Best-Case Analysis of Alpha-Beta Pruning

In this analysis, we consider the best-case behavior of alpha-beta pruning. Although optimistic, it turns out that this corresponds reasonably well to its usual behavior. An example of best-case behavior is illustrated in the following figure. Dotted lines indicate pruned branches.

In this figure, the branching factor is 3 , and the depth is 3 . Notice that when states are considered for MAX's move, they are considered from highest to lowest evaluation. For MIN's move, they are considered from lowest to highest. A good way to approximate this ordering is to simply apply the evaluation function and sort the states accordingly. Generally, the maximum/minimum state will be among the first few. [How well does this work for the Tic-Tac-Toe evaluation function?]

Now assuming that best-case analysis is a reasonable thing to do in this case, let's first consider recursive equations which give the number of states to be considered. From the equations, we will determine a rough bound on the branching factor.

Note that in the figure, we either know the value of a state exactly, or we know a bound on its value. To determine the exact value of a state, we need the exact value of one of its children, and bounds on the rest of its children. To determine a bound of a state's value, we need the exact value of one of its children.

Based on these observations, let $S(k)$ be the minimum number of states to be considered k ply from a given state when we need to know the exact value of the state. Similarly, let $R(k)$ be the minimum number of states to be considered k ply from a given state when we need to know a bound on the state's value. As usual, let be the branching factor. Thus, we have:

$$
S(k)=S(k-1)+(b-1) R(k-1)
$$

i.e., the exact value of one child and bounds on the rest, and

$$
R(k)=S(k-1)
$$

i.e., the exact value of one child. The base case is $S(0)=R(0)=1$. Note, for the above figure, this gives $S(3)=b^{2}+b-1=11$ for $b=3$.

When we expand the recursive equation, we get:

$$
\begin{aligned}
S(k) & =S(k-1)+(b-1) R(k-1) \\
& =(S(k-2)+(b-1) R(k-2))+(b-1) S(k-2) \\
& =b S(k-2)+(b-1) R(k-2) \\
& =b S(k-2)+(b-1) S(k-3)
\end{aligned}
$$

It is obvious that $S(k-3)<S(k-2)$, so:

$$
\begin{aligned}
S(k) & <(2 b-1) S(k-2) \\
& <2 b S(k-2)
\end{aligned}
$$

That is, the branching factor every two levels is less than $2 b$, which means the effective branching factor is less than $\sqrt{2 b}$.

So, for even k, we derive $S(k) \leq(\sqrt{2 b})^{k}$, which is not too far off the asymptotic upper bound of $(\sqrt{b}+1 / 2)^{k+1}$. In effect, alpha-beta pruning can nearly double the depth that a game tree can be searched in comparison to straightforward minimax.

