Classifiers

Z. Straka, P. Švarný, J. Kostlivá

Today two examples:

- 1. Recall and Precision
- 2. Linear classification

Confusion matrix

		Actual class	
		Р	Ν
Duadiated aleas	Р	TP	FP
Predicted class	Ν	FN	TN

The abbreviations have the following meaning true positive (TP), false positive (FP), false negative (FN), true negative (TN).

You get a few confusion matrices of 4 different classifiers. The abbreviations have the following meaning true positive (TP), false positive (FP), false negative (FN), true negative (TN).

classifier	TP = 20	FP = 3
А	FN = 18	TN = 14

classifier	TP = 60	FP = 80
В	<i>FN</i> = 43	TN = 21

•	, .	•
classifier	TP = 13	<i>FP</i> = 14
С	FN = 18	TN = 1

classifier	TP = 14	<i>FP</i> = 16
D	<i>FN</i> = 4	TN = 80

Recall:

A:
$$\frac{TP}{TP+FN}$$

B:
$$\frac{TP}{TP+TN}$$

C:
$$\frac{TP}{FP+FN}$$

D:
$$\frac{FP}{TP+FN}$$

You get a few confusion matrices of 4 different classifiers. The abbreviations have the following meaning true positive (TP), false positive (FP), false negative (FN), true negative (TN).

classifier	TP = 20	<i>FP</i> = 3
Α	FN = 18	TN = 14

classifier	TP = 60	FP = 80
В	FN = 43	TN = 21

•	, .	•
classifier	TP = 13	<i>FP</i> = 14
С	FN = 18	TN = 1

classifier	<i>TP</i> = 14	<i>FP</i> = 16
D	<i>FN</i> = 4	TN = 80

Recall:

A: $\frac{TP}{TP+FN}$

B: $\frac{TP}{TP+TN}$

C: $\frac{TP}{FP+FN}$

D: $\frac{FP}{TP+F\Lambda}$

You get a few confusion matrices of 4 different classifiers. The abbreviations have the following meaning true positive (TP), false positive (FP), false negative (FN), true negative (TN).

classifier	TP = 20	FP = 3
А	FN = 18	TN = 14

classifier	TP = 13	<i>FP</i> = 14
С	FN = 18	TN = 1

classifier	TP = 60	FP = 80
В	FN = 43	TN = 21

$$\begin{array}{c|cccc} \text{classifier} & \textit{TP} = 14 & \textit{FP} = 16 \\ \hline D & \textit{FN} = 4 & \textit{TN} = 80 \\ \hline \end{array}$$

Precision:

A:
$$\frac{TP}{TP+FN}$$

B:
$$\frac{FP}{FP+TN}$$

C:
$$\frac{TP}{TP+FP}$$

D:
$$\frac{FP}{TP+FI}$$

You get a few confusion matrices of 4 different classifiers. The abbreviations have the following meaning true positive (TP), false positive (FP), false negative (FN), true negative (TN).

classifier	TP = 20	FP = 3
А	FN = 18	TN = 14

classifier	TP = 13	FP = 14
С	FN = 18	TN = 1

•	Recall:	$\frac{TP}{TP+FN}$
---	---------	--------------------

classifier	TP = 60	<i>FP</i> = 80
В	FN = 43	TN = 21

classifier
$$TP = 14$$
 $FP = 16$ D $FN = 4$ $TN = 80$

Precision:

A: $\frac{TP}{TP+F\Lambda}$

B: $\frac{FP}{FP+TN}$

C: $\frac{TP}{TP+FP}$

D: $\frac{FP}{TP+F\Lambda}$

You get a few confusion matrices of 4 different classifiers. The abbreviations have the following meaning true positive (TP), false positive (FP), false negative (FN), true negative (TN).

classifier	TP = 20	<i>FP</i> = 3
A	<i>FN</i> = 18	<i>TN</i> = 14

classifier	TP = 60	FP = 80
В	<i>FN</i> = 43	TN = 21

classifier	<i>TP</i> = 13	<i>FP</i> = 14
С	FN = 18	TN = 1

TP = 14	FP = 16
<i>FN</i> = 4	<i>TN</i> = 80
	TP = 14 $FN = 4$

► Recall:
$$\frac{TP}{TP+FN}$$
► Precision: $\frac{TP}{TP+FP}$

For the classifier from table A count the number of members for the two classes (from the point of view of the data/reality):

