
Lecture 5:
Queue,
Stack,

Breadth /
Depth First

Search

Robert
Pěnička,
Daniel
Pr̊uša

Queue

BFS in a
tree

DFS in a
graph

BFS in a
graph

Lecture 5: Queue, Stack, Breadth / Depth First Search
BE5B33ALG — Algorithms

Ing. Robert Pěnička, Ph.D.
doc. RNDr. Daniel Pr̊uša, Ph.D.

Faculty of Electrical Engineering
Czech Technical University in Prague

Robert Pěnička, Daniel Pr̊uša (CTU in Prague) Lecture 5: Queue, Stack, Breadth / Depth First Search October 20th, 2025 1 / 54

Lecture 5:
Queue,
Stack,

Breadth /
Depth First

Search

Robert
Pěnička,
Daniel
Pr̊uša

Queue

BFS in a
tree

DFS in a
graph

BFS in a
graph

Queue

• Operations Enqueue, Dequeue, Front, Empty....

• Cyclic queue implementation

Graphs

• Breadth-first search (BFS) in a tree

• Depth-first search (DFS) in a graph

• Breadth-first search (BFS) in a graph

Search pruning

Robert Pěnička, Daniel Pr̊uša (CTU in Prague) Lecture 5: Queue, Stack, Breadth / Depth First Search October 20th, 2025 2 / 54

Lecture 5:
Queue,
Stack,

Breadth /
Depth First

Search

Robert
Pěnička,
Daniel
Pr̊uša

Queue

BFS in a
tree

DFS in a
graph

BFS in a
graph

Stack

• Elements are stored at the stack top before they are processed.

14 55 11 71 08 44 23

Stack bottom Stack top

push

84

13 60

pop

74

• Elements are removed from the stack top and then they are processed.

• Last In First Out (LIFO) principle.

Possible operations

• Push — Put at the top

• Pop — Remove from the top

• Top — Read the top

• Empty — Is the stack empty?

Robert Pěnička, Daniel Pr̊uša (CTU in Prague) Lecture 5: Queue, Stack, Breadth / Depth First Search October 20th, 2025 3 / 54

Lecture 5:
Queue,
Stack,

Breadth /
Depth First

Search

Robert
Pěnička,
Daniel
Pr̊uša

Queue

BFS in a
tree

DFS in a
graph

BFS in a
graph

Queue

• Elements are stored at the queue tail before they are processed.

14 55 11 71 08 44 23

Queue front Queue tail
enqueue

84

13

60

dequeue

74

• Elements are removed from the queue front and then they are processed.

• First In First Out (FIFO) principle.

Possible operations

• Enqueue / InsertLast / Push — Insert at the tail

• Dequeue / DelFront / Pop — Remove from the front

• Front / Peek — Read the front element

• Empty — Is the queue empty?

Robert Pěnička, Daniel Pr̊uša (CTU in Prague) Lecture 5: Queue, Stack, Breadth / Depth First Search October 20th, 2025 4 / 54

Lecture 5:
Queue,
Stack,

Breadth /
Depth First

Search

Robert
Pěnička,
Daniel
Pr̊uša

Queue

BFS in a
tree

DFS in a
graph

BFS in a
graph

Queue – example life cycle

• Easy example of a queue life cycle.

Operation Front ←←←←← Tail

Empty

Insert(24) 24

Insert(11) 24 11

Insert(90) 24 11 90

DelFront() 11 90

Insert(43) 11 90 43

DelFront() 90 43

DelFront() 43

Insert(79) 43 79

Robert Pěnička, Daniel Pr̊uša (CTU in Prague) Lecture 5: Queue, Stack, Breadth / Depth First Search October 20th, 2025 5 / 54

Lecture 5:
Queue,
Stack,

Breadth /
Depth First

Search

Robert
Pěnička,
Daniel
Pr̊uša

Queue

BFS in a
tree

DFS in a
graph

BFS in a
graph

Cyclic queue implementation in an array

Operation Queue state (queue front , queue tail)

An empty queue in a fixed length array

Insert 24, 11, 90, 43, 70 24 11 90 43 70

DelFront, DelFront, DelFront 43 70

Insert 10, 20 20 43 70 10

DelFront, DelFront 20 10

Insert 55, 22, 33 20 55 22 33 10

DelFront, DelFront 55 22 33

Robert Pěnička, Daniel Pr̊uša (CTU in Prague) Lecture 5: Queue, Stack, Breadth / Depth First Search October 20th, 2025 6 / 54

Lecture 5:
Queue,
Stack,

Breadth /
Depth First

Search

Robert
Pěnička,
Daniel
Pr̊uša

Queue

BFS in a
tree

DFS in a
graph

BFS in a
graph

Cyclic queue implementation in an array

• Tail index points to the first free position behind the last queue element.

