$	$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$
$(D,\leftarrow,exit,6)$			$(C,\leftarrow,B,-1)$
			$(B,\leftarrow,A,-1)$
			$(A, \leftarrow, exit, 6)$

each field in table is n-tuple (s, a, s', r), known discount factor $\gamma = 1$

Task: for non-terminal states determine the optimal policy. Use model-based learning.

What do we have to learn (model based learning)?

A: policy π

B: state set S, policy π

C: state set S, action set A, transition model p(s'|s, a)

D: state set S, action set A, rewards r, transition model p(s'|s, a)

Episode 1	Episode 2	Episode 3	Episode 4
$(B, \rightarrow, C, -3)$	$(B,\leftarrow,A,-1)$	$(C, \rightarrow, D, -3)$	$(C,\leftarrow,B,-1)$
$(C, \rightarrow, D, -3)$	$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$
$(D,\leftarrow,exit,6)$			$(C,\leftarrow,B,-1)$
			$(B,\leftarrow,A,-1)$
			$(A, \leftarrow, exit, 6)$

each field in table is n-tuple (s, a, s', r)

Task: for non-terminal states determine the optimal policy

What do we have to learn (model based learning)?

A: policy π

B: state set S, policy π

C: state set S, action set A, transition model p(s'|s, a)

D: state set S, action set A, rewards r, transition model p(s'|s, a)

Episode 1	Episode 2	Episode 3	Episode 4
$(B, \rightarrow, C, -3)$	$(B,\leftarrow,A,-1)$	$(C, \rightarrow, D, -3)$	$(C,\leftarrow,B,-1)$
$(C, \rightarrow, D, -3)$	$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$
$(D,\leftarrow,exit,6)$			$(C,\leftarrow,B,-1)$
			$(B,\leftarrow,A,-1)$
			$(A, \leftarrow, exit, 6)$

each field in table is n-tuple (s, a, s', r)

What is the state set *S*?

- A: $S = \{B, C\}$
- B: $S = \{A, B, C, D, exit\}$
- $\mathbf{C}:\ \mathcal{S}=\{A,B,C,D\}$
- $\mathsf{D} \colon \ \mathcal{S} = \{A,D\}$

Episode 1	Episode 2	Episode 3	Episode 4
$(B, \rightarrow, C, -3)$	$(B,\leftarrow,A,-1)$	$(C, \rightarrow, D, -3)$	$(C,\leftarrow,B,-1)$
$(C, \rightarrow, D, -3)$	$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$
$(D,\leftarrow,exit,6)$			$(C,\leftarrow,B,-1)$
			$(B,\leftarrow,A,-1)$
			$(A, \leftarrow, exit, 6)$

each field in table is n-tuple (s, a, s', r)

What is the state set *S*?

- A: $S = \{B, C\}$
- **B**: $S = \{A, B, C, D, exit\}$
- C: $S = \{A, B, C, D\}$
- **D**: $S = \{A, D\}$

Episode 1	Episode 2	Episode 3	Episode 4
$(B, \rightarrow, C, -3)$	$(B,\leftarrow,A,-1)$	$(C, \rightarrow, D, -3)$	$(C,\leftarrow,B,-1)$
$(C, \rightarrow, D, -3)$	$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$
$(D,\leftarrow,exit,6)$			$(C,\leftarrow,B,-1)$
			$(B,\leftarrow,A,-1)$
			$(A,\leftarrow,exit,6)$

State set
$$S = \{A, B, C, D\}$$

- VVhat are the terminal states:
 - A: $\{A, B, C, D\}$
 - $\mathsf{B}\colon \{A,D\}$
 - $C: \{B, C\}$
 - $D: \{A, C, D\}$

Episode 1	Episode 2	Episode 3	Episode 4
$(B, \rightarrow, C, -3)$	$(B,\leftarrow,A,-1)$	$(C, \rightarrow, D, -3)$	$(C,\leftarrow,B,-1)$
$(C, \rightarrow, D, -3)$	$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$
$(D,\leftarrow,exit,6)$			$(C,\leftarrow,B,-1)$
			$(B,\leftarrow,A,-1)$
			$(A,\leftarrow,exit,6)$

each field in table is n-tuple (s, a, s', r)

State set $S = \{A, B, C, D\}$

- ► What are the terminal states?
 - A: $\{A, B, C, D\}$
 - B: {*A*, *D*}
 - $C: \{B,C\}$
 - $D: \{A, C, D\}$

Episode 1	Episode 2	Episode 3	Episode 4
$(B, \rightarrow, C, -3)$	$(B,\leftarrow,A,-1)$	$(C, \rightarrow, D, -3)$	$(C,\leftarrow,B,-1)$
$(C, \rightarrow, D, -3)$	$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$
$(D,\leftarrow,\textit{exit},6)$			$(C,\leftarrow,B,-1)$
			$(B,\leftarrow,A,-1)$
			$(A,\leftarrow,exit,6)$

State set
$$S = \{A, B, C, D\}$$

- What are the terminal states?
 - **A**: $\{A, B, C, D\}$
 - B: {*A*, *D*}
 - C: $\{B, C\}$
 - **D**: $\{A, C, D\}$

Episode 1	Episode 2	Episode 3	Episode 4
$(B, \rightarrow, C, -3)$	$(B,\leftarrow,A,-1)$	$(C, \rightarrow, D, -3)$	$(C,\leftarrow,B,-1)$
$(C, \rightarrow, D, -3)$	$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$
$(D,\leftarrow,exit,6)$			$(C,\leftarrow,B,-1)$
			$(B,\leftarrow,A,-1)$
			$(A,\leftarrow,exit,6)$

State set
$$S = \{A, B, C, D\}$$

- ▶ Terminal states: $\{A, D\}$
- What are the non-terminal states?
 - A: {A, B, C, D} B: {A, D} C: {B, C} D: {A, B, C}

Episode 1	Episode 2	Episode 3	Episode 4
$(B, \rightarrow, C, -3)$	$(B,\leftarrow,A,-1)$	$(C, \rightarrow, D, -3)$	$(C,\leftarrow,B,-1)$
$(C, \rightarrow, D, -3)$	$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$
$(D,\leftarrow,exit,6)$			$(C,\leftarrow,B,-1)$
			$(B,\leftarrow,A,-1)$
			$(A,\leftarrow,exit,6)$

State set
$$S = \{A, B, C, D\}$$

- ► Terminal states: {*A*, *D*}
- What are the non-terminal states?
 - A: $\{A, B, C, D\}$
 - B: {*A*, *D*}
 - **C**: {*B*, *C*}
 - D: $\{A, B, C\}$

Episode 1	Episode 2	Episode 3	Episode 4
$(B, \rightarrow, C, -3)$	$(B,\leftarrow,A,-1)$	$(C, \rightarrow, D, -3)$	$(C,\leftarrow,B,-1)$
$(C, \rightarrow, D, -3)$	$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$
$(D,\leftarrow,exit,6)$			$(C,\leftarrow,B,-1)$
			$(B,\leftarrow,A,-1)$
			$(A,\leftarrow,exit,6)$

State set
$$S = \{A, B, C, D\}$$

- ► Terminal states: {*A*, *D*}
- What are the non-terminal states?
 - **A**: $\{A, B, C, D\}$
 - **B**: {*A*, *D*}
 - **C**: {*B*, *C*}
 - **D**: $\{A, B, C\}$

Episode 1	Episode 2	Episode 3	Episode 4
$(B, \rightarrow, C, -3)$	$(B,\leftarrow,A,-1)$	$(C, \rightarrow, D, -3)$	$(C,\leftarrow,B,-1)$
$(C, \rightarrow, D, -3)$	$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$
$(D,\leftarrow,exit,6)$			$(C,\leftarrow,B,-1)$
			$(B,\leftarrow,A,-1)$
			$(A,\leftarrow,exit,6)$

each field in table is n-tuple (s, a, s', r)

State set $S = \{A, B, C, D\}$, terminal states: $\{A, D\}$, non-terminal states: $\{B, C\}$

What is the action set?

- A: $\{\rightarrow,\leftarrow\}$
- B: $\{\rightarrow,\leftarrow,\uparrow,\downarrow\}$
- C: $\{\rightarrow,\leftarrow,\uparrow\}$
- D: $\{\rightarrow,\leftarrow,\downarrow$

Episode 1	Episode 2	Episode 3	Episode 4
$(B, \rightarrow, C, -3)$	$(B,\leftarrow,A,-1)$	$(C, \rightarrow, D, -3)$	$(C,\leftarrow,B,-1)$
$(C, \rightarrow, D, -3)$	$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$
$(D,\leftarrow,exit,6)$			$(C,\leftarrow,B,-1)$
			$(B,\leftarrow,A,-1)$
			$(A, \leftarrow, exit, 6)$

each field in table is n-tuple (s, a, s', r)

State set $S = \{A, B, C, D\}$, terminal states: $\{A, D\}$, non-terminal states: $\{B, C\}$

What is the action set?

- A: $\{\rightarrow,\leftarrow\}$
- B: $\{\rightarrow,\leftarrow,\uparrow,\downarrow\}$
- $\mathsf{C}\colon\ \{\to,\leftarrow,\uparrow\}$
- $\quad \mathsf{D}\colon\ \{\to,\leftarrow,\downarrow\}$

Episode 1	Episode 2	Episode 3	Episode 4
$(B, \rightarrow, C, -3)$	$(B,\leftarrow,A,-1)$	$(C, \rightarrow, D, -3)$	$(C,\leftarrow,B,-1)$
$(C, \rightarrow, D, -3)$	$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$
$(D,\leftarrow,exit,6)$			$(C,\leftarrow,B,-1)$
			$(B,\leftarrow,A,-1)$
			$(A,\leftarrow,exit,6)$

each field in table is n-tuple (s, a, s', r)

State set $S = \{A, B, C, D\}$, terminal states: $\{A, D\}$, non-terminal states: $\{B, C\}$

What is the action set?

- $\textbf{A} \colon \ \{ \rightarrow, \leftarrow \}$
- $B: \ \{\rightarrow,\leftarrow,\uparrow,\downarrow\}$
- $\textbf{C} \colon \; \{\rightarrow, \leftarrow, \uparrow\}$
- $\textbf{D: } \{\rightarrow,\leftarrow,\downarrow\}$

Episode 1	Episode 2	Episode 3	Episode 4
$(B, \rightarrow, C, -3)$	$(B,\leftarrow,A,-1)$	$(C, \rightarrow, D, -3)$	$(C,\leftarrow,B,-1)$
$(C, \rightarrow, D, -3)$	$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$
$(D,\leftarrow,exit,6)$			$(C,\leftarrow,B,-1)$
			$(B,\leftarrow,A,-1)$
			$(A,\leftarrow,exit,6)$

each field in table is n-tuple (s, a, s', r)

State set
$$S = \{A, B, C, D\}$$
, terminal states: $\{A, D\}$, non-terminal states: $\{B, C\}$ Action set $A = \{\rightarrow, \leftarrow\}$

What is the transition model?

A: deterministic

B: non-deterministic

Let's examine :

Episode 1	Episode 2	Episode 3	Episode 4
$(B, \rightarrow, C, -3)$	$(B,\leftarrow,A,-1)$	$(C, \rightarrow, D, -3)$	$(C,\leftarrow,B,-1)$
$(C, \rightarrow, D, -3)$	$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$
$(D,\leftarrow,exit,6)$			$(C,\leftarrow,B,-1)$
			$(B,\leftarrow,A,-1)$
			$(A,\leftarrow,exit,6)$

each field in table is n-tuple (s, a, s', r)

State set
$$S = \{A, B, C, D\}$$
, terminal states: $\{A, D\}$, non-terminal states: $\{B, C\}$ Action set $A = \{\rightarrow, \leftarrow\}$

What is the transition model?

