MDP Introduction

F. Gama

We have:

 \bullet State: S

• Action: A

• Transition model: $T(s, a, s') \equiv P(s, a, s')$, we are in state s, make action a, and arrive in state s'

• Reward: r(s), r(s, a), r(s, a, s') immediate reward/evaluation

• Policy: agent/robot behaviour strategy

 \bullet Episode: sequence of states with rewards

• Return/Utility sequence: $G_t = \sum_{k=0}^{\infty} \gamma^k R_{t+k+1}$

$$(S_0)$$
 $R_1 = +1$ (S_1) $R_2 = +1$ (S_2) $R_3 = +1$

- 1. Evaluation of the state in the sequence:
 - A: State Value V(s)
 - B: Immediate reward r(s)
 - C: Return/Utility G
 - D: Policy π

- - A: State Value V(s)
 - B: Immediate reward r(s) \Leftarrow
 - C: Return/Utility G
 - D: Policy π

$$E_{1} \bigcirc \longrightarrow \bigcirc \longrightarrow \bigcirc \longrightarrow \bigcirc \longrightarrow \bigcirc \longrightarrow \cdots \qquad 6x$$

$$E_{2} \bigcirc \longrightarrow \bigcirc \longrightarrow \bigcirc \longrightarrow \bigcirc \longrightarrow \bigcirc \longrightarrow \cdots \qquad 3x$$

$$E_{3} \bigcirc \longrightarrow \bigcirc \longrightarrow \bigcirc \longrightarrow \bigcirc \longrightarrow \bigcirc \longrightarrow \cdots \qquad 1x$$

- 1. Evaluation of the state in the sequence: Immediate reward, reward function r(s)
- \bigcirc 0 \bigcirc 1 \bigcirc -0.3

- 2. Episode length::
 - A: Infinite
 - B: Finite
 - C: T = 1000
 - D: T = 4

- 1. Evaluation of the state in the sequence: Immediate reward, reward function r(s)
- \bigcirc 0 \bigcirc 1 \bigcirc -0.3

- 2. Episode length: We'll chose T=4
 - A: Infinite \leftarrow
 - B: Finite \leftarrow
 - C: T = 1000
 - D: T = 4

What do we need?

1. Evaluation of the state in the sequence: Immediate reward, reward function r(s)

- 2. Episode length: We chose T=4
- 3. Discount factor: γ
 - A: 1
 - B: 5
 - C: 0.8
 - D: 0.1

- 1. Evaluation of the state in the sequence: Immediate reward, reward function r(s)
- \bigcirc 0 \bigcirc 1 \bigcirc -0.3

- 2. Episode length: We chose T=4
- 3. Discount factor: $0 \le \gamma \le 1$, we'll chose $\gamma = 0.8$
 - A: 1 ←
 - B: 5
 - C: $0.8 \Leftarrow$
 - D: 0.1 \leftarrow

- 1. Evaluation of the state in the sequence: Immediate reward, reward function r(s)
- \bigcirc 0 \bigcirc 1 \bigcirc -0.3

- 2. Episode length: We chose T=4
- 3. Discount factor: $0 \le \gamma \le 1$, we'll chose $\gamma = 0.8$
- 4. Episode value calculation: return/utility G_t

A:
$$\sum_{n=1}^{T} \gamma^n$$

B:
$$\prod_{n=1}^{T} \gamma^n$$

C:
$$\gamma r$$

D:
$$\prod_{n=1}^{T} \gamma^n r_n$$

E:
$$\sum_{n=0}^{T} \gamma^n r_n$$

What do we need?