• Front index points to the first position occupied by a queue element.

• When both indices point to the same position the queue is empty.

class Queue:
def __init__(self, sizeOfQ):

self.size = sizeOfQ
self.q = [None] * sizeOfQ
self.front = 0
self.tail = 0

def isEmpty(self):
return (self.tail == self.front)

def Enqueue(self, node):
if self.tail+1 == self.front or \

self.tail - self.front == self.size-1:
pass # implement overflow fix here

self.q[self.tail] = node
self.tail = (self.tail + 1) % self.size

Continue...
Robert Pěnička, Daniel Pr̊uša (CTU in Prague) Lecture 5: Queue, Stack, Breadth / Depth First Search October 20th, 2025 7 / 54

Lecture 5:
Queue,
Stack,

Breadth /
Depth First

Search

Robert
Pěnička,
Daniel
Pr̊uša

Queue

BFS in a
tree

DFS in a
graph

BFS in a
graph

Cyclic queue implementation in an array

• Tail index points to the first free position behind the last queue element.

• Front index points to the first position occupied by a queue element.

• When both indices point to the same position the queue is empty.

... continued

def Dequeue(self):
node = self.q[self.front]
self.front = (self.front + 1) % self.size
return node

def pop(self):
return self.Dequeue()

def push(self, node):
self.Enqueue(node)

Robert Pěnička, Daniel Pr̊uša (CTU in Prague) Lecture 5: Queue, Stack, Breadth / Depth First Search October 20th, 2025 7 / 54

Lecture 5:
Queue,
Stack,

Breadth /
Depth First

Search

Robert
Pěnička,
Daniel
Pr̊uša

Queue

BFS in a
tree

DFS in a
graph

BFS in a
graph

Breadth-first search (BFS) in a tree

30

21

12

03 13

71

52

63

54 64

82

73 93

Search direction

Order of visited nodes: 30, 21, 71, 12, 52, 82, 03, 13, 63, 73, 93, 54, 64

Neither the tree structure nor recursion support this approach directly.

Robert Pěnička, Daniel Pr̊uša (CTU in Prague) Lecture 5: Queue, Stack, Breadth / Depth First Search October 20th, 2025 8 / 54

Lecture 5:
Queue,
Stack,

Breadth /
Depth First

Search

Robert
Pěnička,
Daniel
Pr̊uša

Queue

BFS in a
tree

DFS in a
graph

BFS in a
graph

Breadth-first search (BFS) in a tree — Initialization

30

21

12

03 13

71

52

63

54 64

82

73 93

Output

Main loop
While the queue is not empty do:

• Remove the first element from the queue and process it.

• Enqueue the children of removed element.

• Create an empty queue.

• Enqueue the tree root.

30

Front Tail

Robert Pěnička, Daniel Pr̊uša (CTU in Prague) Lecture 5: Queue, Stack, Breadth / Depth First Search October 20th, 2025 9 / 54

Lecture 5:
Queue,
Stack,

Breadth /
Depth First

Search

Robert
Pěnička,
Daniel
Pr̊uša

Queue

BFS in a
tree

DFS in a
graph

BFS in a
graph

Breadth-first search (BFS) in a tree — iteration

30

21

12

03 13

71

52

63

54 64

82

73 93

Output: 30

1. x = Dequeue(), print (x.key).

2. Enqueue(x.left), Enqueue(x.right)∗).

21 71

30

21

12

03 13

71

52

63

54 64

82

73 93

Output: 30 21

1. x = Dequeue(), print (x.key).

71

2. Enqueue(x.left), Enqueue(x.right)∗).

71 12

∗) If the child exists.