A: deterministic

B: non-deterministic

Let's examine :-

Episode 1	Episode 2	Episode 3	Episode 4
$(B, \rightarrow, C, -3)$	$(B,\leftarrow,A,-1)$	$(C, \rightarrow, D, -3)$	$(C,\leftarrow,B,-1)$
$(C, \rightarrow, D, -3)$	$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$
$(D,\leftarrow,exit,6)$			$(C,\leftarrow,B,-1)$
			$(B,\leftarrow,A,-1)$
			$(A, \leftarrow, exit, 6)$

each field in table is n-tuple (s, a, s', r)

State set
$$S = \{A, B, C, D\}$$
, terminal states: $\{A, D\}$, non-terminal states: $\{B, C\}$ Action set $A = \{\rightarrow, \leftarrow\}$

What is the transition model?

A: deterministic

B: non-deterministic

Let's examine :-)

Episode 1	Episode 2	Episode 3	Episode 4
$(B, \rightarrow, C, -3)$	$(B,\leftarrow,A,-1)$	$(C, \rightarrow, D, -3)$	$(C,\leftarrow,B,-1)$
$(C, \rightarrow, D, -3)$	$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$
$(D,\leftarrow,exit,6)$			$(C,\leftarrow,B,-1)$
			$(B,\leftarrow,A,-1)$
			$(A,\leftarrow,exit,6)$

each field in table is n-tuple (s, a, s', r)

State set $S = \{A, B, C, D\}$, terminal states: $\{A, D\}$, non-terminal states: $\{B, C\}$ Action set $A = \{\rightarrow, \leftarrow\}$

- ► How to compute?
 - A: for each state and action
 - B: for each state, action and new state
 - C: for each state
 - D: for each action and new state

Episode 1	Episode 2	Episode 3	Episode 4
$(B, \rightarrow, C, -3)$	$(B,\leftarrow,A,-1)$	$(C, \rightarrow, D, -3)$	$(C,\leftarrow,B,-1)$
$(C, \rightarrow, D, -3)$	$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$
$(D,\leftarrow,exit,6)$			$(C,\leftarrow,B,-1)$
			$(B,\leftarrow,A,-1)$
			$(A,\leftarrow,exit,6)$

each field in table is n-tuple (s, a, s', r)

State set $S = \{A, B, C, D\}$, terminal states: $\{A, D\}$, non-terminal states: $\{B, C\}$ Action set $A = \{\rightarrow, \leftarrow\}$

- ► How to compute?
 - A: for each state and action
 - B: for each state, action and new state
 - C: for each state
 - D: for each action and new state

Episode 1	Episode 2	Episode 3	Episode 4
$(B, \rightarrow, C, -3)$	$(B,\leftarrow,A,-1)$	$(C, \rightarrow, D, -3)$	$(C,\leftarrow,B,-1)$
$(C, \rightarrow, D, -3)$	$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$
$(D,\leftarrow,exit,6)$			$(C,\leftarrow,B,-1)$
			$(B,\leftarrow,A,-1)$
			$(A, \leftarrow, exit, 6)$

each field in table is n-tuple (s, a, s', r)

State set
$$S = \{A, B, C, D\}$$
, terminal states: $\{A, D\}$, non-terminal states: $\{B, C\}$ Action set $A = \{\rightarrow, \leftarrow\}$

- How to compute?
 - 1. for each state, action and new state
 - 2. A: as relative frequencies in one episode
 - B: as sum of occurencies in one episode
 - C: as relative frequencies in all episodes
 - D: as sum of occurencies in all episodes

Episode 1	Episode 2	Episode 3	Episode 4
$(B, \rightarrow, C, -3)$	$(B,\leftarrow,A,-1)$	$(C, \rightarrow, D, -3)$	$(C,\leftarrow,B,-1)$
$(C, \rightarrow, D, -3)$	$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$
$(D,\leftarrow,exit,6)$			$(C,\leftarrow,B,-1)$
			$(B,\leftarrow,A,-1)$
			$(A, \leftarrow, exit, 6)$

each field in table is n-tuple (s, a, s', r)

State set
$$S = \{A, B, C, D\}$$
, terminal states: $\{A, D\}$, non-terminal states: $\{B, C\}$ Action set $A = \{\rightarrow, \leftarrow\}$

- How to compute?
 - 1. for each state, action and new state
 - 2. A: as relative frequencies in one episode
 - B: as sum of occurencies in one episode
 - C: as relative frequencies in all episodes
 - D: as sum of occurencies in all episodes

Episode 1	Episode 2	Episode 3	Episode 4
$(B, \rightarrow, C, -3)$	$(B,\leftarrow,A,-1)$	$(C, \rightarrow, D, -3)$	$(C,\leftarrow,B,-1)$
$(C, \rightarrow, D, -3)$	$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$
$(D,\leftarrow,exit,6)$			$(C,\leftarrow,B,-1)$
			$(B,\leftarrow,A,-1)$
			$(A, \leftarrow, exit, 6)$
1 6 111		`	

each field in table is n-tuple (s, a, s', r)

State set
$$S = \{A, B, C, D\}$$
, terminal states: $\{A, D\}$, non-terminal states: $\{B, C\}$ Action set $A = \{\rightarrow, \leftarrow\}$

- How to compute?
 - 1. for each state, action and new state
 - 2. as relative frequencies in all episodes
 - ▶ evaluate $p(C|B, \rightarrow)$
 - A: 1
 - B: 2/3
 - C: 1/2
 - D: 1/3

Episode 1	Episode 2	Episode 3	Episode 4
$(B, \rightarrow, C, -3)$	$(B,\leftarrow,A,-1)$	$(C, \rightarrow, D, -3)$	$(C,\leftarrow,B,-1)$
$(C, \rightarrow, D, -3)$	$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$
$(D,\leftarrow,exit,6)$			$(C,\leftarrow,B,-1)$
			$(B,\leftarrow,A,-1)$
			$(A,\leftarrow,exit,6)$
1 6 111 111	/ /	`	

each field in table is n-tuple (s, a, s', r)

State set
$$S = \{A, B, C, D\}$$
, terminal states: $\{A, D\}$, non-terminal states: $\{B, C\}$ Action set $A = \{\rightarrow, \leftarrow\}$

What is the transition model?

- ► How to compute?
 - 1. for each state, action and new state
 - 2. as relative frequencies in all episodes
 - ightharpoonup evaluate $p(C|B, \rightarrow)$

A:
$$1 = \frac{\#(B, \to, C, \cdot)}{\#(B, \to, \cdot, \cdot)} = 2/2$$

B: 2/3

C: 1/2

Episode 1	Episode 2	Episode 3	Episode 4
$(B, \rightarrow, C, -3)$	$(B,\leftarrow,A,-1)$	$(C, \rightarrow, D, -3)$	$(C,\leftarrow,B,-1)$
$(C, \rightarrow, D, -3)$	$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$
$(D,\leftarrow,exit,6)$			$(C,\leftarrow,B,-1)$
			$(B,\leftarrow,A,-1)$
			$(A, \leftarrow, exit, 6)$
		`	

each field in table is n-tuple (s, a, s', r)

State set
$$S = \{A, B, C, D\}$$
, terminal states: $\{A, D\}$, non-terminal states: $\{B, C\}$ Action set $A = \{\rightarrow, \leftarrow\}$

$$p(C|B, \rightarrow) = 2/2 = 1$$
 $p(A|B, \leftarrow) = 2/2 = 1$
 $p(D|C, \rightarrow) = 2/2 = 1$
 $p(B|C, \leftarrow) = 2/2 = 1$

- A: non-deterministic
- B: deterministic

Episode 1	Episode 2	Episode 3	Episode 4
$(B, \rightarrow, C, -3)$	$(B,\leftarrow,A,-1)$	$(C, \rightarrow, D, -3)$	$(C,\leftarrow,B,-1)$
$(C, \rightarrow, D, -3)$	$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$
$(D,\leftarrow,exit,6)$			$(C,\leftarrow,B,-1)$
			$(B,\leftarrow,A,-1)$
			$(A, \leftarrow, exit, 6)$
		-	

each field in table is n-tuple (s, a, s', r)

State set
$$S = \{A, B, C, D\}$$
, terminal states: $\{A, D\}$, non-terminal states: $\{B, C\}$ Action set $A = \{\rightarrow, \leftarrow\}$

$$p(C|B, \rightarrow) = 2/2 = 1$$

 $p(A|B, \leftarrow) = 2/2 = 1$
 $p(D|C, \rightarrow) = 2/2 = 1$
 $p(B|C, \leftarrow) = 2/2 = 1$

- A: non-deterministic
- B: deterministic

Episode 1	Episode 2	Episode 3	Episode 4
$(B, \rightarrow, C, -3)$	$(B,\leftarrow,A,-1)$	$(C, \rightarrow, D, -3)$	$(C,\leftarrow,B,-1)$
$(C, \rightarrow, D, -3)$	$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$
$(D,\leftarrow,exit,6)$			$(C,\leftarrow,B,-1)$
			$(B,\leftarrow,A,-1)$
			$(A,\leftarrow,exit,6)$
		`	

each field in table is n-tuple (s, a, s', r)

State set
$$S = \{A, B, C, D\}$$
, terminal states: $\{A, D\}$, non-terminal states: $\{B, C\}$ Action set $A = \{\rightarrow, \leftarrow\}$

$$p(C|B, \rightarrow) = 2/2 = 1$$

 $p(A|B, \leftarrow) = 2/2 = 1$
 $p(D|C, \rightarrow) = 2/2 = 1$
 $p(B|C, \leftarrow) = 2/2 = 1$

- A: non-deterministic
- B: deterministic

Episode 1	Episode 2	Episode 3	Episode 4
$(B, \rightarrow, C, -3)$	$(B,\leftarrow,A,-1)$	$(C, \rightarrow, D, -3)$	$(C,\leftarrow,B,-1)$
$(C, \rightarrow, D, -3)$	$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$
$(D,\leftarrow,exit,6)$			$(C,\leftarrow,B,-1)$
			$(B,\leftarrow,A,-1)$
			$(A, \leftarrow, exit, 6)$
1 6 111		`	

each field in table is n-tuple (s, a, s', r)

State set
$$S = \{A, B, C, D\}$$
, terminal states: $\{A, D\}$, non-terminal states: $\{B, C\}$ Action set $A = \{\rightarrow, \leftarrow\}$

$$p(C|B, \rightarrow) = 2/2 = 1$$

 $p(A|B, \leftarrow) = 2/2 = 1$
 $p(D|C, \rightarrow) = 2/2 = 1$
 $p(B|C, \leftarrow) = 2/2 = 1$

- A: non-deterministic
- B: deterministic

Episode 1	Episode 2	Episode 3	Episode 4
$(B, \rightarrow, C, -3)$	$(B,\leftarrow,A,-1)$	$(C, \rightarrow, D, -3)$	$(C,\leftarrow,B,-1)$
$(C, \rightarrow, D, -3)$	$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$
$(D,\leftarrow,exit,6)$			$(C,\leftarrow,B,-1)$
			$(B,\leftarrow,A,-1)$
			$(A, \leftarrow, exit, 6)$

each field in table is n-tuple (s, a, s', r)

State set $S = \{A, B, C, D\}$, terminal states: $\{A, D\}$, non-terminal states: $\{B, C\}$ Action set $A = \{\rightarrow, \leftarrow\}$

Deterministic transition model: $p(C|B, \rightarrow) = p(A|B, \leftarrow) = p(D|C, \rightarrow) = p(B|C, \leftarrow) = 2/2 = 1$

What is the world structure?