A: class1: 23. class2: 32

B: class1: 38. class2: 17

C: class1: 21. class2: 34

D: class1: 23. class2: 36

You get a few confusion matrices of 4 different classifiers. The abbreviations have the following meaning true positive (TP), false positive (FP), false negative (FN), true negative (TN).

classifier	TP = 20	<i>FP</i> = 3
A	<i>FN</i> = 18	<i>TN</i> = 14

classifier	TP = 60	FP = 80
B	FN = 43	TN = 21

classifier	<i>TP</i> = 13	<i>FP</i> = 14
С	FN = 18	TN = 1

classifier	TP - 14	<i>FP</i> = 16
D	FN = 4	TN = 80

► Recall:
$$\frac{TP}{TP+FN}$$

 $\blacktriangleright \text{ Precision: } \frac{TP}{TP+FP}$

For the classifier from table A count the number of members for the two classes (from the point of view of the data/reality):

A: class1: 23, class2: 32

B: class1: 38, class2: 17

C: class1: 21, class2: 34

D: class1: 23, class2: 36

You get a few confusion matrices of 4 different classifiers. The abbreviations have the following meaning true positive (TP), false positive (FP), false negative (FN), true negative (TN).

classifier	TP = 20	<i>FP</i> = 3
А	FN = 18	TN = 14

classifier	<i>TP</i> = 60	<i>FP</i> = 80
В	<i>FN</i> = 43	TN = 21

classifier	<i>TP</i> = 13	<i>FP</i> = 14
С	<i>FN</i> = 18	TN = 1

classifier
$$TP = 14$$
 $FP = 16$
D $FN = 4$ $TN = 80$

► Recall:
$$\frac{TP}{TP+FN}$$

▶ Precision:
$$\frac{TP}{TP+FP}$$

Let us assume that this is a table of classifiers that recognize the presence of a person in front of an autonomous car. The car stops or continues its journey.

Task: Which classifier (A/B/C/D) will unnecessarily stop the car the least amount of times?

You get a few confusion matrices of 4 different classifiers. The abbreviations have the following meaning true positive (TP), false positive (FP), false negative (FN), true negative (TN).

classifier	TP = 20	<i>FP</i> = 3
А	FN = 18	TN = 14

classifier	<i>TP</i> = 60	<i>FP</i> = 80
В	<i>FN</i> = 43	TN = 21

classifier	<i>TP</i> = 13	<i>FP</i> = 14
С	<i>FN</i> = 18	TN = 1

classifier
$$TP = 14$$
 $FP = 16$
D $FN = 4$ $TN = 80$

▶ Precision:
$$\frac{TP}{TP+FP}$$

Let us assume that this is a table of classifiers that recognize the presence of a person in front of an autonomous car. The car stops or continues its journey.

Task: Which classifier (A/B/C/D) will unnecessarily stop the car the least amount of times?

A because it has the lowest $\frac{FP}{TP+FP}$

You get a few confusion matrices of 4 different classifiers. The abbreviations have the following meaning true positive (TP), false positive (FP), false negative (FN), true negative (TN).

classifier	TP = 20	<i>FP</i> = 3
А	FN = 18	TN = 14

classifier	TP = 13	<i>FP</i> = 14
С	<i>FN</i> = 18	TN = 1

► Recall:
$$\frac{TP}{TP+FN}$$

classifier
$$TP = 60$$
 $FP = 80$ B $FN = 43$ $TN = 21$

classifier
$$TP = 14$$
 $FP = 16$ D $FN = 4$ $TN = 80$

▶ Precision: $\frac{TP}{TP+FP}$

Let us assume that this is a table of classifiers that recognize the presence of a person in front of an autonomous car. The car stops or continues its journey.

Task: Which classifier (A/B/C/D) will unnecessarily stop the car the least amount of times?

A because it has the lowest $\frac{FP}{TP+FP}$

Which measure is more important for the decision, recall or precision?:

A: Recall

B: Precision

You get a few confusion matrices of 4 different classifiers. The abbreviations have the following meaning true positive (TP), false positive (FP), false negative (FN), true negative (TN).

classifier	TP = 20	<i>FP</i> = 3
А	FN = 18	TN = 14

classifier	TP = 13	<i>FP</i> = 14
С	FN = 18	TN = 1

► Recall:
$$\frac{TP}{TP+FN}$$

classifier
$$TP = 60$$
 $FP = 80$ B $FN = 43$ $TN = 21$

$$\begin{array}{c|cccc} \text{classifier} & \textit{TP} = 14 & \textit{FP} = 16 \\ \hline D & \textit{FN} = 4 & \textit{TN} = 80 \\ \hline \end{array}$$

$$\blacktriangleright \text{ Precision: } \frac{TP}{TP+FP}$$

Let us assume that this is a table of classifiers that recognize the presence of a person in front of an autonomous car. The car stops or continues its journey.