1. Evaluation of the state in the sequence: Immediate reward, reward function r(s)

- 2. Episode length: We chose T=4
- 3. Discount factor: $0 \le \gamma \le 1$, we'll chose $\gamma = 0.8$
- 4. Episode value calculation: return/utility $G_t = \sum_{n=0}^T \gamma^n r_n$
 - A: $\sum_{n=1}^{T} \gamma^n$
 - B: $\prod_{n=1}^{T} \gamma^n$
 - C: γr
 - D: $\prod_{n=1}^{T} \gamma^n r_n$
 - E: $\sum_{n=0}^{T} \gamma^n r_n$ \Leftarrow

- 1. Evaluation of the state in the sequence: Immediate reward, reward function r(s)
- \bigcirc 0 \bigcirc 1 \bigcirc -0.3

- 2. Episode length: We chose T=4
- 3. Discount factor: $0 \le \gamma \le 1$, we'll chose $\gamma = 0.8$
- 4. Episode value calculation: return/utility $G_t = \sum_{n=0}^T \gamma^n r_n$
 - A: $G(E_1) = 0.7$
 - B: $G(E_1) = 0.65$
 - C: $G(E_1) = 0.95$
 - D: $G(E_1) = 0.8$

What do we need?

1. Evaluation of the state in the sequence: Immediate reward, reward function r(s)

- 2. Episode length: We chose T=4
- 3. Discount factor: $0 \le \gamma \le 1$, we'll chose $\gamma = 0.8$
- 4. Episode value calculation: return/utility $G_t = \sum_{n=0}^{T} \gamma^n r_n$

•
$$G(E_1) = 0.65$$

A:
$$G(E_1) = 0.7$$

B:
$$G(E_1) = 0.65 = 0.8^0 \cdot 0 + 0.8^1 \cdot 1 + 0.8^2 \cdot 0 + 0.8^3 \cdot (-0.3) + 0.8^4 \cdot 0$$
 \Leftarrow

C:
$$G(E_1) = 0.95$$

D:
$$G(E_1) = 0.8$$

What do we need?

1. Evaluation of the state in the sequence: Immediate reward, reward function r(s)

- 2. Episode length: We chose T=4
- 3. Discount factor: $0 \le \gamma \le 1$, we'll chose $\gamma = 0.8$
- 4. Episode value calculation: return/utility $G_t = \sum_{n=0}^T \gamma^n r_n$

•
$$G(E_1) = 0.65$$

A:
$$G(E_2) = 0.272$$

B:
$$G(E_2) = 0.4$$

C:
$$G(E_2) = 0.7$$

D:
$$G(E_2) = 0.99$$

What do we need?

1. Evaluation of the state in the sequence: Immediate reward, reward function r(s)

- 2. Episode length: We chose T=4
- 3. Discount factor: $0 \le \gamma \le 1$, we'll chose $\gamma = 0.8$
- 4. Episode value calculation: return/utility $G_t = \sum_{n=0}^T \gamma^n r_n$

•
$$G(E_1) = 0.65$$
, $G(E_2) = 0.272$

A:
$$G(E_2) = 0.272 = 0.8^1 \cdot (-0.3) + 0.8^3 \cdot 1$$

B:
$$G(E_2) = 0.4$$

C:
$$G(E_2) = 0.7$$

D:
$$G(E_2) = 0.99$$

What do we need?

1. Evaluation of the state in the sequence: Immediate reward, reward function r(s)

- 2. Episode length: We chose T=4
- 3. Discount factor: $0 \le \gamma \le 1$, we'll chose $\gamma = 0.8$
- 4. Episode value calculation: return/utility $G_t = \sum_{n=0}^T \gamma^n r_n$

•
$$G(E_1) = 0.65$$
, $G(E_2) = 0.272$

A:
$$G(E_3) = -0.3$$

B:
$$G(E_3) = 0.7$$

C:
$$G(E_3) = 0.64$$

D:
$$G(E_3) = 0.8$$

$$E_{1} \bigcirc \longrightarrow \bigcirc \longrightarrow \bigcirc \longrightarrow \bigcirc \longrightarrow \bigcirc \longrightarrow \cdots \qquad 6x$$

$$E_{2} \bigcirc \longrightarrow \bigcirc \longrightarrow \bigcirc \longrightarrow \bigcirc \longrightarrow \bigcirc \longrightarrow \cdots \qquad 3x$$

$$E_{3} \bigcirc \longrightarrow \bigcirc \longrightarrow \bigcirc \longrightarrow \bigcirc \longrightarrow \bigcirc \longrightarrow \cdots \qquad 1x$$

What do we need?