A: A C B D

B: A B C D

C: B A C D

Episode 1	Episode 2	Episode 3	Episode 4
$(B, \rightarrow, C, -3)$	$(B,\leftarrow,A,-1)$	$(C, \rightarrow, D, -3)$	$(C,\leftarrow,B,-1)$
$(C, \rightarrow, D, -3)$	$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$
$(D,\leftarrow,exit,6)$			$(C,\leftarrow,B,-1)$
			$(B,\leftarrow,A,-1)$
			$(A,\leftarrow,exit,6)$

each field in table is n-tuple (s, a, s', r)

State set $S = \{A, B, C, D\}$, terminal states: $\{A, D\}$, non-terminal states: $\{B, C\}$ Action set $A = \{\rightarrow, \leftarrow\}$

Deterministic transition model: $p(C|B, \rightarrow) = p(A|B, \leftarrow) = p(D|C, \rightarrow) = p(B|C, \leftarrow) = 2/2 = 1$

What is the world structure?

- A: A C B D
- B: A B C D
- C: B A C D

Episode 1	Episode 2	Episode 3	Episode 4
$(B, \rightarrow, C, -3)$	$(B,\leftarrow,A,-1)$	$(C, \rightarrow, D, -3)$	$(C,\leftarrow,B,-1)$
$(C, \rightarrow, D, -3)$	$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$
$(D,\leftarrow,exit,6)$			$(C,\leftarrow,B,-1)$
			$(B,\leftarrow,A,-1)$
			$(A, \leftarrow, exit, 6)$

each field in table is n-tuple (s, a, s', r)

State set $S = \{A, B, C, D\}$, terminal states: $\{A, D\}$, non-terminal states: $\{B, C\}$ Action set $A = \{\rightarrow, \leftarrow\}$

Deterministic transition model: $p(C|B, \rightarrow) = p(A|B, \leftarrow) = p(D|C, \rightarrow) = p(B|C, \leftarrow) = 2/2 = 1$

What is the world structure?

- A: A C B D

 B: A B C D
- **C**: B A C D

Episode 1	Episode 2	Episode 3	Episode 4
$(B, \rightarrow, C, -3)$	$(B,\leftarrow,A,-1)$	$(C, \rightarrow, D, -3)$	$(C,\leftarrow,B,-1)$
$(C, \rightarrow, D, -3)$	$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$
$(D,\leftarrow,exit,6)$			$(C,\leftarrow,B,-1)$
			$(B,\leftarrow,A,-1)$
			$(A,\leftarrow,exit,6)$

each field in table is n-tuple (s, a, s', r)

State set $S = \{A, B, C, D\}$, terminal states: $\{A, D\}$, non-terminal states: $\{B, C\}$

Action set $A = \{\rightarrow, \leftarrow\}$

Deterministic transition model: $p(C|B, \rightarrow) = p(A|B, \leftarrow) = p(D|C, \rightarrow) = p(B|C, \leftarrow) = 2/2 = 1$ World structure: A B C D

What is a correct value for the reward function?

A: r(B) = -1

B: $r(B, \leftarrow, A) = -4$

C: r(B) = -3

D: $r(B, \leftarrow) = -1$

Episode 1	Episode 2	Episode 3	Episode 4
$(B, \rightarrow, C, -3)$	$(B,\leftarrow,A,-1)$	$(C, \rightarrow, D, -3)$	$(C,\leftarrow,B,-1)$
$(C, \rightarrow, D, -3)$	$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$
$(D,\leftarrow,exit,6)$			$(C,\leftarrow,B,-1)$
			$(B,\leftarrow,A,-1)$
			$(A,\leftarrow,exit,6)$

each field in table is n-tuple (s, a, s', r)

State set $S = \{A, B, C, D\}$, terminal states: $\{A, D\}$, non-terminal states: $\{B, C\}$

Action set $A = \{\rightarrow, \leftarrow\}$

Deterministic transition model: $p(C|B, \rightarrow) = p(A|B, \leftarrow) = p(D|C, \rightarrow) = p(B|C, \leftarrow) = 2/2 = 1$

World structure: A B C D

What is a correct value for the reward function?

- **A**: r(B) = -1
- **B**: $r(B, \leftarrow, A) = -4$
- **C**: r(B) = -3
- D: $r(B, \leftarrow) = -1$

Episode 1	Episode 2	Episode 3	Episode 4
$(B, \rightarrow, C, -3)$	$(B,\leftarrow,A,-1)$	$(C, \rightarrow, D, -3)$	$(C,\leftarrow,B,-1)$
$(C, \rightarrow, D, -3)$	$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$
$(D,\leftarrow,exit,6)$			$(C,\leftarrow,B,-1)$
			$(B,\leftarrow,A,-1)$
			$(A,\leftarrow,exit,6)$

each field in table is n-tuple (s, a, s', r)

State set
$$S = \{A, B, C, D\}$$
, terminal states: $\{A, D\}$, non-terminal states: $\{B, C\}$
Action set $A = \{\rightarrow, \leftarrow\}$

Deterministic transition model:
$$p(C|B, \rightarrow) = p(A|B, \leftarrow) = p(D|C, \rightarrow) = p(B|C, \leftarrow) = 2/2 = 1$$

World structure: $A B C D$

$$ightharpoonup r(B,\leftarrow)=-1$$

- A: r(B) = -1
- B: $r(B, \to) = -3$
- C: r(B) = -3
- D: $r(B, \to, C) = -1$

zxampie i					
Episode 1	Episode 2	Episode 3	Episode 4		
$(B, \rightarrow, C, -3)$	$(B,\leftarrow,A,-1)$	$(C, \rightarrow, D, -3)$	$(C,\leftarrow,B,-1)$		
$(C, \rightarrow, D, -3)$	$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$		
$(D,\leftarrow,exit,6)$			$(C,\leftarrow,B,-1)$		
			$(B,\leftarrow,A,-1)$		
			$(A, \leftarrow, exit, 6)$		

each field in table is n-tuple (s, a, s', r)

State set $S = \{A, B, C, D\}$, terminal states: $\{A, D\}$, non-terminal states: $\{B, C\}$

Action set
$$A = \{\rightarrow, \leftarrow\}$$

Deterministic transition model: $p(C|B, \rightarrow) = p(A|B, \leftarrow) = p(D|C, \rightarrow) = p(B|C, \leftarrow) = 2/2 = 1$

World structure: A B C D

$$ightharpoonup r(B,\leftarrow)=-1$$

A:
$$r(B) = -1$$

B:
$$r(B, \to) = -3$$

C:
$$r(B) = -3$$

D:
$$r(B, \rightarrow, C) = -1$$

Episode 1	Episode 2	Episode 3	Episode 4
$(B, \rightarrow, C, -3)$	$(B,\leftarrow,A,-1)$	$(C, \rightarrow, D, -3)$	$(C,\leftarrow,B,-1)$
$(C, \rightarrow, D, -3)$	$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$
$(D,\leftarrow,exit,6)$			$(C,\leftarrow,B,-1)$
			$(B,\leftarrow,A,-1)$
			$(A,\leftarrow,exit,6)$

each field in table is n-tuple (s, a, s', r)

State set
$$S = \{A, B, C, D\}$$
, terminal states: $\{A, D\}$, non-terminal states: $\{B, C\}$ Action set $A = \{\rightarrow, \leftarrow\}$

Deterministic transition model:
$$p(C|B, \rightarrow) = p(A|B, \leftarrow) = p(D|C, \rightarrow) = p(B|C, \leftarrow) = 2/2 = 1$$

World structure: $A B C D$

$$ightharpoonup r(B,\leftarrow)=-1$$

A:
$$r(B) = -1$$

B:
$$r(B, \to) = -3$$

C:
$$r(B) = -3$$

D:
$$r(B, \to, C) = -1$$

Zitampro i					
Episode 1	Episode 2	Episode 3	Episode 4		
$(B, \rightarrow, C, -3)$	$(B,\leftarrow,A,-1)$	$(C, \rightarrow, D, -3)$	$(C,\leftarrow,B,-1)$		
$(C, \rightarrow, D, -3)$	$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$		
$(D,\leftarrow,exit,6)$			$(C,\leftarrow,B,-1)$		
			$(B,\leftarrow,A,-1)$		
			$(A,\leftarrow,exit,6)$		

each field in table is n-tuple (s, a, s', r)

State set
$$S = \{A, B, C, D\}$$
, terminal states: $\{A, D\}$, non-terminal states: $\{B, C\}$ Action set $A = \{\rightarrow, \leftarrow\}$

Deterministic transition model:
$$p(C|B, \rightarrow) = p(A|B, \leftarrow) = p(D|C, \rightarrow) = p(B|C, \leftarrow) = 2/2 = 1$$

World structure: $A B C D$

►
$$r(B, \leftarrow) = -1, r(B, \rightarrow) = -3$$

What is also correct for the reward function?

A:
$$r(C) = -1$$

B:
$$r(C, \leftarrow, B) = -3$$

C: None

D:
$$r(C, \leftarrow) = -1$$

Zitampro i					
Episode 1	Episode 2	Episode 3	Episode 4		
$(B, \rightarrow, C, -3)$	$(B,\leftarrow,A,-1)$	$(C, \rightarrow, D, -3)$	$(C,\leftarrow,B,-1)$		
$(C, \rightarrow, D, -3)$	$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$		
$(D,\leftarrow,exit,6)$			$(C,\leftarrow,B,-1)$		
			$(B,\leftarrow,A,-1)$		
			$(A,\leftarrow,exit,6)$		

each field in table is n-tuple (s, a, s', r)

State set
$$S = \{A, B, C, D\}$$
, terminal states: $\{A, D\}$, non-terminal states: $\{B, C\}$ Action set $A = \{\rightarrow, \leftarrow\}$

Deterministic transition model:
$$p(C|B, \rightarrow) = p(A|B, \leftarrow) = p(D|C, \rightarrow) = p(B|C, \leftarrow) = 2/2 = 1$$

World structure: $A B C D$

$$r(B,\leftarrow) = -1, r(B,\rightarrow) = -3$$

What is also correct for the reward function?

