Classifiers 2

Z. Straka, P. Švarný, J. Kostlivá

Today two examples:

1. Covid-19 testing example
2. Strange loss function for classification

Covid-19 testing example

Covid-19 testing example

Přesné testy odhalily, že v Česku už měl koronavirus každý dvacátý

Source: Seznam zpravy
For details see a post from Jakub Steiner on Facebook.

Covid-19 testing example

Let's suppose that 0.5% of a population has already been infected by covid-19. Someone else bought covid-19 tests with specificity $=0.9$ (specificity $=\frac{T N}{T N+F P}$) and wants to test 2000 people from the population. How many of the tests will be false positive?

A: 10
B: 99
C: 199
D: 399

Covid-19 testing example

Let's suppose that 0.5% of a population has already been infected by covid-19. Someone else bought covid-19 tests with specificity $=0.9$ (specificity $=\frac{T N}{T N+F P}$) and wants to test 2000 people from the population. How many of the tests will be false positive?

C: $199=(0.995 * 2000) * 0.1$

- $0.995 * 2000=1990$ people have not been infected
- As specificity is 0.9 , ten percent of all negative samples (i.e., TN+FP) are determined as false positive.

Strange loss function for classification

Strange loss function for classification

Consider a Bayesian decision task in which the set of states is the same as the set of decisions (i.e., $S=D$) and the loss function is defined as:
$I(s, d)=K, \quad d=s$,
$I(s, d)=1, \quad d \neq s$.
What values must be K to use $\delta^{*}(x)=\arg \max _{d} p(d \mid x)$ to find the optimal decision?

Let's solve it together. Step by step :)

Strange loss function for classification

Consider a Bayesian decision task in which the set of states is the same as the set of decisions (i.e., $S=D$) and the loss function is defined as:
$I(s, d)=K, \quad d=s$,
$I(s, d)=1, \quad d \neq s$.
What values must be K to use $\delta^{*}(x)=\arg \max _{d} p(d \mid x)$ to find the optimal decision?
How to start?
A: $r(\delta)=\sum_{x} \sum_{s} I(s, x) P(x, s)$
B: $r(\delta)=\sum_{x} \sum_{s} l(s, \delta(x)) P(x, s)$
C: $r(\delta)=\sum_{x} \sum_{s} l(s, \delta(x)) P(\delta(x), s)$
D: $r(\delta)=\sum_{s} I(s, \delta(x)) P(\delta(x), \delta(s))$

Strange loss function for classification

Consider a Bayesian decision task in which the set of states is the same as the set of decisions (i.e., $S=D$) and the loss function is defined as:
$I(s, d)=K, \quad d=s$,
$I(s, d)=1, \quad d \neq s$.
What values must be K to use $\delta^{*}(x)=\arg \max _{d} p(d \mid x)$ to find the optimal decision?
How to start?
B: $r(\delta)=\sum_{x} \sum_{s} I(s, \delta(x)) P(x, s)$

Strange loss function for classification

Consider a Bayesian decision task in which the set of states is the same as the set of decisions (i.e., $\mathrm{S}=\mathrm{D}$) and the loss function is defined as:
$I(s, d)=K, \quad d=s$,
$I(s, d)=1, \quad d \neq s$.
What values must be K to use $\delta^{*}(x)=\arg \max _{d} p(d \mid x)$ to find the optimal decision?

$$
r(\delta)=\sum_{x} \sum_{s} I(s, \delta(x)) P(x, s)=?
$$

A: $\sum_{x} P(x) \sum_{s} I(s, \delta(x)) P(s \mid x)$
B: $P(x) \sum_{s} I(s, \delta(x)) P(s \mid x)$
C: $\sum_{x} P(x) \sum_{s} I(s, \delta(x)) P(x \mid s)$
D: $\sum_{x} P(x) \sum_{s} I(s, \delta(x)) P(s, x)$

