MDP Introduction

F. Gama

We have:

- State: S
- Action: A
- Transition model: $T\left(s, a, s^{\prime}\right) \equiv P\left(s, a, s^{\prime}\right)$, we are in state s, make action a, and arrive in state s^{\prime}
- Reward: $r(s), r(s, a), r\left(s, a, s^{\prime}\right)$ immediate reward/evaluation
- Policy: agent/robot behaviour strategy
- Episode: sequence of states with rewards

- Return/Utility sequence: $G_{t}=\sum_{k=0}^{\infty} \gamma^{k} R_{t+k+1}$

Policy Evaluation: How good is the strategy?

$$
\begin{aligned}
& \mathbf{E}_{\mathbf{1}} \bigcirc \longrightarrow \bigcirc \longrightarrow \bigcirc \longrightarrow \bigcirc \longrightarrow \longrightarrow \longrightarrow \longrightarrow \longrightarrow \quad \mathbf{O} \\
& \mathbf{E}_{\mathbf{2}} \bigcirc \longrightarrow \bigcirc \longrightarrow \bigcirc \longrightarrow \bigcirc \longrightarrow \bigcirc \longrightarrow \longrightarrow \longrightarrow \quad \mathbf{O} \longrightarrow \mathbf{~} \longrightarrow \mathrm{O} \\
& \mathbf{E}_{\mathbf{3}} \bigcirc \longrightarrow \bigcirc \longrightarrow \bigcirc \longrightarrow \bigcirc \longrightarrow \bigcirc \longrightarrow \longrightarrow \longrightarrow \quad \mathbf{~} \longrightarrow \longrightarrow
\end{aligned}
$$

Policy Evaluation: How good is the strategy?

What do we need?

1. Evaluation of the state in the sequence:

A: State Value $V(s)$
B: Immediate reward $r(s)$
C: Return/Utility G
D: Policy π

Policy Evaluation: How good is the strategy?

What do we need?

1. Evaluation of the state in the sequence: Immediate reward, reward function $r(s)$

A: State Value $V(s)$
B: Immediate reward $r(s) \Leftarrow$
C: Return/Utility G
D: Policy π

Policy Evaluation: How good is the strategy?

What do we need?

1. Evaluation of the state in the sequence: Immediate reward, reward function $r(s)$
2. Episode length::

A: Infinite
B: Finite
C: $T=1000$
D: $T=4$

Policy Evaluation: How good is the strategy?

What do we need?

1. Evaluation of the state in the sequence: Immediate reward, reward function $r(s)$
2. Episode length: We'll chose $T=4$

A: Infinite
\Leftarrow
B: Finite \Leftarrow
C: $T=1000 \Leftarrow$
D: $T=4 \quad \Leftarrow$

Policy Evaluation: How good is the strategy?

What do we need?

1. Evaluation of the state in the sequence: Immediate reward, reward function $r(s)$ 0 ○ 1 - $\mathbf{- 0 . 3}$
2. Episode length: We chose $T=4$
3. Discount factor: γ

A: 1
B: 5
C: 0.8
D: 0.1

Policy Evaluation: How good is the strategy?

What do we need?

1. Evaluation of the state in the sequence: Immediate reward, reward function $r(s)$
2. Episode length: We chose $T=4$
3. Discount factor: $0 \leq \gamma \leq 1$, we'll chose $\gamma=0.8$

A: $1 \Leftarrow$
B: 5
C: $0.8 \Leftarrow$
D: $0.1 \Leftarrow$

Policy Evaluation: How good is the strategy?

What do we need?

1. Evaluation of the state in the sequence: Immediate reward, reward function $r(s)$
2. Episode length: We chose $T=4$
3. Discount factor: $0 \leq \gamma \leq 1$, we'll chose $\gamma=0.8$
4. Episode value calculation: return/utility G_{t}

A: $\sum_{n=1}^{T} \gamma^{n}$
B: $\prod_{n=1}^{T} \gamma^{n}$
C: γr
D: $\prod_{n=1}^{T} \gamma^{n} r_{n}$
E: $\sum_{n=0}^{T} \gamma^{n} r_{n}$

Policy Evaluation: How good is the strategy?

What do we need?