A:
$$r(C) = -1$$

B:
$$r(C, \leftarrow, B) = -3$$

C: None

D:
$$r(C, \leftarrow) = -1$$

Episode 2	Episode 3	Episode 4
$(B,\leftarrow,A,-1)$	$(C, \rightarrow, D, -3)$	$(C,\leftarrow,B,-1)$
$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$
		$(C,\leftarrow,B,-1)$
		$(B,\leftarrow,A,-1)$
		$(A,\leftarrow,exit,6)$
	$(B,\leftarrow,A,-1)$	$(B,\leftarrow,A,-1) (C,\rightarrow,D,-3)$

each field in table is n-tuple (s, a, s', r)

State set
$$S = \{A, B, C, D\}$$
, terminal states: $\{A, D\}$, non-terminal states: $\{B, C\}$
Action set $A = \{\rightarrow, \leftarrow\}$

Deterministic transition model:
$$p(C|B, \rightarrow) = p(A|B, \leftarrow) = p(D|C, \rightarrow) = p(B|C, \leftarrow) = 2/2 = 1$$

World structure: $A B C D$

$$r(B,\leftarrow) = -1, r(B,\rightarrow) = -3, r(C,\leftarrow) = -1$$

A:
$$r(C) = -1$$

B:
$$r(C, \rightarrow) = -3$$

C:
$$r(C) = -3$$

D:
$$r(C, \rightarrow, D) = -4$$

Episode 1	Episode 2	Episode 3	Episode 4
$(B, \rightarrow, C, -3)$	$(B,\leftarrow,A,-1)$	$(C, \rightarrow, D, -3)$	$(C,\leftarrow,B,-1)$
$(C, \rightarrow, D, -3)$	$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$
$(D,\leftarrow,exit,6)$			$(C,\leftarrow,B,-1)$
			$(B,\leftarrow,A,-1)$
			$(A, \leftarrow, exit, 6)$

each field in table is n-tuple (s, a, s', r)

State set $S = \{A, B, C, D\}$, terminal states: $\{A, D\}$, non-terminal states: $\{B, C\}$ Action set $A = \{\rightarrow, \leftarrow\}$

Deterministic transition model: $p(C|B, \rightarrow) = p(A|B, \leftarrow) = p(D|C, \rightarrow) = p(B|C, \leftarrow) = 2/2 = 1$ World structure: A B C D

$$r(B,\leftarrow) = -1, r(B,\rightarrow) = -3, r(C,\leftarrow) = -1$$

- A: r(C) = -1
- B: $r(C, \to) = -3$
- C: r(C) = -3
- D: $r(C, \rightarrow, D) = -4$

=X4111910 1					
Episode 2	Episode 3	Episode 4			
$(B,\leftarrow,A,-1)$	$(C, \rightarrow, D, -3)$	$(C,\leftarrow,B,-1)$			
$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$			
		$(C,\leftarrow,B,-1)$			
		$(B,\leftarrow,A,-1)$			
		$(A, \leftarrow, exit, 6)$			
	$(B,\leftarrow,A,-1)$	$(B,\leftarrow,A,-1) (C,\rightarrow,D,-3)$			

each field in table is n-tuple (s, a, s', r)

State set
$$S = \{A, B, C, D\}$$
, terminal states: $\{A, D\}$, non-terminal states: $\{B, C\}$ Action set $A = \{\rightarrow, \leftarrow\}$

Deterministic transition model:
$$p(C|B, \rightarrow) = p(A|B, \leftarrow) = p(D|C, \rightarrow) = p(B|C, \leftarrow) = 2/2 = 1$$

World structure: $A B C D$

$$r(B,\leftarrow) = -1, r(B,\rightarrow) = -3, r(C,\leftarrow) = -1$$

A:
$$r(C) = -1$$

B:
$$r(C, \to) = -3$$

C:
$$r(C) = -3$$

D:
$$r(C, \to, D) = -4$$

Episode 1	Episode 2	Episode 3	Episode 4
$(B, \rightarrow, C, -3)$	$(B,\leftarrow,A,-1)$	$(C, \rightarrow, D, -3)$	$(C,\leftarrow,B,-1)$
$(C, \rightarrow, D, -3)$	$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$
$(D,\leftarrow,exit,6)$			$(C,\leftarrow,B,-1)$
			$(B,\leftarrow,A,-1)$
			$(A, \leftarrow, exit, 6)$

each field in table is n-tuple (s, a, s', r)

State set $S = \{A, B, C, D\}$, terminal states: $\{A, D\}$, non-terminal states: $\{B, C\}$ Action set $A = \{\rightarrow, \leftarrow\}$

Deterministic transition model: $p(C|B, \rightarrow) = p(A|B, \leftarrow) = p(D|C, \rightarrow) = p(B|C, \leftarrow) = 2/2 = 1$ World structure: A B C D

$$r(B,\leftarrow) = -1, r(B,\rightarrow) = -3, r(C,\leftarrow) = -1, r(C,\rightarrow) = -3$$

Discussion point, do we need more reward values?

- A: Yes, for all states and actions.
- B: No.
- C: Yes, for terminal states.

Episode 1	Episode 2	Episode 3	Episode 4
$(B, \rightarrow, C, -3)$	$(B,\leftarrow,A,-1)$	$(C, \rightarrow, D, -3)$	$(C,\leftarrow,B,-1)$
$(C, \rightarrow, D, -3)$	$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$
$(D,\leftarrow,exit,6)$			$(C,\leftarrow,B,-1)$
			$(B,\leftarrow,A,-1)$
			$(A, \leftarrow, exit, 6)$

each field in table is n-tuple (s, a, s', r)

State set
$$S = \{A, B, C, D\}$$
, terminal states: $\{A, D\}$, non-terminal states: $\{B, C\}$
Action set $A = \{\rightarrow, \leftarrow\}$
Deterministic transition model: $p(C|B, \rightarrow) = p(A|B, \leftarrow) = p(D|C, \rightarrow) = p(B|C, \leftarrow) = 2/2 = 1$
World structure: $A B C D$
Reward function: $r(\{B, C\}, \leftarrow) = -1, r(\{B, C\}, \rightarrow) = -3$

Add also the terminal state rewards: $r(\{A,D\},\{\leftarrow,\rightarrow\})=6$

Episode 1	Episode 2	Episode 3	Episode 4
$(B, \rightarrow, C, -3)$	$(B,\leftarrow,A,-1)$	$(C, \rightarrow, D, -3)$	$(C,\leftarrow,B,-1)$
$(C, \rightarrow, D, -3)$	$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$
$(D,\leftarrow,exit,6)$			$(C,\leftarrow,B,-1)$
			$(B,\leftarrow,A,-1)$
			$(A, \leftarrow, exit, 6)$

each field in table is n-tuple (s, a, s', r)

State set $S = \{A, B, C, D\}$, terminal states: $\{A, D\}$, non-terminal states: $\{B, C\}$ Action set $A = \{\rightarrow, \leftarrow\}$

Deterministic transition model: $p(C|B, \rightarrow) = p(A|B, \leftarrow) = p(D|C, \rightarrow) = p(B|C, \leftarrow) = 2/2 = 1$

World structure: A B C D

vvorid structure: $A \mid B \mid C \mid D$ Reward function: $r(\{B,C\},\leftarrow) = -1, r(\{B,C\},\rightarrow) = -3 \ r(\{A,D\},\{\leftarrow,\rightarrow\}) = 6$

Do we have all we need?

A: Yes

B: No

Episode 1	Episode 2	Episode 3	Episode 4
$(B, \rightarrow, C, -3)$	$(B,\leftarrow,A,-1)$	$(C, \rightarrow, D, -3)$	$(C,\leftarrow,B,-1)$
$(C, \rightarrow, D, -3)$	$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$
$(D,\leftarrow,exit,6)$			$(C,\leftarrow,B,-1)$
			$(B,\leftarrow,A,-1)$
			$(A,\leftarrow,exit,6)$

each field in table is n-tuple (s, a, s', r)

State set
$$S = \{A, B, C, D\}$$
, terminal states: $\{A, D\}$, non-terminal states: $\{B, C\}$

Action set
$$A = \{\rightarrow, \leftarrow\}$$

Deterministic transition model:
$$p(C|B, \rightarrow) = p(A|B, \leftarrow) = p(D|C, \rightarrow) = p(B|C, \leftarrow) = 2/2 = 1$$

World structure:
$$A B C D$$

Reward function: $r(\{B,C\},\leftarrow) = -1, r(\{B,C\},\rightarrow) = -3 r(\{A,D\},\{\leftarrow,\rightarrow\}) = 6$

Do we have all we need?

A: Yes

B: No

Episode 1	Episode 2	Episode 3	Episode 4
$(B, \rightarrow, C, -3)$	$(B,\leftarrow,A,-1)$	$(C, \rightarrow, D, -3)$	$(C,\leftarrow,B,-1)$
$(C, \rightarrow, D, -3)$	$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$
$(D,\leftarrow,exit,6)$			$(C,\leftarrow,B,-1)$
			$(B,\leftarrow,A,-1)$
			$(A,\leftarrow,exit,6)$

each field in table is n-tuple (s, a, s', r)

State set
$$S = \{A, B, C, D\}$$
, terminal states: $\{A, D\}$, non-terminal states: $\{B, C\}$

Action set
$$A = \{\rightarrow, \leftarrow\}$$

Deterministic transition model:
$$p(C|B, \rightarrow) = p(A|B, \leftarrow) = p(D|C, \rightarrow) = p(B|C, \leftarrow) = 2/2 = 1$$

World structure: A B C D Reward function:
$$r(\{B,C\},\leftarrow) = -1, r(\{B,C\},\rightarrow) = -3 \ r(\{A,D\},\{\leftarrow,\rightarrow\}) = 6$$

Do we have all we need?

A: Yes

B: No

Let's compute the policy.

Episode 1	Episode 2	Episode 3	Episode 4
$(B, \rightarrow, C, -3)$	$(B,\leftarrow,A,-1)$	$(C, \rightarrow, D, -3)$	$(C,\leftarrow,B,-1)$
$(C, \rightarrow, D, -3)$	$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$
$(D,\leftarrow,exit,6)$			$(C,\leftarrow,B,-1)$
			$(B,\leftarrow,A,-1)$
			$(A,\leftarrow,exit,6)$

each field in table is n-tuple (s, a, s', r)

State set
$$S = \{A, B, C, D\}$$
, terminal states: $\{A, D\}$, non-terminal states: $\{B, C\}$ Action set $A = \{\rightarrow, \leftarrow\}$

Deterministic transition model:
$$p(C|B, \rightarrow) = p(A|B, \leftarrow) = p(D|C, \rightarrow) = p(B|C, \leftarrow) = 2/2 = 1$$

World structure: A B C D Reward function:
$$r(\{B,C\},\leftarrow) = -1, r(\{B,C\},\rightarrow) = -3 \ r(\{A,D\},\{\leftarrow,\rightarrow\}) = 6$$

- A: Best is to go by less decreased path to terminal state
- B: We can go to the terminal state arbitrarily

Episode 1	Episode 2	Episode 3	Episode 4
$(B, \rightarrow, C, -3)$	$(B,\leftarrow,A,-1)$	$(C, \rightarrow, D, -3)$	$(C,\leftarrow,B,-1)$
$(C, \rightarrow, D, -3)$	$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$
$(D,\leftarrow,exit,6)$			$(C,\leftarrow,B,-1)$
			$(B,\leftarrow,A,-1)$
			$(A,\leftarrow,exit,6)$

each field in table is n-tuple (s, a, s', r)

State set
$$S = \{A, B, C, D\}$$
, terminal states: $\{A, D\}$, non-terminal states: $\{B, C\}$ Action set $A = \{\rightarrow, \leftarrow\}$

Deterministic transition model:
$$p(C|B, \rightarrow) = p(A|B, \leftarrow) = p(D|C, \rightarrow) = p(B|C, \leftarrow) = 2/2 = 1$$

World structure: $A B C D$

World structure:
$$A B C D$$

Reward function: $r(\{B,C\},\leftarrow) = -1, r(\{B,C\},\rightarrow) = -3 r(\{A,D\},\{\leftarrow,\rightarrow\}) = 6$

- A: Best is to go by less decreased path to terminal state
- B: We can go to the terminal state arbitrarily