Robert Pěnička, Daniel Pr̊uša (CTU in Prague) Lecture 5: Queue, Stack, Breadth / Depth First Search October 20th, 2025 10 / 54

Lecture 5:
Queue,
Stack,

Breadth /
Depth First

Search

Robert
Pěnička,
Daniel
Pr̊uša

Queue

BFS in a
tree

DFS in a
graph

BFS in a
graph

Breadth-first search (BFS) in a tree — iteration

30

21

12

03 13

71

52

63

54 64

82

73 93

Output: 30 21 71

1. x = Dequeue(), print (x.key).

12

2. Enqueue(x.left), Enqueue(x.right)∗).

12 52 82

30

21

12

03 13

71

52

63

54 64

82

73 93

Output: 30 21 71 12

1. x = Dequeue(), print (x.key).

52 82

2. Enqueue(x.left), Enqueue(x.right)∗).

52 82 03 13

∗) If the child exists.

Robert Pěnička, Daniel Pr̊uša (CTU in Prague) Lecture 5: Queue, Stack, Breadth / Depth First Search October 20th, 2025 11 / 54

Lecture 5:
Queue,
Stack,

Breadth /
Depth First

Search

Robert
Pěnička,
Daniel
Pr̊uša

Queue

BFS in a
tree

DFS in a
graph

BFS in a
graph

Breadth-first search (BFS) in a tree — iteration

30

21

12

03 13

71

52

63

54 64

82

73 93

Output: 30 21 71 12 52

1. x = Dequeue(), print (x.key).

82 03 13

2. Enqueue(x.left), Enqueue(x.right)∗).

82 03 13 63

30

21

12

03 13

71

52

63

54 64

82

73 93

Output: 30 21 71 12 52 82

1. x = Dequeue(), print (x.key).

03 13 63

2. Enqueue(x.left), Enqueue(x.right)∗).

03 13 63 73 93

∗) If the child exists.

Robert Pěnička, Daniel Pr̊uša (CTU in Prague) Lecture 5: Queue, Stack, Breadth / Depth First Search October 20th, 2025 12 / 54

Lecture 5:
Queue,
Stack,

Breadth /
Depth First

Search

Robert
Pěnička,
Daniel
Pr̊uša

Queue

BFS in a
tree

DFS in a
graph

BFS in a
graph

Breadth-first search (BFS) in a tree — iteration

30

21

12

03 13

71

52

63

54 64

82

73 93

Output: 30 21 71 12 52 82 03

1. x = Dequeue(), print (x.key).

13 63 73 93

2. Enqueue(x.left), Enqueue(x.right)∗).

13 63 73 93

30

21

12

03 13

71

52

63

54 64

82

73 93

Output: 30 21 71 12 52 82 03 13

1. x = Dequeue(), print (x.key).

63 73 93

2. Enqueue(x.left), Enqueue(x.right)∗).

63 73 93

∗) If the child exists.

Robert Pěnička, Daniel Pr̊uša (CTU in Prague) Lecture 5: Queue, Stack, Breadth / Depth First Search October 20th, 2025 13 / 54

Lecture 5:
Queue,
Stack,

Breadth /
Depth First

Search

Robert
Pěnička,
Daniel
Pr̊uša

Queue

BFS in a
tree

DFS in a
graph

BFS in a
graph

Breadth-first search (BFS) in a tree — iteration

30

21

12

03 13

71

52

63

54 64

82

73 93

Output: 30 21 71 12 52 82 03 13 63

1. x = Dequeue(), print (x.key).

73 93

2. Enqueue(x.left), Enqueue(x.right)∗).

73 93 54 64

30

21

12

03 13

71

52

63

54 64

82

73 93

Output: 30 21 71 12 52 82 03 13 63 73

1. x = Dequeue(), print (x.key).

93 54 64

2. Enqueue(x.left), Enqueue(x.right)∗).

93 54 64

∗) If the child exists.

Robert Pěnička, Daniel Pr̊uša (CTU in Prague) Lecture 5: Queue, Stack, Breadth / Depth First Search October 20th, 2025 14 / 54

Lecture 5:
Queue,
Stack,

Breadth /
Depth First

Search

Robert
Pěnička,
Daniel
Pr̊uša

Queue

BFS in a
tree

DFS in a
graph

BFS in a
graph

Breadth-first search (BFS) in a tree — iteration

30

21

12

03 13

71

52

63

54 64

82

73 93

Output: 30 21 71 12 52 82 03 13 63 73 93

1. x = Dequeue(), print (x.key).