Strange loss function for classification

Consider a Bayesian decision task in which the set of states is the same as the set of decisions (i.e., $S=D$) and the loss function is defined as:
$I(s, d)=K, \quad d=s$,
$I(s, d)=1, \quad d \neq s$.
What values must be K to use $\delta^{*}(x)=\arg \max _{d} p(d \mid x)$ to find the optimal decision?

$$
r(\delta)=\sum_{x} \sum_{s} I(s, \delta(x)) P(x, s)=?
$$

A: $\sum_{x} P(x) \sum_{s} I(s, \delta(x)) P(s \mid x)$

Strange loss function for classification

Consider a Bayesian decision task in which the set of states is the same as the set of decisions (i.e., $\mathrm{S}=\mathrm{D}$) and the loss function is defined as:
$I(s, d)=K, \quad d=s$,
$I(s, d)=1, \quad d \neq s$.
What values must be K to use $\delta^{*}(x)=\arg \max _{d} p(d \mid x)$ to find the optimal decision?

$$
r(\delta)=\sum_{x} \sum_{s} I(s, \delta(x)) P(x, s)=\sum_{x} P(x) \sum_{s} I(s, \delta(x)) P(s \mid x)
$$

Optimal strategy for given x :
$\mathrm{A}: \delta^{*}(x)=\arg \min _{d} \sum_{s} I(s, d) P(x \mid s)$
B: $\delta^{*}(x)=\arg \max _{d} \sum_{s} I(s, d) P(s \mid x)$
C: $\delta^{*}(x)=\arg \min _{d} \sum_{s} I(s, d) P(s \mid x)$
D: $\delta^{*}(x)=\arg \max _{d} \sum_{s} I(s, d) P(d \mid x)$

Strange loss function for classification

Consider a Bayesian decision task in which the set of states is the same as the set of decisions (i.e., $S=D$) and the loss function is defined as:
$I(s, d)=K, \quad d=s$,
$I(s, d)=1, \quad d \neq s$.
What values must be K to use $\delta^{*}(x)=\arg \max _{d} p(d \mid x)$ to find the optimal decision?

$$
r(\delta)=\sum_{x} \sum_{s} I(s, \delta(x)) P(x, s)=\sum_{x} P(x) \sum_{s} I(s, \delta(x)) P(s \mid x)
$$

Optimal strategy for given x :
$\mathrm{C}: \delta^{*}(x)=\arg \min _{d} \sum_{s} I(s, d) P(s \mid x)$

Strange loss function for classification

Consider a Bayesian decision task in which the set of states is the same as the set of decisions (i.e., $S=D$) and the loss function is defined as:
$I(s, d)=K, \quad d=s$,
$I(s, d)=1, \quad d \neq s$.
What values must be K to use $\delta^{*}(x)=\arg \max _{d} p(d \mid x)$ to find the optimal decision?

$$
\delta^{*}(x)=\arg \min _{d} \sum_{s} I(s, d) P(s \mid x)=?
$$

A: $\arg \min _{d}\left(P(s=d \mid x) K+\sum_{s \neq d} P(s \mid x)\right)$
B: $\arg \max _{d}\left(P(s=d \mid x)+\sum_{s \neq d} P(s \mid x) K\right)$
C: $\arg \min _{d}\left(P(s=d \mid x)+\sum_{s \neq d} P(s \mid x) K\right)$
D: $\arg \min _{d}\left(P(s \neq d \mid x) K+\sum_{s \neq d} P(s \mid x)\right)$

Strange loss function for classification

Consider a Bayesian decision task in which the set of states is the same as the set of decisions (i.e., $S=D$) and the loss function is defined as:
$I(s, d)=K, \quad d=s$,
$I(s, d)=1, \quad d \neq s$.
What values must be K to use $\delta^{*}(x)=\arg \max _{d} p(d \mid x)$ to find the optimal decision?