Episode 1	Episode 2	Episode 3	Episode 4
$(B, \rightarrow, C, -3)$	$(B,\leftarrow,A,-1)$	$(C, \rightarrow, D, -3)$	$(C,\leftarrow,B,-1)$
$(C, \rightarrow, D, -3)$	$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$
$(D,\leftarrow,exit,6)$			$(C,\leftarrow,B,-1)$
			$(B,\leftarrow,A,-1)$
			$(A,\leftarrow,exit,6)$
1 6 111 111		`	

each field in table is n-tuple (s, a, s', r)

State set
$$S = \{A, B, C, D\}$$
, terminal states: $\{A, D\}$, non-terminal states: $\{B, C\}$
Action set $A = \{\rightarrow, \leftarrow\}$

Deterministic transition model:
$$p(C|B, \rightarrow) = p(A|B, \leftarrow) = p(D|C, \rightarrow) = p(B|C, \leftarrow) = 2/2 = 1$$

Reward function:
$$r(\{B,C\},\leftarrow) = -1, r(\{B,C\},\rightarrow) = -3, r(\{A,D\},\{\leftarrow,\rightarrow\}) = 6$$

Obs.: Immediate rewards significantly decrease state value. ightarrow go by less decreased path to terminal state

- A: a(B /_) -
- B: $a(B, \leftarrow) = 3$
- C: $q(B, \leftarrow) = -1$
- D: $q(B, \leftarrow) = -3$

Episode 2	Episode 3	Episode 4
$(B,\leftarrow,A,-1)$	$(C, \rightarrow, D, -3)$	$(C,\leftarrow,B,-1)$
$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$
		$(C,\leftarrow,B,-1)$
		$(B,\leftarrow,A,-1)$
		$(A, \leftarrow, exit, 6)$
	$(B,\leftarrow,A,-1)$	$(B,\leftarrow,A,-1) (C,\rightarrow,D,-3)$

each field in table is n-tuple (s, a, s', r)

State set
$$S = \{A, B, C, D\}$$
, terminal states: $\{A, D\}$, non-terminal states: $\{B, C\}$

Action set
$$A = \{\rightarrow, \leftarrow\}$$

Deterministic transition model:
$$p(C|B, \rightarrow) = p(A|B, \leftarrow) = p(D|C, \rightarrow) = p(B|C, \leftarrow) = 2/2 = 1$$

Reward function:
$$\overline{r(\{B,C\},\leftarrow)} = -1, r(\{B,C\},\rightarrow) = -3 \ r(\{A,D\},\{\leftarrow,\rightarrow\}) = 6$$

Obs.: Immediate rewards significantly decrease state value. \rightarrow go by less decreased path to terminal state Compute:

- A: $q(B, \leftarrow) = 5$
- B: $q(B, \leftarrow) = 3$
- C: $q(B, \leftarrow) = -1$
- D: $q(B, \leftarrow) = -3$

Episode 1	Episode 2	Episode 3	Episode 4
$(B, \rightarrow, C, -3)$	$(B,\leftarrow,A,-1)$	$(C, \rightarrow, D, -3)$	$(C,\leftarrow,B,-1)$
$(C, \rightarrow, D, -3)$	$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$
$(D,\leftarrow,exit,6)$			$(C,\leftarrow,B,-1)$
			$(B,\leftarrow,A,-1)$
			$(A,\leftarrow,exit,6)$
		`	

each field in table is n-tuple (s, a, s', r)

State set
$$S = \{A, B, C, D\}$$
, terminal states: $\{A, D\}$, non-terminal states: $\{B, C\}$ Action set $A = \{\rightarrow, \leftarrow\}$

Deterministic transition model:
$$p(C|B, \rightarrow) = p(A|B, \leftarrow) = p(D|C, \rightarrow) = p(B|C, \leftarrow) = 2/2 = 1$$

Reward function:
$$\overline{r(\{B,C\},\leftarrow)} = -1, r(\{B,C\},\rightarrow) = -3 \ r(\{A,D\},\{\leftarrow,\rightarrow\}) = 6$$

Obs.: Immediate rewards significantly decrease state value. \rightarrow go by less decreased path to terminal state Compute:

A:
$$q(B, \leftarrow) = B \leftarrow A = 6 - 1 = 5$$

B:
$$q(B, \leftarrow) = 3$$

C:
$$q(B, \leftarrow) = -1$$

D:
$$q(B, \leftarrow) = -3$$

Episode 1	Episode 2	Episode 3	Episode 4
$(B, \rightarrow, C, -3)$	$(B,\leftarrow,A,-1)$	$(C, \rightarrow, D, -3)$	$(C,\leftarrow,B,-1)$
$(C, \rightarrow, D, -3)$	$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$
$(D,\leftarrow,exit,6)$			$(C,\leftarrow,B,-1)$
			$(B,\leftarrow,A,-1)$
			$(A,\leftarrow,exit,6)$

each field in table is n-tuple (s, a, s', r)

State set
$$S = \{A, B, C, D\}$$
, terminal states: $\{A, D\}$, non-terminal states: $\{B, C\}$ Action set $A = \{\rightarrow, \leftarrow\}$

Deterministic transition model:
$$p(C|B, \rightarrow) = p(A|B, \leftarrow) = p(D|C, \rightarrow) = p(B|C, \leftarrow) = 2/2 = 1$$

World structure: $A B C D$

Reward function:
$$r(\{B,C\},\leftarrow) = -1, r(\{B,C\},\rightarrow) = -3 \ r(\{A,D\},\{\leftarrow,\rightarrow\}) = 6$$

Obs.: Immediate rewards significantly decrease state value. \rightarrow go by less decreased path to terminal state Compute:

$$ightharpoonup q(B,\leftarrow)=5$$

(What can we assume about $\pi(C)$?)

A:
$$q(B, \rightarrow) = 5$$

B:
$$q(B, \rightarrow) = 3$$

C:
$$g(B, \rightarrow) = 1$$

Episode 1	Episode 2	Episode 3	Episode 4
$(B, \rightarrow, C, -3)$	$(B,\leftarrow,A,-1)$	$(C, \rightarrow, D, -3)$	$(C,\leftarrow,B,-1)$
$(C, \rightarrow, D, -3)$	$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$
$(D,\leftarrow,exit,6)$			$(C,\leftarrow,B,-1)$
			$(B,\leftarrow,A,-1)$
			$(A,\leftarrow,exit,6)$

each field in table is n-tuple (s, a, s', r)

State set
$$S = \{A, B, C, D\}$$
, terminal states: $\{A, D\}$, non-terminal states: $\{B, C\}$

Action set
$$A = \{\rightarrow, \leftarrow\}$$

Deterministic transition model:
$$p(C|B, \rightarrow) = p(A|B, \leftarrow) = p(D|C, \rightarrow) = p(B|C, \leftarrow) = 2/2 = 1$$

Reward function:
$$r(\lbrace B,C\rbrace,\leftarrow)=-1, r(\lbrace B,C\rbrace,\rightarrow)=-3 \ r(\lbrace A,D\rbrace,\lbrace \leftarrow,\rightarrow\rbrace)=6$$

Obs.: Immediate rewards significantly decrease state value. \rightarrow go by less decreased path to terminal state Compute:

$$ightharpoonup q(B,\leftarrow)=5$$

(What can we assume about $\pi(C)$?)

A:
$$q(B, \rightarrow) = 5$$

B:
$$a(B, \rightarrow) = 3$$

C:
$$q(B, \rightarrow) = 1$$

Episode 1	Episode 2	Episode 3	Episode 4
$(B, \rightarrow, C, -3)$	$(B,\leftarrow,A,-1)$	$(C, \rightarrow, D, -3)$	$(C,\leftarrow,B,-1)$
$(C, \rightarrow, D, -3)$	$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$
$(D,\leftarrow,exit,6)$			$(C,\leftarrow,B,-1)$
			$(B,\leftarrow,A,-1)$
			$(A, \leftarrow, exit, 6)$

each field in table is n-tuple (s, a, s', r)

State set
$$S = \{A, B, C, D\}$$
, terminal states: $\{A, D\}$, non-terminal states: $\{B, C\}$

Action set
$$A = \{\rightarrow, \leftarrow\}$$

Deterministic transition model:
$$p(C|B, \rightarrow) = p(A|B, \leftarrow) = p(D|C, \rightarrow) = p(B|C, \leftarrow) = 2/2 = 1$$

Reward function:
$$r(\{B,C\},\leftarrow) = -1, r(\{B,C\},\rightarrow) = -3, r(\{A,D\},\{\leftarrow,\rightarrow\}) = 6$$

Obs.: Immediate rewards significantly decrease state value. \rightarrow go by less decreased path to terminal state Compute:

$$ightharpoonup q(B,\leftarrow)=5$$

(What can we assume about $\pi(C)$?)

A:
$$q(B, \to) = 5$$

B:
$$a(B, \to) = 3$$

C:
$$q(B, \to) = B \to C \leftarrow B \leftarrow A = -3 - 1 - 1 + 6 = 1$$

Episode 1	Episode 2	Episode 3	Episode 4
$(B, \rightarrow, C, -3)$	$(B,\leftarrow,A,-1)$	$(C, \rightarrow, D, -3)$	$(C,\leftarrow,B,-1)$
$(C, \rightarrow, D, -3)$	$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$
$(D,\leftarrow,exit,6)$			$(C,\leftarrow,B,-1)$
			$(B,\leftarrow,A,-1)$
			$(A,\leftarrow,exit,6)$

each field in table is n-tuple (s, a, s', r)

State set
$$S = \{A, B, C, D\}$$
, terminal states: $\{A, D\}$, non-terminal states: $\{B, C\}$ Action set $A = \{\rightarrow, \leftarrow\}$

Deterministic transition model:
$$p(C|B, \rightarrow) = p(A|B, \leftarrow) = p(D|C, \rightarrow) = p(B|C, \leftarrow) = 2/2 = 1$$
 World structure: $A B C D$

Reward function:
$$r(\lbrace B,C\rbrace,\leftarrow)=-1, r(\lbrace B,C\rbrace,\rightarrow)=-3 \ r(\lbrace A,D\rbrace,\lbrace \leftarrow,\rightarrow\rbrace)=6$$

Obs.: Immediate rewards significantly decrease state value. \rightarrow go by less decreased path to terminal state Compute:

- $ightharpoonup q(B,\leftarrow)=5$
- $ightharpoonup q(B, \rightarrow) = 1$

Episode 1	Episode 2	Episode 3	Episode 4
$(B, \rightarrow, C, -3)$	$(B,\leftarrow,A,-1)$	$(C, \rightarrow, D, -3)$	$(C,\leftarrow,B,-1)$
$(C, \rightarrow, D, -3)$	$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$
$(D,\leftarrow,exit,6)$			$(C,\leftarrow,B,-1)$
			$(B,\leftarrow,A,-1)$
			$(A, \leftarrow, exit, 6)$

each field in table is n-tuple (s, a, s', r)

State set $S = \{A, B, C, D\}$, terminal states: $\{A, D\}$, non-terminal states: $\{B, C\}$ Action set $A = \{\rightarrow, \leftarrow\}$

Deterministic transition model: $p(C|B, \rightarrow) = p(A|B, \leftarrow) = p(D|C, \rightarrow) = p(B|C, \leftarrow) = 2/2 = 1$

World structure: A B C D

Reward function: $\overline{r(\{B,C\},\leftarrow)} = -1, r(\{B,C\},\rightarrow) = -3, r(\{A,D\},\{\leftarrow,\rightarrow\}) = 6$