Task: Which classifier (A/B/C/D) will unnecessarily stop the car the least amount of times?

A because it has the lowest $\frac{FP}{TP+FP}$

Which measure is more important for the decision, recall or precision?:

B: Precision, because $\frac{\mathit{FP}}{\mathit{TP}+\mathit{FP}}=1-\mathit{Precision}.$ Therefore, we are looking for the maximum Precision.

You get a few confusion matrices of 4 different classifiers. The abbreviations have the following meaning true positive (TP), false positive (FP), false negative (FN), true negative (TN).

classifier	TP = 20	<i>FP</i> = 3
А	FN = 18	TN = 14

classifier	<i>TP</i> = 60	<i>FP</i> = 80
В	<i>FN</i> = 43	TN = 21

classifier	<i>TP</i> = 13	<i>FP</i> = 14
С	<i>FN</i> = 18	TN = 1

$$\begin{array}{c|cccc} \hline \text{classifier} & \textit{TP} = 14 & \textit{FP} = 16 \\ \hline D & \textit{FN} = 4 & \textit{TN} = 80 \\ \hline \end{array}$$

► Recall:
$$\frac{TP}{TP+FN}$$

▶ Precision:
$$\frac{TP}{TP+FP}$$

Let us assume that this is a table of classifiers that recognize the presence of a person in front of an autonomous car. The car stops or continues its journey.

Task: Which classifier (A/B/C/D) is the safest?

You get a few confusion matrices of 4 different classifiers. The abbreviations have the following meaning true positive (TP), false positive (FP), false negative (FN), true negative (TN).

Δ $FN - 18$ TN	_ 3	TP = 20	classifier
$A \qquad FN = 10 \mid TN$	I = 14	FN = 18	А

classifier	<i>TP</i> = 60	<i>FP</i> = 80
В	<i>FN</i> = 43	TN = 21

classifier	<i>TP</i> = 13	<i>FP</i> = 14
С	<i>FN</i> = 18	TN = 1

classifier
$$TP = 14$$
 $FP = 16$
D $FN = 4$ $TN = 80$

► Recall:
$$\frac{TP}{TP+FN}$$

▶ Precision:
$$\frac{TP}{TP+FP}$$

Let us assume that this is a table of classifiers that recognize the presence of a person in front of an autonomous car. The car stops or continues its journey.

Task: Which classifier (A/B/C/D) is the safest?

D because it has the lowest $\frac{FN}{TP+FN}$

You get a few confusion matrices of 4 different classifiers. The abbreviations have the following meaning true positive (TP), false positive (FP), false negative (FN), true negative (TN).

Λ	3	FP = 3	TP = 20	classifier
A FN - 10 TN -	14	TN = 1	<i>FN</i> = 18	A

classifier	TP = 60	FP = 80
В	<i>FN</i> = 43	TN = 21

classifier	<i>TP</i> = 13	<i>FP</i> = 14
С	FN = 18	TN = 1

classifier
$$TP = 14$$
 $FP = 16$ D $FN = 4$ $TN = 80$

▶ Precision: $\frac{TP}{TP+FP}$

Let us assume that this is a table of classifiers that recognize the presence of a person in front of an autonomous car. The car stops or continues its journey.

Task: Which classifier (A/B/C/D) is the safest?

D because it has the lowest $\frac{FN}{TP+FN}$

Which metric is important for this decision, recall or precision?:

A: Recall

B: Precision

You get a few confusion matrices of 4 different classifiers. The abbreviations have the following meaning true positive (TP), false positive (FP), false negative (FN), true negative (TN).

classifier	TP = 20	<i>FP</i> = 3
А	FN = 18	TN = 14

classifier	TP = 13	<i>FP</i> = 14
С	<i>FN</i> = 18	TN = 1

classifier
$$TP = 60$$
 $FP = 80$ B $FN = 43$ $TN = 21$

$$\begin{array}{|c|c|c|c|c|} \hline classifier & \textit{TP} = 14 & \textit{FP} = 16 \\ \hline D & \textit{FN} = 4 & \textit{TN} = 80 \\ \hline \end{array}$$

▶ Precision: $\frac{TP}{TP+FP}$

Let us assume that this is a table of classifiers that recognize the presence of a person in front of an autonomous car. The car stops or continues its journey.