$$
\delta^{*}(x)=\arg \min _{d} \sum_{s} I(s, d) P(s \mid x)=?
$$

A: $\arg \min _{d}\left(P(s=d \mid x) K+\sum_{s \neq d} P(s \mid x)\right)$
See:

$$
\begin{gathered}
\sum_{s} I(s, d) P(s \mid x)=I\left(s_{1}, d\right) P\left(s_{1} \mid x\right)+I\left(s_{2}, d\right) P\left(s_{2} \mid x\right)+\ldots \\
+I\left(s_{k}=d, d\right) P\left(s_{k}=d \mid x\right)+\cdots+I\left(s_{n}, d\right) P\left(s_{n} \mid x\right)=1 P\left(s_{1} \mid x\right)+1 P\left(s_{2} \mid x\right)+\cdots+K P\left(s_{k}=d \mid x\right)+
\end{gathered}
$$

$$
\cdots+1 P\left(s_{n} \mid x\right)=P(s=d \mid x) K+\sum_{s \neq d} P(s \mid x)
$$

Strange loss function for classification

Consider a Bayesian decision task in which the set of states is the same as the set of decisions (i.e., $S=D$) and the loss function is defined as:
$I(s, d)=K, \quad d=s$,
$I(s, d)=1, \quad d \neq s$.
What values must be K to use $\delta^{*}(x)=\arg \max _{d} p(d \mid x)$ to find the optimal decision?

$$
\delta^{*}(x)=\arg \min _{d} \sum_{s} I(s, d) P(s \mid x)=\arg \min _{d}\left(P(s=d \mid x) K+\sum_{s \neq d} P(s \mid x)\right)=?
$$

A: $\arg \min _{d}(P(s=d \mid x) K+(P(s=d \mid x)-1))$
B: $\arg \max _{d}\left(P(s=d \mid x)+\sum_{s \neq d} P(s \mid x) K\right)$
C: $\arg \max _{d}(P(s=d \mid x) K+(1-P(s=d \mid x)))$
D: $\arg \min _{d}(P(s=d \mid x) K+(1-P(s=d \mid x)))$

Strange loss function for classification

Consider a Bayesian decision task in which the set of states is the same as the set of decisions (i.e., $S=D$) and the loss function is defined as:
$I(s, d)=K, \quad d=s$,
$I(s, d)=1, \quad d \neq s$.
What values must be K to use $\delta^{*}(x)=\arg \max _{d} p(d \mid x)$ to find the optimal decision?

$$
\delta^{*}(x)=\arg \min _{d}\left(\sum_{s} l(s, d) P(s \mid x)\right)=\arg \min _{d}\left(P(s=d \mid x) K+\sum_{s \neq d} P(s \mid x)\right)=?
$$

D: $\arg \min _{d}(P(s=d \mid x) K+(1-P(s=d \mid x)))$
Notice that:

$$
\begin{aligned}
& \sum_{s \neq d} P(s \mid x)+P(s=d \mid x)=1 \\
& \sum_{s \neq d} P(s \mid x)=1-P(s=d \mid x)
\end{aligned}
$$

Strange loss function for classification

Consider a Bayesian decision task in which the set of states is the same as the set of decisions (i.e., $S=D$) and the loss function is defined as:
$I(s, d)=K, \quad d=s$,
$I(s, d)=1, \quad d \neq s$.
What values must be K to use $\delta^{*}(x)=\arg \max _{d} p(d \mid x)$ to find the optimal decision?

$$
\begin{gathered}
\delta^{*}(x)=\arg \min _{d} \sum_{s} I(s, d) P(s \mid x)=\arg \min _{d} P(s=d \mid x) K+\sum_{s \neq d} P(s \mid x)= \\
=\arg \min _{d}(P(s=d \mid x) K+(1-P(s=d \mid x)))=?
\end{gathered}
$$

A: $\arg \max _{d}(P(s=d \mid x) K+(1-P(s=d \mid x)))$
B: $\arg \min _{d}(P(s=d \mid x)(K-1))$
C: $\arg \max _{d}(P(s=d \mid x) K)$
D: $\arg \min _{d}(P(s=d \mid x)(K+1))$