Obs.: Immediate rewards significantly decrease state value. \rightarrow go by less decreased path to terminal state Compute:

- $ightharpoonup q(B,\leftarrow)=5$
- $ightharpoonup q(B, \rightarrow) = 1$
- $\rightarrow \pi(B) = \leftarrow$

Episode 1	Episode 2	Episode 3	Episode 4
$(B, \rightarrow, C, -3)$	$(B,\leftarrow,A,-1)$	$(C, \rightarrow, D, -3)$	$(C,\leftarrow,B,-1)$
$(C, \rightarrow, D, -3)$	$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$
$(D,\leftarrow,exit,6)$			$(C,\leftarrow,B,-1)$
			$(B,\leftarrow,A,-1)$
			$(A,\leftarrow,exit,6)$

each field in table is n-tuple (s, a, s', r)

State set $S = \{A, B, C, D\}$, terminal states: $\{A, D\}$, non-terminal states: $\{B, C\}$

Action set $A = \{\rightarrow, \leftarrow\}$

Deterministic transition model: $p(C|B, \rightarrow) = p(A|B, \leftarrow) = p(D|C, \rightarrow) = p(B|C, \leftarrow) = 2/2 = 1$

World structure: A B C D

Reward function: $r(\{B,C\},\leftarrow) = -1, r(\{B,C\},\rightarrow) = -3, r(\{A,D\},\{\leftarrow,\rightarrow\}) = 6$

Obs.: Immediate rewards significantly decrease state value. \rightarrow go by less decreased path to terminal state $\pi(B) = \leftarrow$

Compute now $\pi(C)$:

A: $q(C, \rightarrow) = 5$

B: $q(C, \rightarrow) = 3$

C: $q(C, \rightarrow) = 0$

D: $q(C, \to) = -3$

Episode 1	Episode 2	Episode 3	Episode 4
$(B, \rightarrow, C, -3)$	$(B,\leftarrow,A,-1)$	$(C, \rightarrow, D, -3)$	$(C,\leftarrow,B,-1)$
$(C, \rightarrow, D, -3)$	$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$
$(D,\leftarrow,exit,6)$			$(C,\leftarrow,B,-1)$
			$(B,\leftarrow,A,-1)$
			$(A, \leftarrow, exit, 6)$

each field in table is n-tuple (s, a, s', r)

State set
$$S = \{A, B, C, D\}$$
, terminal states: $\{A, D\}$, non-terminal states: $\{B, C\}$

Action set
$$A = \{\rightarrow, \leftarrow\}$$

Deterministic transition model:
$$p(C|B, \rightarrow) = p(A|B, \leftarrow) = p(D|C, \rightarrow) = p(B|C, \leftarrow) = 2/2 = 1$$

Reward function:
$$\overline{r(\{B,C\},\leftarrow)} = -1, r(\{B,C\},\rightarrow) = -3, r(\{A,D\},\{\leftarrow,\rightarrow\}) = 6$$

Obs.: Immediate rewards significantly decrease state value. \rightarrow go by less decreased path to terminal state $\pi(B) = \leftarrow$

Compute now
$$\pi(C)$$
:

A:
$$q(C, \rightarrow) = 5$$

B:
$$q(C, \rightarrow) = 3$$

C:
$$q(C, \rightarrow) = 0$$

$$C: q(C, \rightarrow) = 0$$

D:
$$q(C, \rightarrow) = -3$$

Episode 1	Episode 2	Episode 3	Episode 4
$(B, \rightarrow, C, -3)$	$(B,\leftarrow,A,-1)$	$(C, \rightarrow, D, -3)$	$(C,\leftarrow,B,-1)$
$(C, \rightarrow, D, -3)$	$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$
$(D,\leftarrow,exit,6)$			$(C,\leftarrow,B,-1)$
			$(B,\leftarrow,A,-1)$
			$(A, \leftarrow, exit, 6)$
		`	

each field in table is n-tuple (s, a, s', r)

State set
$$S = \{A, B, C, D\}$$
, terminal states: $\{A, D\}$, non-terminal states: $\{B, C\}$

Action set
$$A = \{\rightarrow, \leftarrow\}$$

Deterministic transition model:
$$p(C|B, \rightarrow) = p(A|B, \leftarrow) = p(D|C, \rightarrow) = p(B|C, \leftarrow) = 2/2 = 1$$

Reward function:
$$\overline{r(\{B,C\},\leftarrow)} = -1, r(\{B,C\},\rightarrow) = -3 \ r(\{A,D\},\{\leftarrow,\rightarrow\}) = 6$$

Obs.: Immediate rewards significantly decrease state value. \rightarrow go by less decreased path to terminal state $\pi(B) = \leftarrow$

A:
$$q(C, \to) = 5$$

B:
$$q(C, \to) = C \to D = 6 - 3 = 3$$

C:
$$q(C, \to) = 0$$

D:
$$q(C, \to) = -3$$

Episode 1	Episode 2	Episode 3	Episode 4
$(B, \rightarrow, C, -3)$	$(B,\leftarrow,A,-1)$	$(C, \rightarrow, D, -3)$	$(C,\leftarrow,B,-1)$
$(C, \rightarrow, D, -3)$	$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$
$(D,\leftarrow,exit,6)$			$(C,\leftarrow,B,-1)$
			$(B,\leftarrow,A,-1)$
			$(A, \leftarrow, exit, 6)$

each field in table is n-tuple (s, a, s', r)

State set
$$S = \{A, B, C, D\}$$
, terminal states: $\{A, D\}$, non-terminal states: $\{B, C\}$

Action set
$$A = \{\rightarrow, \leftarrow\}$$

Deterministic transition model:
$$p(C|B, \rightarrow) = p(A|B, \leftarrow) = p(D|C, \rightarrow) = p(B|C, \leftarrow) = 2/2 = 1$$

Reward function:
$$r(\{B,C\},\leftarrow) = -1, r(\{B,C\},\rightarrow) = -3, r(\{A,D\},\{\leftarrow,\rightarrow\}) = 6$$

Obs.: Immediate rewards significantly decrease state value. \rightarrow go by less decreased path to terminal state $\pi(B) = \leftarrow$

$$ightharpoonup q(C, \rightarrow) = 3$$

A:
$$q(C, \leftarrow) = 4$$

B:
$$q(C, \leftarrow) = 3$$

C:
$$a(C, \leftarrow) = 0$$

Episode 1	Episode 2	Episode 3	Episode 4
$(B, \rightarrow, C, -3)$	$(B,\leftarrow,A,-1)$	$(C, \rightarrow, D, -3)$	$(C,\leftarrow,B,-1)$
$(C, \rightarrow, D, -3)$	$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$
$(D,\leftarrow,exit,6)$			$(C,\leftarrow,B,-1)$
			$(B,\leftarrow,A,-1)$
			$(A, \leftarrow, exit, 6)$

each field in table is n-tuple (s, a, s', r)

State set
$$S = \{A, B, C, D\}$$
, terminal states: $\{A, D\}$, non-terminal states: $\{B, C\}$

Action set
$$A = \{\rightarrow, \leftarrow\}$$

Deterministic transition model:
$$p(C|B, \rightarrow) = p(A|B, \leftarrow) = p(D|C, \rightarrow) = p(B|C, \leftarrow) = 2/2 = 1$$

Reward function:
$$\overline{r(\{B,C\},\leftarrow)} = -1, r(\{B,C\},\rightarrow) = -3, r(\{A,D\},\{\leftarrow,\rightarrow\}) = 6$$

Obs.: Immediate rewards significantly decrease state value. \rightarrow go by less decreased path to terminal state $\pi(B) = \leftarrow$

$$ightharpoonup q(C, \rightarrow) = 3$$

A:
$$q(C, \leftarrow) = C \leftarrow B \leftarrow A = 6 - 1 - 1 = 4$$

B:
$$q(C, \leftarrow) = 3$$

C:
$$a(C, \leftarrow) = 0$$

Episode 1	Episode 2	Episode 3	Episode 4
Lpisoue 1	Lpisode 2	Episode 5	Episode 4
$(B, \rightarrow, C, -3)$	$(B,\leftarrow,A,-1)$	$(C, \rightarrow, D, -3)$	$(C,\leftarrow,B,-1)$
$(C, \rightarrow, D, -3)$	$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$
$(D,\leftarrow,exit,6)$			$(C,\leftarrow,B,-1)$
			$(B,\leftarrow,A,-1)$
			$(A, \leftarrow, exit, 6)$

each field in table is n-tuple (s, a, s', r)

State set $S = \{A, B, C, D\}$, terminal states: $\{A, D\}$, non-terminal states: $\{B, C\}$

Action set $A = \{\rightarrow, \leftarrow\}$

Deterministic transition model: $p(C|B, \rightarrow) = p(A|B, \leftarrow) = p(D|C, \rightarrow) = p(B|C, \leftarrow) = 2/2 = 1$

World structure: A B C D

Reward function: $r(\{B,C\},\leftarrow) = -1, r(\{B,C\},\rightarrow) = -3 \ r(\{A,D\},\{\leftarrow,\rightarrow\}) = 6$

Obs.: Immediate rewards significantly decrease state value. \rightarrow go by less decreased path to terminal state $\pi(B) = \leftarrow$

- $ightharpoonup q(C, \rightarrow) = 3$
- $ightharpoonup q(C,\leftarrow)=4$

Episode 1	Episode 2	Episode 3	Episode 4
$(B, \rightarrow, C, -3)$	$(B,\leftarrow,A,-1)$	$(C, \rightarrow, D, -3)$	$(C,\leftarrow,B,-1)$
$(C, \rightarrow, D, -3)$	$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$
$(D,\leftarrow,exit,6)$			$(C,\leftarrow,B,-1)$
			$(B,\leftarrow,A,-1)$
			$(A, \leftarrow, exit, 6)$

each field in table is n-tuple (s, a, s', r)

State set $S = \{A, B, C, D\}$, terminal states: $\{A, D\}$, non-terminal states: $\{B, C\}$

Action set
$$A = \{\rightarrow, \leftarrow\}$$

Deterministic transition model: $p(C|B, \rightarrow) = p(A|B, \leftarrow) = p(D|C, \rightarrow) = p(B|C, \leftarrow) = 2/2 = 1$

World structure: A B C D

Reward function:
$$r(\{B,C\},\leftarrow) = -1, r(\{B,C\},\rightarrow) = -3, r(\{A,D\},\{\leftarrow,\rightarrow\}) = 6$$

Obs.: Immediate rewards significantly decrease state value. \rightarrow go by less decreased path to terminal state $\pi(B) = \leftarrow$

- $ightharpoonup q(C, \rightarrow) = 3$
- $ightharpoonup q(C,\leftarrow)=4$
- $\rightarrow \pi(C) = \leftarrow$

Episode 1	Episode 2	Episode 3	Episode 4
$(B, \rightarrow, C, -3)$	$(B,\leftarrow,A,-1)$	$(C, \rightarrow, D, -3)$	$(C,\leftarrow,B,-1)$
$(C, \rightarrow, D, -3)$	$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$
$(D,\leftarrow,exit,6)$			$(C,\leftarrow,B,-1)$
			$(B,\leftarrow,A,-1)$
			$(A,\leftarrow,exit,6)$

each field in table is n-tuple (s, a, s', r)

State set $S = \{A, B, C, D\}$, terminal states: $\{A, D\}$, non-terminal states: $\{B, C\}$