Task: Which classifier (A/B/C/D) is the safest?

D because it has the lowest $\frac{FN}{TP+FN}$

Which metric is important for this decision, recall or precision?:

A: Recall, because $\frac{FN}{TP+FN}=1-Recall$. Therefore, we are looking for the maximum Recall.

You get a few confusion matrices of 4 different classifiers. The abbreviations have the following meaning true positive (TP), false positive (FP), false negative (FN), true negative (TN).

classifier	TP = 20	<i>FP</i> = 3
А	FN = 18	TN = 14

	classifier	TP = 13	FP = 14
	С	FN = 18	TN = 1
_			

► Recall:
$$\frac{TP}{TP+FN}$$

classifier
$$TP = 60$$
 $FP = 80$ B $FN = 43$ $TN = 21$

classifier
$$TP = 14$$
 $FP = 16$
D $FN = 4$ $TN = 80$

▶ Precision:
$$\frac{TP}{TP+FP}$$

Let us assume that this is a table of classifiers that recognize the presence of a person in front of an autonomous car. The car stops or continues its journey.

Discussion: Suggest the simplest and safest classifier. Use chat or microphone.

Could it be used in practice?

- ightharpoonup Recall: $\frac{TP}{TP+FN}$
- ▶ Precision: $\frac{TP}{TP+FP}$

Think about object (pedestrian) detection in images:

Recall: What is related to recall?

- A: How many (what percentage of) objects/pedestrians missed?
- B: How often are the (pedestrian) detections truly negative compared to truly positive detections?
- C: How often are the (pedestrian) detections truly positive compared to truly negative detections?
- D: How much are the (pedestrian) detections contaminated by false detections?

- ► Recall: $\frac{TP}{TP+FN}$
- ▶ Precision: $\frac{TP}{TP+FP}$

Think about object (pedestrian) detection in images:

Recall: What is related to recall?

► How many (what percentage of) objects/pedestrians missed?

Precision: What is related to precision?

- A: How many (what percentage of) objects/pedestrians are not missed?
- B: How often are the (pedestrian) detections truly negative compared to truly positive detections?
- C: How often are the (pedestrian) detections truly positive compared to truly negative detections?
- D: How much are the (pedestrian) detections contaminated by false detections?

- ightharpoonup Recall: $\frac{TP}{TP+FN}$
- ▶ Precision: $\frac{TP}{TP+FP}$

Think about object (pedestrian) detection in images:

Recall: What is related to recall?

▶ How many (what percentage of) objects/pedestrians missed?

Precision: What is related to precision?

- A: How many (what percentage of) objects/pedestrians are not missed?
- B: How often are the (pedestrian) detections truly negative compared to truly positive detections?
- C: How often are the (pedestrian) detections truly positive compared to truly negative detections?
- D: How much are the (pedestrian) detections contaminated by false detections?

- ightharpoonup Recall: $\frac{TP}{TP+FN}$
- ▶ Precision: $\frac{TP}{TP+FP}$

Think about object (pedestrian) detection in images:

Recall: What is related to recall?

► How many (what percentage of) objects/pedestrians missed?

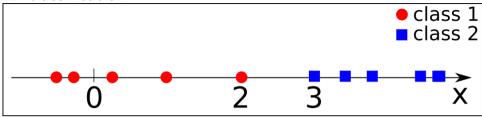
Precision: What is related to precision?

D: How much are the (pedestrian) detections contaminated by false detections?

- ightharpoonup Recall: $\frac{TP}{TP+FN}$
- ▶ Precision: $\frac{TP}{TP+FP}$

Think about object (pedestrian) detection in images:

Recall: What is related to recall?


How many (what percentage of) objects/pedestrians missed?

Precision: What is related to precision?

▶ How much are the (pedestrian) detections contaminated by false detections?

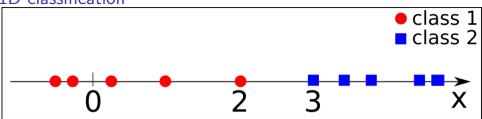
It is difficult to satisfy both.