1. Evaluation of the state in the sequence: Immediate reward, reward function $r(s)$
2. Episode length: We chose $T=4$
3. Discount factor: $0 \leq \gamma \leq 1$, we'll chose $\gamma=0.8$
4. Episode value calculation: return/utility $G_{t}=\sum_{n=0}^{T} \gamma^{n} r_{n}$

A: $\sum_{n=1}^{T} \gamma^{n}$
B: $\prod_{n=1}^{T} \gamma^{n}$
C: γr
D: $\prod_{n=1}^{T} \gamma^{n} r_{n}$
E: $\sum_{n=0}^{T} \gamma^{n} r_{n} \Leftarrow$

Policy Evaluation: How good is the strategy?

What do we need?

1. Evaluation of the state in the sequence: Immediate reward, reward function $r(s)$
2. Episode length: We chose $T=4$
3. Discount factor: $0 \leq \gamma \leq 1$, we'll chose $\gamma=0.8$
4. Episode value calculation: return/utility $G_{t}=\sum_{n=0}^{T} \gamma^{n} r_{n}$

A: $G\left(E_{1}\right)=0.7$
B: $G\left(E_{1}\right)=0.65$
C: $G\left(E_{1}\right)=0.95$
D: $G\left(E_{1}\right)=0.8$

Policy Evaluation: How good is the strategy?

What do we need?

1. Evaluation of the state in the sequence: Immediate reward, reward function $r(s)$
2. Episode length: We chose $T=4$
3. Discount factor: $0 \leq \gamma \leq 1$, we'll chose $\gamma=0.8$
4. Episode value calculation: return/utility $G_{t}=\sum_{n=0}^{T} \gamma^{n} r_{n}$

- $G\left(E_{1}\right)=0.65$

A: $G\left(E_{1}\right)=0.7$
B: $G\left(E_{1}\right)=0.65=0.8^{0} \cdot 0+0.8^{1} \cdot 1+0.8^{2} \cdot 0+0.8^{3} \cdot(-0.3)+0.8^{4} \cdot 0 \Leftarrow$
C: $G\left(E_{1}\right)=0.95$
D: $G\left(E_{1}\right)=0.8$

Policy Evaluation: How good is the strategy?

What do we need?

1. Evaluation of the state in the sequence: Immediate reward, reward function $r(s)$
2. Episode length: We chose $T=4$
3. Discount factor: $0 \leq \gamma \leq 1$, we'll chose $\gamma=0.8$
4. Episode value calculation: return/utility $G_{t}=\sum_{n=0}^{T} \gamma^{n} r_{n}$

- $G\left(E_{1}\right)=0.65$

A: $G\left(E_{2}\right)=0.272$
B: $G\left(E_{2}\right)=0.4$
C: $G\left(E_{2}\right)=0.7$
D: $G\left(E_{2}\right)=0.99$

Policy Evaluation: How good is the strategy?

What do we need?

1. Evaluation of the state in the sequence: Immediate reward, reward function $r(s)$
2. Episode length: We chose $T=4$
3. Discount factor: $0 \leq \gamma \leq 1$, we'll chose $\gamma=0.8$
4. Episode value calculation: return/utility $G_{t}=\sum_{n=0}^{T} \gamma^{n} r_{n}$

- $G\left(E_{1}\right)=0.65, G\left(E_{2}\right)=0.272$

A: $G\left(E_{2}\right)=0.272=0.8^{1} \cdot(-0.3)+0.8^{3} \cdot 1 \Leftarrow$
B: $G\left(E_{2}\right)=0.4$
C: $G\left(E_{2}\right)=0.7$
D: $G\left(E_{2}\right)=0.99$

Policy Evaluation: How good is the strategy?

What do we need?

1. Evaluation of the state in the sequence: Immediate reward, reward function $r(s)$
2. Episode length: We chose $T=4$
3. Discount factor: $0 \leq \gamma \leq 1$, we'll chose $\gamma=0.8$
4. Episode value calculation: return/utility $G_{t}=\sum_{n=0}^{T} \gamma^{n} r_{n}$

- $G\left(E_{1}\right)=0.65, G\left(E_{2}\right)=0.272$

A: $G\left(E_{3}\right)=-0.3$
B: $G\left(E_{3}\right)=0.7$
C: $G\left(E_{3}\right)=0.64$
D: $G\left(E_{3}\right)=0.8$

Policy Evaluation: How good is the strategy?

What do we need?