54 64

2. Enqueue(x.left), Enqueue(x.right)∗).

54 64

30

21

12

03 13

71

52

63

54 64

82

73 93

Output: 30 21 71 12 52 82 03 13 63 73 93 54

1. x = Dequeue(), print (x.key).

64

2. Enqueue(x.left), Enqueue(x.right)∗).

64

∗) If the child exists.

Robert Pěnička, Daniel Pr̊uša (CTU in Prague) Lecture 5: Queue, Stack, Breadth / Depth First Search October 20th, 2025 15 / 54

Lecture 5:
Queue,
Stack,

Breadth /
Depth First

Search

Robert
Pěnička,
Daniel
Pr̊uša

Queue

BFS in a
tree

DFS in a
graph

BFS in a
graph

Breadth-first search (BFS) in a tree — completion

30

21

12

03 13

71

52

63

54 64

82

73 93

Output: 30 21 71 12 52 82 03 13 63 73 93 54 64

1. x = Dequeue(), print (x.key).

2. Enqueue(x.left), Enqueue(x.right)∗).

The queue is empty, BFS is complete.

An nonempty queue always contains exactly:

• some (or all) nodes of one level and

• all children of those nodes of this level which have already left the queue.

Sometimes the queue contains just nodes of one level.

Robert Pěnička, Daniel Pr̊uša (CTU in Prague) Lecture 5: Queue, Stack, Breadth / Depth First Search October 20th, 2025 16 / 54

Lecture 5:
Queue,
Stack,

Breadth /
Depth First

Search

Robert
Pěnička,
Daniel
Pr̊uša

Queue

BFS in a
tree

DFS in a
graph

BFS in a
graph

Breadth-first search (BFS) in a tree

• BFS in a tree graph algorithm.

def binaryTreeBFS(node):

if node == None:

return

q = Queue(100) # init

q.Enqueue(node) # root into queue

while (not q.isEmpty()):

node = q.Dequeue()

print(node.key, end=' ') # process node

if node.left != None:

q.Enqueue(node.left)

if node.right != None:

q.Enqueue(node.right)

30

21

12

03 13

71

52

63

54 64

82

73 93

30

Front Tail

Robert Pěnička, Daniel Pr̊uša (CTU in Prague) Lecture 5: Queue, Stack, Breadth / Depth First Search October 20th, 2025 17 / 54

Lecture 5:
Queue,
Stack,

Breadth /
Depth First

Search

Robert
Pěnička,
Daniel
Pr̊uša

Queue

BFS in a
tree

DFS in a
graph

BFS in a
graph

Graphs recap

• Graph is an ordered pair of set of vertices (nodes) V
and set of pairs of vertices E.

• Each pair in E is an edge.

• Graph is G = (V,E)

• Example:

• V = {a, b, c, d, e}
• E = {{a, b}, {b, e}, {b, c}, {c, e}, {e, d}}

a
b

c

d

e

Robert Pěnička, Daniel Pr̊uša (CTU in Prague) Lecture 5: Queue, Stack, Breadth / Depth First Search October 20th, 2025 18 / 54

Lecture 5:
Queue,
Stack,

Breadth /
Depth First

Search

Robert
Pěnička,
Daniel
Pr̊uša

Queue

BFS in a
tree

DFS in a
graph

BFS in a
graph

Graphs recap – directed/undirected

Undirected graph

• An edge is an unordered pair of vertices.

• E = {{a, b}, {b, e}, {b, c}, {c, e}, {e, d}}

a
b

c

d

e

Directed graph

• An edge is an ordered pair of vertices.

• E = {(a, b), (b, e), (b, c), (c, e), (e, d)}

a
b

c

d

e

Robert Pěnička, Daniel Pr̊uša (CTU in Prague) Lecture 5: Queue, Stack, Breadth / Depth First Search October 20th, 2025 19 / 54

Lecture 5:
Queue,
Stack,

Breadth /
Depth First

Search

Robert
Pěnička,
Daniel
Pr̊uša

Queue

BFS in a
tree

DFS in a
graph

BFS in a
graph

Graph – adjacency matrix

• Let G = (V,E) be a graph with n
vertices.