Strange loss function for classification

Consider a Bayesian decision task in which the set of states is the same as the set of decisions (i.e., $S=D$) and the loss function is defined as:
$I(s, d)=K, \quad d=s$,
$I(s, d)=1, \quad d \neq s$.
What values must be K to use $\delta^{*}(x)=\arg \max _{d} p(d \mid x)$ to find the optimal decision?

$$
\begin{gathered}
\delta^{*}(x)=\arg \min _{d} \sum_{s} I(s, d) P(s \mid x)=\arg \min _{d}\left(P(s=d \mid x) K+\sum_{s \neq d} P(s \mid x)\right)= \\
=\arg \min _{d}(P(s=d \mid x) K+(1-P(s=d \mid x)))=?
\end{gathered}
$$

B: $\arg \min _{d}(P(s=d \mid x)(K-1))$
See:

$$
\begin{gathered}
\arg \min _{d} P(s=d \mid x) K+(1-P(s=d \mid x))=\arg \min _{d} P(s=d \mid x)(K-1)+1= \\
=\arg \min _{d} P(s=d \mid x)(K-1)
\end{gathered}
$$

Strange loss function for classification

Consider a Bayesian decision task in which the set of states is the same as the set of decisions (i.e., $S=D$) and the loss function is defined as:
$I(s, d)=K, \quad d=s$,
$I(s, d)=1, \quad d \neq s$.
What values must be K to use $\delta^{*}(x)=\arg \max _{d} p(d \mid x)$ to find the optimal decision?

$$
\cdots=\arg \min _{d}(P(s=d \mid x) K+(1-P(s=d \mid x)))=\arg \min _{d}(P(s=d \mid x)(K-1))
$$

What values must be K to $\arg \min _{d}(P(s=d \mid x)(K-1))=\arg \max _{d} P(s=d \mid x)$? Select the most general option.

A: $K \leq 0$
B: $K<1$
C: $K<2$
D: $K \leq 2$

Strange loss function for classification

Consider a Bayesian decision task in which the set of states is the same as the set of decisions (i.e., $S=D$) and the loss function is defined as:
$I(s, d)=K, \quad d=s$,
$I(s, d)=1, \quad d \neq s$.
What values must be K to use $\delta^{*}(x)=\arg \max _{d} p(d \mid x)$ to find the optimal decision?

$$
\cdots=\arg \min _{d}(P(s=d \mid x) K+(1-P(s=d \mid x)))=\arg \min _{d}(P(s=d \mid x)(K-1))
$$

What values must be K to $\arg \min _{d}(P(s=d \mid x)(K-1))=\arg \max _{d} P(s=d \mid x)$? Select the most general option.

$$
\text { B: } K<1
$$

For $K<1$ value of $(K-1)$ is negative. Therefore, minimization $\min _{d}(P(s=d \mid x)(K-1))$ is equivalent to maximization $\max _{d} P(s=d \mid x)$.

Strange loss function for classification

Consider a Bayesian decision task in which the set of states is the same as the set of decisions (i.e., $S=D$) and the loss function is defined as:
$I(s, d)=K, \quad d=s$,
$I(s, d)=1, \quad d \neq s$.
What values must be K to use $\delta^{*}(x)=\arg \max _{d} p(d \mid x)$ to find the optimal decision?

$$
\begin{aligned}
& \delta^{*}(x)=\arg \min _{d} \sum_{s} I(s, d) P(s \mid x)=\arg \min _{d}\left(P(s=d \mid x) K+\sum_{s \neq d} P(s \mid x)\right)= \\
= & \arg \min _{d}(P(s=d \mid x) K+(1-P(s=d \mid x)))=\arg \min _{d}(P(s=d \mid x)(K-1))=
\end{aligned}
$$

For $K<1$:

$$
=\arg \max _{d} P(s=d \mid x)=\arg \max _{d} P(d \mid x)
$$

:)