1. Evaluation of the state in the sequence: Immediate reward, reward function $r(s)$
2. Episode length: We chose $T=4$
3. Discount factor: $0 \leq \gamma \leq 1$, we'll chose $\gamma=0.8$
4. Episode value calculation: return/utility $G_{t}=\sum_{n=0}^{T} \gamma^{n} r_{n}$

- $G\left(E_{1}\right)=0.65, G\left(E_{2}\right)=0.272, G\left(E_{3}\right)=0.64$

A: $G\left(E_{3}\right)=-0.3$
B: $G\left(E_{3}\right)=0.7$
C: $G\left(E_{3}\right)=0.64=0.8^{2} \cdot 1 \Leftarrow$
D: $G\left(E_{3}\right)=0.8$

Policy Evaluation: How good is the strategy?

What do we need?

1. Evaluation of the state in the sequence: Immediate reward, reward function $r(s)$
2. Episode length: We chose $T=4$
3. Discount factor: $0 \leq \gamma \leq 1$, we'll chose $\gamma=0.8$
4. Episode value calculation: return/utility $G_{t}=\sum_{n=0}^{T} \gamma^{n} r_{n}$

- $G\left(E_{1}\right)=0.65, G\left(E_{2}\right)=0.272, G\left(E_{3}\right)=0.64$

5. Calculation for the whole policy:

A: $\sum_{e=1}^{E} \sum_{n=0}^{T} \gamma^{n} r_{n}$
B: $\prod_{e=1}^{E} \sum_{n=0}^{T} \gamma^{n} r_{n}$
C: $\sum_{e=1}^{E} p_{e} \sum_{n=0}^{T} \gamma^{n} r_{n}$
D: $\max p_{e} \sum_{n=0}^{T} \gamma^{n} r_{n}$

Policy Evaluation: How good is the strategy?

What do we need?

1. Evaluation of the state in the sequence: Immediate reward, reward function $r(s)$
2. Episode length: We chose $T=4$
3. Discount factor: $0 \leq \gamma \leq 1$, we'll chose $\gamma=0.8$
4. Episode value calculation: return/utility $G_{t}=\sum_{n=0}^{T} \gamma^{n} r_{n}$

- $G\left(E_{1}\right)=0.65, G\left(E_{2}\right)=0.272, G\left(E_{3}\right)=0.64$

5. Calculation for the whole policy: $\sum_{e=1}^{E} p_{e} \sum_{n=0}^{T} \gamma^{n} r_{n}$

A: $\sum_{e=1}^{E} \sum_{n=0}^{T} \gamma^{n} r_{n}$
B: $\prod_{e=1}^{E} \sum_{n=0}^{T} \gamma^{n} r_{n}$
C: $\sum_{e=1}^{E} p_{e} \sum_{n=0}^{T} \gamma^{n} r_{n} \Leftarrow$
D: $\max p_{e} \sum_{n=0}^{T} \gamma^{n} r_{n}$

Policy Evaluation: How good is the strategy?

What do we need?

1. Evaluation of the state in the sequence: Immediate reward, reward function $r(s)$
2. Episode length: We chose $T=4$
3. Discount factor: $0 \leq \gamma \leq 1$, we'll chose $\gamma=0.8$
4. Episode value calculation: return/utility $G_{t}=\sum_{n=0}^{T} \gamma^{n} r_{n}$

- $G\left(E_{1}\right)=0.65, G\left(E_{2}\right)=0.272, G\left(E_{3}\right)=0.64$

5. Calculation for the whole policy: $\sum_{e=1}^{E} p_{e} \sum_{n=0}^{T} \gamma^{n} r_{n}$

A: 0.535
B: 1.562
C: 1
D: 0.86

Policy Evaluation: How good is the strategy?

What do we need?

1. Evaluation of the state in the sequence: Immediate reward, reward function $r(s)$
2. Episode length: We chose $T=4$
3. Discount factor: $0 \leq \gamma \leq 1$, we'll chose $\gamma=0.8$
4. Episode value calculation: return/utility $G_{t}=\sum_{n=0}^{T} \gamma^{n} r_{n}$

- $G\left(E_{1}\right)=0.65, G\left(E_{2}\right)=0.272, G\left(E_{3}\right)=0.64$

5. Calculation for the whole policy: $\sum_{e=1}^{E} p_{e} \sum_{n=0}^{T} \gamma^{n} r_{n}=\mathbf{0 . 5 3 5}$

A: $0.535=0.6 \cdot 0.65+0.3 \cdot 0.272+0.1 \cdot 0.64 \Leftarrow$
B: 1.562
C: 1
D: 0.86