• Denote vertices v1, . . . , vn (in an
arbitrary order).

• Adjacency matrix of G is a matrix of
order n

AG = (ai,j)
n
i,j=1

defined by the relation

ai,j =

1 for {vi, vj} ∈ E,

0 otherwise.

Directed graph example

a b c d e
a 0 1 0 0 0
b 0 0 1 0 1
c 0 0 0 0 1
d 0 0 0 0 0
e 0 0 0 1 0

Robert Pěnička, Daniel Pr̊uša (CTU in Prague) Lecture 5: Queue, Stack, Breadth / Depth First Search October 20th, 2025 20 / 54

Lecture 5:
Queue,
Stack,

Breadth /
Depth First

Search

Robert
Pěnička,
Daniel
Pr̊uša

Queue

BFS in a
tree

DFS in a
graph

BFS in a
graph

Graph – adjacency matrix

Directed graph example

a b c d e
a 0 1 0 0 0
b 0 0 1 0 1
c 0 0 0 0 1
d 0 0 0 0 0
e 0 0 0 1 0

a b

c

d

e

Robert Pěnička, Daniel Pr̊uša (CTU in Prague) Lecture 5: Queue, Stack, Breadth / Depth First Search October 20th, 2025 21 / 54

Lecture 5:
Queue,
Stack,

Breadth /
Depth First

Search

Robert
Pěnička,
Daniel
Pr̊uša

Queue

BFS in a
tree

DFS in a
graph

BFS in a
graph

Graph – list of neighbours

• Let G = (V,E) be an (un)directed graph with n vertices.

• Denote vertices v1, . . . , vn (in an arbitrary order).

• List of neighbours of G is an array P of size n of pointers.

• P[i] points to the list of all vertices which are adjacent to vi.

a

b

c

d

e

b

a c e

b e

e

c b d

a b

c

d

e

Robert Pěnička, Daniel Pr̊uša (CTU in Prague) Lecture 5: Queue, Stack, Breadth / Depth First Search October 20th, 2025 22 / 54

Lecture 5:
Queue,
Stack,

Breadth /
Depth First

Search

Robert
Pěnička,
Daniel
Pr̊uša

Queue

BFS in a
tree

DFS in a
graph

BFS in a
graph

Graph most usual representations

A B

C D E

F G H

Linked list representation

A B D

B D A

C D F G

D C G E B A

E H D

F C G

G C H D F

H G E

Adjacency matrix

A B C D E F G H

A 0 1 0 1 0 0 0 0

B 1 0 0 1 0 0 0 0

C 0 0 0 1 0 1 1 0

D 1 1 1 0 1 0 1 0

E 0 0 0 1 0 0 0 1

F 0 0 1 0 0 0 1 0

G 0 0 1 1 0 1 0 1

H 0 0 0 0 1 0 1 0

Robert Pěnička, Daniel Pr̊uša (CTU in Prague) Lecture 5: Queue, Stack, Breadth / Depth First Search October 20th, 2025 23 / 54

Lecture 5:
Queue,
Stack,

Breadth /
Depth First

Search

Robert
Pěnička,
Daniel
Pr̊uša

Queue

BFS in a
tree

DFS in a
graph

BFS in a
graph

Depth-first search (DFS) in a graph — notation for example that follows

• Node colors:

• White node: fresh node not visited yet.
• Green node: currently open node (discovered, but not

finished/closed).
• Red node: closed node (completely explored/finished).

• Numbers on nodes: X/Y

• X = iteration when first visited / added to the stack.
• Y = finish iteration (when removed from the stack).

• Blue arrow: the DFS is currently expanded along this edge.

• Stack: a node is pushed onto the stack when discovered (green).

• Output: a node is printed when it is first entered.