Action set $A = \{\rightarrow, \leftarrow\}$

Deterministic transition model: $p(C|B, \rightarrow) = p(A|B, \leftarrow) = p(D|C, \rightarrow) = p(B|C, \leftarrow) = 2/2 = 1$

World structure: A B C D

Reward function: $r(\{B,C\},\leftarrow) = -1, r(\{B,C\},\rightarrow) = -3 \ r(\{A,D\},\{\leftarrow,\rightarrow\}) = 6$

Obs.: Immediate rewards significantly decrease state value. \rightarrow go by less decreasedpath to terminal state

Solution:

- \blacktriangleright $\pi(B) = \leftarrow$
- \blacktriangleright $\pi(C) = \leftarrow$

Episode 1	Episode 2	Episode 3	Episode 4	Episode 5	Episode 6	Episode 7	Episode 8
$(B, \rightarrow, C, -3)$	$(B,\leftarrow,A,-1)$	$(C, \rightarrow, D, -3)$	$(C, \leftarrow, B, -1)$	$(B,\leftarrow,C,-3)$	$(B, \rightarrow, A, -1)$	$(C, \rightarrow, B, -1)$	$(C, \rightarrow, D, -3)$
$(C, \rightarrow, D, -3)$	$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$	$(C, \leftarrow, B, -1)$	$(A, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$	$(D, \rightarrow, exit, 6)$
$(D, \leftarrow, exit, 6)$			$(C, \leftarrow, B, -1)$	$(B, \leftarrow, A, -1)$		$(C, \leftarrow, D, -3)$	
			$(B,\leftarrow,A,-1)$	$(A, \leftarrow, exit, 6)$		$(D, \leftarrow, exit, 6)$	
			$(A, \leftarrow, exit, 6)$				

Calculating policy

- ▶ state set *S*,
- action set A,
- rewards *r*,
- ightharpoonup transition model p(s'|s, a)
- ightharpoonup policy π

Episode 1	Episode 2	Episode 3	Episode 4	Episode 5	Episode 6	Episode 7	Episode 8
$(B, \rightarrow, C, -3)$	$(B,\leftarrow,A,-1)$	$(C, \rightarrow, D, -3)$	$(C, \leftarrow, B, -1)$	$(B,\leftarrow,C,-3)$	$(B, \rightarrow, A, -1)$	$(C, \rightarrow, B, -1)$	$(C, \rightarrow, D, -3)$
$(C, \rightarrow, D, -3)$	$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$	$(C, \leftarrow, B, -1)$	$(A, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$	$(D, \rightarrow, exit, 6)$
$(D, \leftarrow, exit, 6)$			$(C, \leftarrow, B, -1)$	$(B,\leftarrow,A,-1)$		$(C, \leftarrow, D, -3)$	
			$(B,\leftarrow,A,-1)$	$(A, \leftarrow, exit, 6)$		$(D, \leftarrow, exit, 6)$	
			$(A, \leftarrow, exit, 6)$, , , ,	

What is the transition model?

A: deterministic

B: non-deterministic

Episode 1	Episode 2	Episode 3	Episode 4	Episode 5	Episode 6	Episode 7	Episode 8
$(B, \rightarrow, C, -3)$	$(B,\leftarrow,A,-1)$	$(C, \rightarrow, D, -3)$	$(C, \leftarrow, B, -1)$	$(B,\leftarrow,C,-3)$	$(B, \rightarrow, A, -1)$	$(C, \rightarrow, B, -1)$	$(C, \rightarrow, D, -3)$
$(C, \rightarrow, D, -3)$	$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$	$(C, \leftarrow, B, -1)$	$(A, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$	$(D, \rightarrow, exit, 6)$
$(D, \leftarrow, exit, 6)$			$(C, \leftarrow, B, -1)$	$(B,\leftarrow,A,-1)$		$(C, \leftarrow, D, -3)$	
			$(B,\leftarrow,A,-1)$	$(A, \leftarrow, exit, 6)$		$(D, \leftarrow, exit, 6)$	
			$(A, \leftarrow, exit, 6)$				

What is a correct transitional probability?

A
$$p(C|B, \to) = 0.75$$

B
$$p(A|B, \to) = 0.75$$

$$(C p(A|B, ←) = 0.25)$$

D
$$p(D|B,\leftarrow) = 0.75$$

Episode 1	Episode 2	Episode 3	Episode 4	Episode 5	Episode 6	Episode 7	Episode 8
$(B, \rightarrow, C, -3)$	$(B,\leftarrow,A,-1)$	$(C, \rightarrow, D, -3)$	$(C, \leftarrow, B, -1)$	$(B,\leftarrow,C,-3)$	$(B, \rightarrow, A, -1)$	$(C, \rightarrow, B, -1)$	$(C, \rightarrow, D, -3)$
$(C, \rightarrow, D, -3)$	$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$	$(C, \leftarrow, B, -1)$	$(A, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$	$(D, \rightarrow, exit, 6)$
$(D, \leftarrow, exit, 6)$			$(C, \leftarrow, B, -1)$	$(B,\leftarrow,A,-1)$		$(C,\leftarrow,D,-3)$	
			$(B, \leftarrow, A, -1)$	$(A, \leftarrow, exit, 6)$		$(D, \leftarrow, exit, 6)$	
			$(A, \leftarrow, exit, 6)$				

What is a correct transitional probability?

- A $p(C|B, \rightarrow) = 0.75$, see the episodes (B, \rightarrow) occurs 4 times, three of which lead to C, one case to A thus also $p(A|B, \rightarrow) = 0.25$
- **B** $p(A|B, \to) = 0.75$
- **C** $p(A|B,\leftarrow) = 0.25$
- **D** $p(D|B, \leftarrow) = 0.75$

Transition model: Similarly for other probabilities. Agent follows the direction given with probability 0.75. Otherwise, it goes the other direction.

ſ	Episode 1	Episode 2	Episode 3	Episode 4	Episode 5	Episode 6	Episode 7	Episode 8
ſ	$(B, \rightarrow, C, -3)$	$(B,\leftarrow,A,-1)$	$(C, \rightarrow, D, -3)$	$(C, \leftarrow, B, -1)$	$(B,\leftarrow,C,-3)$	$(B, \rightarrow, A, -1)$	$(C, \rightarrow, B, -1)$	$(C, \rightarrow, D, -3)$
1	$(C, \rightarrow, D, -3)$	$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$	$(C, \leftarrow, B, -1)$	$(A, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$	$(D, \rightarrow, exit, 6)$
	$(D, \leftarrow, exit, 6)$			$(C, \leftarrow, B, -1)$	$(B,\leftarrow,A,-1)$		$(C, \leftarrow, D, -3)$	
				$(B,\leftarrow,A,-1)$	$(A, \leftarrow, exit, 6)$		$(D, \leftarrow, exit, 6)$	
l				$(A, \leftarrow, exit, 6)$				

What is the reward function?

A
$$r(B, \rightarrow, C) = -3$$

B
$$r(B, \rightarrow, A) = -3$$

$$r(B,\leftarrow,A)=-3$$

$$D r(B,\leftarrow,C) = -3$$

Episode 1	Episode 2	Episode 3	Episode 4	Episode 5	Episode 6	Episode 7	Episode 8
$(B, \rightarrow, C, -3)$ $(C, \rightarrow, D, -3)$	$(B, \leftarrow, A, -1)$ $(A, \rightarrow, exit, 6)$	$(C, \rightarrow, D, -3)$ $(D, \rightarrow, exit, 6)$	$(C, \leftarrow, B, -1)$ $(B, \rightarrow, C, -3)$	$(B, \leftarrow, C, -3)$ $(C, \leftarrow, B, -1)$	$(B, \rightarrow, A, -1)$ $(A, \rightarrow, exit, 6)$	$(C, \rightarrow, B, -1)$ $(B, \rightarrow, C, -3)$	$(C, \rightarrow, D, -3)$ $(D, \rightarrow, exit, 6)$
$(D, \leftarrow, exit, 6)$	$(A, -\gamma, \epsilon \lambda i \epsilon, 0)$	$(D, \neg \gamma, cxrt, o)$	$(C, \leftarrow, B, -1)$	$(B, \leftarrow, A, -1)$	$(A, -\gamma, CAR, 0)$	$(C,\leftarrow,D,-3)$	$(\mathcal{D}, \neg, cxit, o)$
			$(B, \leftarrow, A, -1)$ $(A, \leftarrow, exit, 6)$	$(A, \leftarrow, exit, 6)$		$(D,\leftarrow,\mathit{exit},6)$	

What is the reward function?

A
$$r(B, \rightarrow, C) = -3$$

B
$$r(B, \to, A) = -3$$

C
$$r(B, \leftarrow, A) = -3$$

D
$$r(B, \leftarrow, C) = -3$$

 $\Rightarrow r(\cdot)$ depends on s,s' only, not the action. Similarly for other possibilities of $r(\cdot)$

Episode 1	Episode 2	Episode 3	Episode 4	Episode 5	Episode 6	Episode 7	Episode 8
$(B, \rightarrow, C, -3)$ $(C, \rightarrow, D, -3)$	$(B, \leftarrow, A, -1)$ $(A, \rightarrow, exit, 6)$	$(C, \rightarrow, D, -3)$ $(D, \rightarrow, exit, 6)$	$(C, \leftarrow, B, -1)$ $(B, \rightarrow, C, -3)$	$(B, \leftarrow, C, -3)$ $(C, \leftarrow, B, -1)$	$(B, \rightarrow, A, -1)$ $(A, \rightarrow, exit, 6)$	$(C, \rightarrow, B, -1)$ $(B, \rightarrow, C, -3)$	$(C, \rightarrow, D, -3)$ $(D, \rightarrow, exit, 6)$
$(D,\leftarrow,exit,6)$	(, , , , , , , , , , , , , , , , , , ,		$(C, \leftarrow, B, -1)$ $(B, \leftarrow, A, -1)$	$(B, \leftarrow, A, -1)$ $(A, \leftarrow, exit, 6)$	() ()	$(C, \leftarrow, D, -3)$ $(D, \leftarrow, exit, 6)$	(, , , , , , , ,
			$(A, \leftarrow, exit, 6)$	(71, 11, 12, 12, 12)		(2, 1, 5,11, 0)	

What is the reward function?

A
$$r(B, \rightarrow, C) = -3$$

B
$$r(B, \to, A) = -3$$

C
$$r(B, \leftarrow, A) = -3$$

D
$$r(B, \leftarrow, C) = -3$$

 $\Rightarrow r(\cdot)$ depends on s, s' only, not the action. Similarly for other possibilities of $r(\cdot)$.