1. Evaluation of the state in the sequence: Immediate reward, reward function r(s)

- 2. Episode length: We chose T=4
- 3. Discount factor: $0 \le \gamma \le 1$, we'll chose $\gamma = 0.8$
- 4. Episode value calculation: return/utility $G_t = \sum_{n=0}^{T} \gamma^n r_n$

•
$$G(E_1) = 0.65$$
, $G(E_2) = 0.272$, $G(E_3) = 0.64$

A:
$$G(E_3) = -0.3$$

B:
$$G(E_3) = 0.7$$

C:
$$G(E_3) = 0.64 = 0.8^2 \cdot 1$$

D:
$$G(E_3) = 0.8$$

What do we need?

1. Evaluation of the state in the sequence: Immediate reward, reward function r(s)

- 2. Episode length: We chose T=4
- 3. Discount factor: $0 \le \gamma \le 1$, we'll chose $\gamma = 0.8$
- 4. Episode value calculation: return/utility $G_t = \sum_{n=0}^{T} \gamma^n r_n$
 - $G(E_1) = 0.65$, $G(E_2) = 0.272$, $G(E_3) = 0.64$
- 5. Calculation for the whole policy:
 - A: $\sum_{e=1}^{E} \sum_{n=0}^{T} \gamma^n r_n$
 - B: $\prod_{e=1}^{E} \sum_{n=0}^{T} \gamma^n r_n$
 - C: $\sum_{e=1}^{E} p_e \sum_{n=0}^{T} \gamma^n r_n$
 - D: $\max p_e \sum_{n=0}^{T} \gamma^n r_n$

What do we need?

1. Evaluation of the state in the sequence: Immediate reward, reward function r(s)

- 2. Episode length: We chose T=4
- 3. Discount factor: $0 \le \gamma \le 1$, we'll chose $\gamma = 0.8$
- 4. Episode value calculation: return/utility $G_t = \sum_{n=0}^{T} \gamma^n r_n$
 - $G(E_1) = 0.65$, $G(E_2) = 0.272$, $G(E_3) = 0.64$
- 5. Calculation for the whole policy: $\sum_{e=1}^{E} p_e \sum_{n=0}^{T} \gamma^n r_n$
 - A: $\sum_{e=1}^{E} \sum_{n=0}^{T} \gamma^n r_n$
 - B: $\prod_{e=1}^{E} \sum_{n=0}^{T} \gamma^n r_n$
 - C: $\sum_{e=1}^{E} p_e \sum_{n=0}^{T} \gamma^n r_n \iff$
 - D: $\max p_e \sum_{n=0}^{T} \gamma^n r_n$

- 1. Evaluation of the state in the sequence: Immediate reward, reward function r(s)
- \bigcirc 0 \bigcirc 1 \bigcirc -0.3

- 2. Episode length: We chose T=4
- 3. Discount factor: $0 \le \gamma \le 1$, we'll chose $\gamma = 0.8$
- 4. Episode value calculation: return/utility $G_t = \sum_{n=0}^{T} \gamma^n r_n$
 - $G(E_1) = 0.65$, $G(E_2) = 0.272$, $G(E_3) = 0.64$
- 5. Calculation for the whole policy: $\sum_{e=1}^{E} p_e \sum_{n=0}^{T} \gamma^n r_n$
 - A: 0.535
 - B: 1.562
 - C: 1
 - D: 0.86

What do we need?

1. Evaluation of the state in the sequence: Immediate reward, reward function r(s)

 \bigcirc 0 \bigcirc 1 \bigcirc -0.3

- 2. Episode length: We chose T=4
- 3. Discount factor: $0 \le \gamma \le 1$, we'll chose $\gamma = 0.8$
- 4. Episode value calculation: return/utility $G_t = \sum_{n=0}^{T} \gamma^n r_n$

•
$$G(E_1) = 0.65$$
, $G(E_2) = 0.272$, $G(E_3) = 0.64$

5. Calculation for the whole policy: $\sum_{e=1}^{E} p_e \sum_{n=0}^{T} \gamma^n r_n = \mathbf{0.535}$

A:
$$0.535 = 0.6 \cdot 0.65 + 0.3 \cdot 0.272 + 0.1 \cdot 0.64$$

B: 1.562

C: 1

D: 0.86