A B

C

4/7

Example DFS state

Stack (active nodes):

A

Output:

A B

Robert Pěnička, Daniel Pr̊uša (CTU in Prague) Lecture 5: Queue, Stack, Breadth / Depth First Search October 20th, 2025 24 / 54

Lecture 5:
Queue,
Stack,

Breadth /
Depth First

Search

Robert
Pěnička,
Daniel
Pr̊uša

Queue

BFS in a
tree

DFS in a
graph

BFS in a
graph

Depth-first search (DFS) in a graph

A B

C D E

F G H

1/-

Stack: C

Output: C

A B

C D E

F G H

1/-

2/-

Stack: C D

Output: C D

A B

C D E

F G H

1/-

2/-

3/-

Stack: C D G

Output: C D G

A B

C D E

F G H

1/-

2/-

3/- 4/-

Stack: C D G H

Output: C D G H

Robert Pěnička, Daniel Pr̊uša (CTU in Prague) Lecture 5: Queue, Stack, Breadth / Depth First Search October 20th, 2025 25 / 54

Lecture 5:
Queue,
Stack,

Breadth /
Depth First

Search

Robert
Pěnička,
Daniel
Pr̊uša

Queue

BFS in a
tree

DFS in a
graph

BFS in a
graph

Depth-first search (DFS) in a graph

A B

C D E

F G H

1/-

2/-

3/- 4/-

5/-

Stack: C D G H E

Output: C D G H E

A B

C D E

F G H

1/-

2/-

3/- 4/-

5/6

Stack: C D G H

Output: C D G H E

A B

C D E

F G H

1/-

2/-

3/- 4/7

5/6

Stack: C D G

Output: C D G H E

A B

C D E

F G H

1/-

2/-

3/- 4/7

5/6

8/-

Stack: C D G F

Output: C D G H E F

Robert Pěnička, Daniel Pr̊uša (CTU in Prague) Lecture 5: Queue, Stack, Breadth / Depth First Search October 20th, 2025 26 / 54

Lecture 5:
Queue,
Stack,

Breadth /
Depth First

Search

Robert
Pěnička,
Daniel
Pr̊uša

Queue

BFS in a
tree

DFS in a
graph

BFS in a
graph

Depth-first search (DFS) in a graph

A B

C D E

F G H

1/-

2/-

3/- 4/7

5/6

8/9

Stack: C D G

Output: C D G H E F

A B

C D E

F G H

1/-

2/-

3/10 4/7

5/6

8/9

Stack: C D

Output: C D G H E F

A B

C D E

F G H

1/-

2/-

3/10 4/7

5/6

8/9

11/-

Stack: C D B

Output: C D G H E F B

A B

C D E

F G H

1/-

2/-

3/10 4/7

5/6

8/9

11/-12/-

Stack: C D B A

Output: C D G H E F B A

Robert Pěnička, Daniel Pr̊uša (CTU in Prague) Lecture 5: Queue, Stack, Breadth / Depth First Search October 20th, 2025 27 / 54

Lecture 5:
Queue,
Stack,

Breadth /
Depth First

Search

Robert
Pěnička,
Daniel
Pr̊uša

Queue

BFS in a
tree

DFS in a
graph

BFS in a
graph

Depth-first search (DFS) in a graph

A B

C D E

F G H

1/-

2/-

3/10 4/7

5/6

8/9

11/-12/13

Stack: C D B

Output: C D G H E F B A

A B

C D E

F G H

1/-

2/-

3/10 4/7

5/6

8/9

11/1412/13

Stack: C D

Output: C D G H E F B A

A B

C D E

F G H

1/-

2/15

3/10 4/7

5/6

8/9

11/1412/13

Stack: C

Output: C D G H E F B A

A B

C D E

F G H

1/16

2/15

3/10 4/7

5/6

8/9

11/1412/13

Stack:

Output: C D G H E F B A

Robert Pěnička, Daniel Pr̊uša (CTU in Prague) Lecture 5: Queue, Stack, Breadth / Depth First Search October 20th, 2025 28 / 54

Lecture 5:
Queue,
Stack,

Breadth /
Depth First

Search

Robert
Pěnička,
Daniel
Pr̊uša

Queue

BFS in a
tree

DFS in a
graph

BFS in a
graph

Depth-first search (DFS) in a graph — Life cycle

Life cycle of a node during the DFS: Fresh – Open – Closed

Fresh nodes

• Fresh nodes are those nodes which have not been visited yet.

• Before the search starts, all nodes are fresh.

• A fresh node becomes open when it is visited for the first time.

• The set of fresh nodes shrinks or remains the same during the search.