Linear classification

Classification is made according to:

$$s^* = \arg\max_s f_s(x)$$

where $f_s(x) = w_s x + b_s$, w_s , $b_s \in R$, $s \in \{1, 2\}$


Select a classifier with zero classification error on the given dataset:

A:
$$w_1 = 1, b_1 = 0; w_2 = -1, b_2 = 0$$

B:
$$w_1 = 1, b_1 = -2.4; w_2 = -1, b_2 = 2.5$$

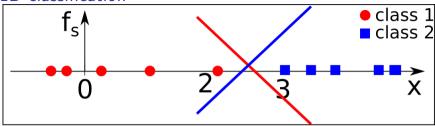
C:
$$w_1 = -1, b_1 = 2.5; w_2 = 1, b_2 = -2.4$$

D:
$$w_1 = -1, b_1 = 0; w_2 = 1, b_2 = 0$$

Classification is made according to:

$$s^* = \underset{s}{\operatorname{arg\,max}} f_s(x)$$

where $f_s(x) = w_s x + b_s, w_s, b_s \in R, s \in \{1,2\}$


Select a classifier with zero classification error on the given dataset:

A:
$$w_1 = 1, b_1 = 0; w_2 = -1, b_2 = 0$$

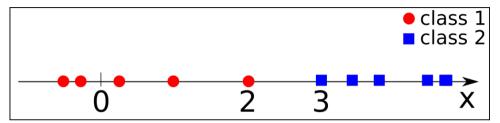
B:
$$w_1 = 1, b_1 = -2.4; w_2 = -1, b_2 = 2.5$$

C:
$$w_1 = -1, b_1 = 2.5; w_2 = 1, b_2 = -2.4$$

D:
$$w_1 = -1, b_1 = 0; w_2 = 1, b_2 = 0$$

Classification is made according to:

$$s^* = \arg\max_s f_s(x)$$

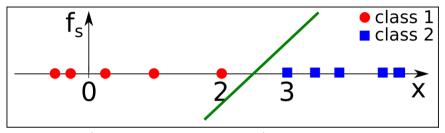

where $f_s(x) = w_s x + b_s$, w_s , $b_s \in R$, $s \in \{1, 2\}$ Select a classifier with zero classification error on the given dataset:

A:
$$w_1 = 1, b_1 = 0; w_2 = -1, b_2 = 0$$

B:
$$w_1 = 1, b_1 = -2.4; w_2 = -1, b_2 = 2.5$$

C:
$$w_1 = -1, b_1 = 2.5; w_2 = 1, b_2 = -2.4$$

D:
$$w_1 = -1, b_1 = 0; w_2 = 1, b_2 = 0$$

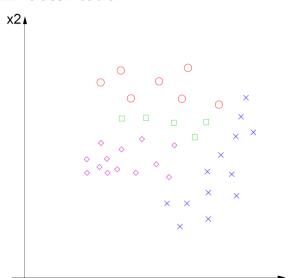

Alternatively (only for binary classification):

A:
$$s^* = (sgn(x-2.5) + 1)/2 + 1$$

B:
$$s^* = sgn(x - 2.5)$$

C:
$$s^* = \max(x_i - 2.5)$$

D:
$$s^* = sgn(x - 2.5) + 1$$

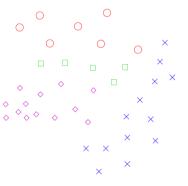

Alternatively (only for binary classification):

A:
$$s^* = (sgn(x - 2.5) + 1)/2 + 1$$

B:
$$s^* = \text{sgn}(x - 2.5)$$

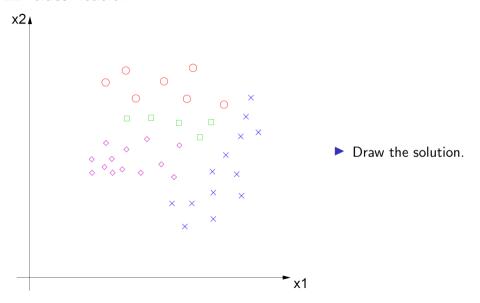
C:
$$s^* = \max(x_i - 2.5)$$

D:
$$s^* = sgn(x - 2.5) + 1$$



Is it possible to get zero classification errors on the given training multiset using only a linear classifier?

Yes


No

x2 ₄

Is it possible to get zero classification errors on the given training multiset using only a linear classifier?

Yes.