Episode 1	Episode 2	Episode 3	Episode 4	Episode 5	Episode 6	Episode 7	Episode 8
$(B, \rightarrow, C, -3)$ $(C, \rightarrow, D, -3)$ $(D, \leftarrow, exit, 6)$	$(B,\leftarrow,A,-1)$ $(A,\rightarrow,\textit{exit},6)$	$(C, \rightarrow, D, -3) (D, \rightarrow, exit, 6)$	$(C, \leftarrow, B, -1)$ $(B, \rightarrow, C, -3)$ $(C, \leftarrow, B, -1)$ $(B, \leftarrow, A, -1)$ $(A, \leftarrow, exit, 6)$	$(B, \leftarrow, C, -3)$ $(C, \leftarrow, B, -1)$ $(B, \leftarrow, A, -1)$ $(A, \leftarrow, exit, 6)$	$(B, \rightarrow, A, -1)$ $(A, \rightarrow, exit, 6)$	$(C, \rightarrow, B, -1)$ $(B, \rightarrow, C, -3)$ $(C, \leftarrow, D, -3)$ $(D, \leftarrow, exit, 6)$	$(C, \rightarrow, D, -3) (D, \rightarrow, exit, 6)$

Result:

- ▶ States: $S = \{A, B, C, D\}$, terminal= $\{A, D\}$, nonterminal= $\{B, C\}$
- ▶ Action set: $\{\leftarrow, \rightarrow\}$
- ► Rewards:

$$r(B, \{\leftarrow, \rightarrow\}, C) = -3, r(B, \{\leftarrow, \rightarrow\}, A) = -1, r(C, \{\leftarrow, \rightarrow\}, B) = -1, r(C, \{\leftarrow, \rightarrow\}, D) = -3$$

World structure:

- ► Transition model: Agent follows the direction given with probability 0.75. Otherwise, it goes the other direction.
- ▶ Policy: $\pi(B) = ?, \pi(C) = ?$

Episode 1	Episode 2	Episode 3	Episode 4	Episode 5	Episode 6	Episode 7	Episode 8
$(B, \rightarrow, C, -3)$ $(C, \rightarrow, D, -3)$ $(D, \leftarrow, exit, 6)$	$(B, \leftarrow, A, -1) (A, \rightarrow, exit, 6)$	$(C, \rightarrow, D, -3) (D, \rightarrow, exit, 6)$	$(C, \leftarrow, B, -1)$ $(B, \rightarrow, C, -3)$ $(C, \leftarrow, B, -1)$ $(B, \leftarrow, A, -1)$	$(B, \leftarrow, C, -3)$ $(C, \leftarrow, B, -1)$ $(B, \leftarrow, A, -1)$ $(A, \leftarrow, exit, 6)$	$(B, \rightarrow, A, -1)$ $(A, \rightarrow, exit, 6)$	$(C, \rightarrow, B, -1)$ $(B, \rightarrow, C, -3)$ $(C, \leftarrow, D, -3)$ $(D, \leftarrow, exit, 6)$	$(C, \rightarrow, D, -3) (D, \rightarrow, exit, 6)$
			$(A, \leftarrow, exit, 6)$				

Policy evaluation:

$$\leftarrow$$
, \rightarrow $q(B, \leftarrow) =?, q(C, \rightarrow) =?$

$$\rightarrow$$
, \rightarrow $q(B, \rightarrow) =?, q(C, \rightarrow) =?$

$$\rightarrow$$
, \leftarrow $q(B, \rightarrow) =?, q(C, \leftarrow) =?$

$$\leftarrow$$
, \leftarrow $q(B, \leftarrow) =?, q(C, \leftarrow) =?$

Episode 1	Episode 2	Episode 3	Episode 4	Episode 5	Episode 6	Episode 7	Episode 8
$(B, \rightarrow, C, -3)$ $(C, \rightarrow, D, -3)$	$(B, \leftarrow, A, -1)$ $(A, \rightarrow, exit, 6)$	$(C, \rightarrow, D, -3)$ $(D, \rightarrow, exit, 6)$	$(C, \leftarrow, B, -1)$ $(B, \rightarrow, C, -3)$	$(B, \leftarrow, C, -3)$ $(C, \leftarrow, B, -1)$	$(B, \rightarrow, A, -1)$ $(A, \rightarrow, exit, 6)$	$(C, \rightarrow, B, -1)$ $(B, \rightarrow, C, -3)$	$(C, \rightarrow, D, -3)$ $(D, \rightarrow, exit, 6)$
$(D,\leftarrow,exit,6)$	(* ', ' , ', ', ', ', ', ', ', ', ', ', ',	(=, -, -, -, -,	$(C, \leftarrow, B, -1)$ $(B, \leftarrow, A, -1)$	$(B,\leftarrow,A,-1)$	(**, **, ***, **,	$(C, \leftarrow, D, -3)$ $(D, \leftarrow, exit, 6)$	(= , - , - , - , - ,
			$(A, \leftarrow, A, -1)$ $(A, \leftarrow, exit, 6)$	$(A,\leftarrow,\textit{exit},6)$		$(D,\leftarrow,extt,6)$	

A single policy computation:

$$\leftarrow, \rightarrow q(B, \leftarrow) =?, q(C, \rightarrow) =?$$

$$A \ q(B, \leftarrow) = 0.5 \cdot (-1) + 0.5 \cdot (-3),$$

$$q(C, \rightarrow) = 0.5 \cdot (-1) + 0.5 \cdot (-3)$$

$$B \ q(B, \leftarrow) = 0.25 \cdot (6 - 1) + 0.75 \cdot (-3 + V(C)),$$

$$q(C, \rightarrow) = 0.25 \cdot (-1) + 0.75 \cdot (-3 + V(B))$$

$$C \ q(B, \leftarrow) = 0.75 \cdot (6 - 1) + 0.25 \cdot (-3 + V(C)),$$

$$q(C, \rightarrow) = 0.75 \cdot (-3 + 6) + 0.25 \cdot (-1 + V(B))$$

$$D \ q(B, \leftarrow) = 0.75 \cdot (6 - 1) + 0.25 \cdot (-3),$$

$$q(C, \rightarrow) = 0.5 \cdot (-1) + 0.25 \cdot (-3)$$

Episode 1	Episode 2	Episode 3	Episode 4	Episode 5	Episode 6	Episode 7	Episode 8
$(B, \rightarrow, C, -3)$ $(C, \rightarrow, D, -3)$ $(D, \leftarrow, exit, 6)$	$(B, \leftarrow, A, -1) (A, \rightarrow, exit, 6)$	$(C, \rightarrow, D, -3) (D, \rightarrow, exit, 6)$	$(C, \leftarrow, B, -1)$ $(B, \rightarrow, C, -3)$ $(C, \leftarrow, B, -1)$	$(B, \leftarrow, C, -3)$ $(C, \leftarrow, B, -1)$ $(B, \leftarrow, A, -1)$	$(B, \rightarrow, A, -1)$ $(A, \rightarrow, exit, 6)$	$(C, \rightarrow, B, -1)$ $(B, \rightarrow, C, -3)$ $(C, \leftarrow, D, -3)$	$(C, \rightarrow, D, -3) (D, \rightarrow, exit, 6)$
(2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,			$(B, \leftarrow, A, -1)$ $(A, \leftarrow, exit, 6)$	$(A, \leftarrow, exit, 6)$		$(D,\leftarrow,\textit{exit},6)$	

A single policy computation:

$$\leftarrow, \rightarrow q(B, \leftarrow) =?, q(C, \rightarrow) =?$$

$$A \quad q(B, \leftarrow) = 0.5 \cdot (-1) + 0.5 \cdot (-3),$$

$$q(C, \rightarrow) = 0.5 \cdot (-1) + 0.5 \cdot (-3)$$

$$B \quad q(B, \leftarrow) = 0.25 \cdot (6 - 1) + 0.75 \cdot (-3 + V(C)),$$

$$q(C, \rightarrow) = 0.25 \cdot (-1) + 0.75 \cdot (-3 + V(C)),$$

$$q(B, \leftarrow) = 0.75 \cdot (6 - 1) + 0.25 \cdot (-3 + V(C)),$$

$$q(C, \rightarrow) = 0.75 \cdot (-3 + 6) + 0.25 \cdot (-1 + V(B))$$

$$D \quad q(B, \leftarrow) = 0.75 \cdot (6 - 1) + 0.25 \cdot (-3),$$

$$q(C, \rightarrow) = 0.5 \cdot (-1) + 0.25 \cdot (-3)$$

Episode 1	Episode 2	Episode 3	Episode 4	Episode 5	Episode 6	Episode 7	Episode 8
$(B, \rightarrow, C, -3)$	$(B,\leftarrow,A,-1)$	$(C, \rightarrow, D, -3)$	$(C,\leftarrow,B,-1)$	$(B,\leftarrow,C,-3)$	$(B, \rightarrow, A, -1)$	$(C, \rightarrow, B, -1)$	$(C, \rightarrow, D, -3)$
$(C, \rightarrow, D, -3)$	$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$	$(C, \leftarrow, B, -1)$	$(A, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$	$(D, \rightarrow, exit, 6)$
$(D, \leftarrow, exit, 6)$			$(C, \leftarrow, B, -1)$	$(B,\leftarrow,A,-1)$		$(C, \leftarrow, D, -3)$	
			$(B,\leftarrow,A,-1)$	$(A, \leftarrow, exit, 6)$		$(D,\leftarrow,\textit{exit},6)$	
			$(A, \leftarrow, exit, 6)$				

A single policy computation. As the policy is fixed $V(B) = q(B, \leftarrow), V(C) = q(C, \rightarrow)$:

- $q(B,\leftarrow) = 0.75 \cdot (6-1) + 0.25 \cdot (-3 + q(C,\rightarrow))$
- $q(C, \rightarrow) = 0.75 \cdot (-3 + 6) + 0.25 \cdot (-1 + q(B, \leftarrow))$

Therefore:

- $prod q(B, \leftarrow) = 0.75 \cdot 5 + 0.25 \cdot (-3 + .75 \cdot 3 + 0.25 \cdot (-1 + q(B, \leftarrow))) = ... \approx 3.72$
- $q(C, \rightarrow) = 0.75 \cdot 3 + 0.25 \cdot (-1 + 3.72) \approx 2.93$

And we calculate for the remaining policies.

Episode 1	Episode 2	Episode 3	Episode 4	Episode 5	Episode 6	Episode 7	Episode 8
$(B, \rightarrow, C, -3)$ $(C, \rightarrow, D, -3)$ $(D, \leftarrow, exit, 6)$	$(B, \leftarrow, A, -1)$ $(A, \rightarrow, exit, 6)$	$(C, \rightarrow, D, -3)$ $(D, \rightarrow, exit, 6)$	$(C, \leftarrow, B, -1) (B, \rightarrow, C, -3) (C, \leftarrow, B, -1) (B, \leftarrow, A, -1)$	$(B, \leftarrow, C, -3)$ $(C, \leftarrow, B, -1)$ $(B, \leftarrow, A, -1)$ $(A, \leftarrow, exit, 6)$	$(B, \rightarrow, A, -1)$ $(A, \rightarrow, exit, 6)$	$(C, \rightarrow, B, -1)$ $(B, \rightarrow, C, -3)$ $(C, \leftarrow, D, -3)$ $(D, \leftarrow, exit, 6)$	$(C, \rightarrow, D, -3)$ $(D, \rightarrow, exit, 6)$
			$(A, \leftarrow, exit, 6)$	(11, 11, 11, 11, 11, 11, 11, 11, 11, 11,		(=, , , , , , , , , , , , , , , , , , ,	

$$\leftarrow$$
, \rightarrow $q(B, \leftarrow) \approx 3.73$, $q(C, \rightarrow) \approx 2.93$

$$ightarrow,
ightarrow q(B,
ightarrow) pprox 0.62, \ q(C,
ightarrow) pprox 2.15$$

$$ightarrow$$
, \leftarrow $q(B, \rightarrow) \approx -2.29$, $q(C, \leftarrow) \approx -1.71$

$$\leftarrow$$
, \leftarrow $q(B, \leftarrow) \approx 3.70$, $q(C, \leftarrow) \approx 2.77$

And we can determine the best policy: $\pi(B) = \leftarrow, \pi(C) = \rightarrow$