Open nodes

• Open nodes are those nodes which have already been visited but are not closed yet.

• The set of open nodes may grow and shrink during the search.

Closed nodes

• Closed nodes are those nodes which will not be visited any more.

• When each neighbour of a current node in the search is either open or closed, the current node
becomes closed.

• The set of closed nodes only grows during the search.

• When the search terminates, all nodes are closed.

Robert Pěnička, Daniel Pr̊uša (CTU in Prague) Lecture 5: Queue, Stack, Breadth / Depth First Search October 20th, 2025 29 / 54

Lecture 5:
Queue,
Stack,

Breadth /
Depth First

Search

Robert
Pěnička,
Daniel
Pr̊uša

Queue

BFS in a
tree

DFS in a
graph

BFS in a
graph

Depth-first search (DFS) in a graph

Implementation remark

• Fresh: A fresh node is assigned no time (neither open nor closed).

• Open: An open node is assigned open time and no close time.

• Closed: A closed node is assigned both open and close times.

In some implementations, it is not necessary to produce the open and close times.

However, it is always necessary to register explicitly the state of each node – fresh/closed. Open
nodes are then those which were not closed yet and are still on the stack.

In the recursive variant of DFS, each recursive call corresponds to a single node processing, including
all visits to this node. The node becomes open when the node is the actual parameter of the current
recursive function call. The node becomes closed when the same call terminates.

The neighbours of the node are checked one by one in the body of the function, and the fresh ones
become the parameters of the recursive calls. Therefore, it is enough to register only one-bit
information in each node: Fresh or not fresh.

Robert Pěnička, Daniel Pr̊uša (CTU in Prague) Lecture 5: Queue, Stack, Breadth / Depth First Search October 20th, 2025 30 / 54

Lecture 5:
Queue,
Stack,

Breadth /
Depth First

Search

Robert
Pěnička,
Daniel
Pr̊uša

Queue

BFS in a
tree

DFS in a
graph

BFS in a
graph

Depth-first search (DFS) in a graph

Stack contents

C
C D

C D G
C D G H
C D G H E
C D G H
C D G
C D G F
C D G
C D

C D B
C D B A
C D B
C D
C
–

A B

C D E

F G H

Printing the node when it
becomes open:

C D G H E F B A

Printing the node when it
becomes closed:

E H F G A B D C

Processing a node when it becomes closed is used in algorithms of:

• bridges and cut-vertices detection in undirected graphs

• strongly connected components detection in directed graphs

Robert Pěnička, Daniel Pr̊uša (CTU in Prague) Lecture 5: Queue, Stack, Breadth / Depth First Search October 20th, 2025 31 / 54

Lecture 5:
Queue,
Stack,

Breadth /
Depth First

Search

Robert
Pěnička,
Daniel
Pr̊uša

Queue

BFS in a
tree

DFS in a
graph

BFS in a
graph

Depth-first search (DFS) in a graph

A B

C D E

F G H

12/13 11/14

1/16

2/15 5/6

8/9

3/10 4/7

DFS-tree with open and close times of the
nodes

C

D

G

H

E

F

B

A

1/16

2/15

3/10

4/7

5/6

8/9

11/14

12/13

Properties:

• For subtree rooted at X it holds for each node Y ̸= X:
OpenTime(X) < OpenTime(Y) < CloseTime(Y) < CloseTime(X)

• If Y is not in subtree of X: CloseTime(X) < OpenTime(Y) or
CloseTime(Y) < OpenTime(X)

• Number of nodes in subtree of X is always:
(
CloseTime(X) + 1− OpenTime(X)

)
/2

Robert Pěnička, Daniel Pr̊uša (CTU in Prague) Lecture 5: Queue, Stack, Breadth / Depth First Search October 20th, 2025 32 / 54

Lecture 5:
Queue,
Stack,

Breadth /
Depth First

Search

Robert
Pěnička,
Daniel
Pr̊uša

Queue

BFS in a
tree

DFS in a
graph

BFS in a
graph

Depth-first search (DFS) in a graph – iteratively

def DFS(graph):

visited = [False] * graph.size

stack = Stack()

stack.push(graph.nodes[0]) # start search in node 0

visited[0] = True

while not stack.isEmpty():

node = stack.pop()

print(node.id, end=" ") # process the node

for neigh in node.neighbours:

if not visited[neigh.id]:

stack.push(neigh)

visited[neigh.id] = True

Robert Pěnička, Daniel Pr̊uša (CTU in Prague) Lecture 5: Queue, Stack, Breadth / Depth First Search October 20th, 2025 33 / 54

Lecture 5:
Queue,
Stack,

Breadth /
Depth First

Search

Robert
Pěnička,
Daniel
Pr̊uša

Queue

BFS in a
tree

DFS in a
graph

BFS in a
graph

Depth-first search (DFS) in a graph – recursively

def DFSrec(node, visited):

visited[node.id] = True

print(node.id, end=" ") # process the node

for neigh in node.neighbours:

if visited[neigh.id] == False:

DFSrec(neigh, visited)

def DFSrecRun(graph):

visited = [False] * graph.size

DFSrec(graph.nodes[0], visited)

Robert Pěnička, Daniel Pr̊uša (CTU in Prague) Lecture 5: Queue, Stack, Breadth / Depth First Search October 20th, 2025 34 / 54

Lecture 5:
Queue,
Stack,

Breadth /
Depth First

Search

Robert
Pěnička,
Daniel
Pr̊uša

Queue

BFS in a
tree

DFS in a
graph

BFS in a
graph

DFS animation

https://www.youtube.com/watch?v=NUgMa5coCoE

Robert Pěnička, Daniel Pr̊uša (CTU in Prague) Lecture 5: Queue, Stack, Breadth / Depth First Search October 20th, 2025 35 / 54

https://www.youtube.com/watch?v=NUgMa5coCoE

Lecture 5:
Queue,
Stack,

Breadth /
Depth First

Search

Robert
Pěnička,
Daniel
Pr̊uša

Queue

BFS in a
tree

DFS in a
graph

BFS in a
graph

Breadth-first search (BFS) in a graph

Life cycle of a node during BFS
is conceptually identical to the node lifecycle during DFS.

Fresh nodes

• Fresh nodes are those nodes which have not been visited yet.

• Before the search starts, all nodes are fresh.

• A fresh node becomes open when it is visited for the first time.

• The set of fresh nodes shrinks or remains the same during the search.

Open nodes

• Open nodes are those nodes which have been already visited but were not closed yet.

• The set of open nodes may grow and shrink during the search.

Closed nodes

• Closed nodes are those nodes which will not be visited any more.

• When each neighbour of a current node in the search is either open or closed, the current node
becomes closed.

• The set of closed nodes only grows during the search.

• When the search terminates, all nodes are closed.

Robert Pěnička, Daniel Pr̊uša (CTU in Prague) Lecture 5: Queue, Stack, Breadth / Depth First Search October 20th, 2025 36 / 54

Lecture 5:
Queue,
Stack,

Breadth /
Depth First

Search

Robert
Pěnička,
Daniel
Pr̊uša

Queue

BFS in a
tree

DFS in a
graph

BFS in a
graph

Breadth-first search (BFS) in a graph — notation for example that follows

• Node colors:

• White node: fresh node not visited yet.
• Green node: currently open node (discovered, in the queue).
• Red node: closed node (fully processed, removed from

queue).

• Numbers on nodes: k

• k = distance from the BFS start node.

• Blue arrow: BFS is currently exploring an edge from the active
node.

• Queue: a node is enqueued when discovered (green). The queue
evolves as BFS processes nodes in FIFO order.

• Output: a node is printed when it is processed (dequeued/closed).

A B

C

0 1

Example BFS state

Queue:
B

Output:

A

Robert Pěnička, Daniel Pr̊uša (CTU in Prague) Lecture 5: Queue, Stack, Breadth / Depth First Search October 20th, 2025 37 / 54

Lecture 5:
Queue,
Stack,

Breadth /
Depth First

Search

Robert
Pěnička,
Daniel
Pr̊uša

Queue

BFS in a
tree

DFS in a
graph

BFS in a
graph

Breadth-first search (BFS) in a graph

A B

C D E

F G H

0

Queue: C

Output: C

A B

C D E

F G H

0

Queue: D

Output: C

A B

C D E

F G H

0 1

1

Queue: D F

Output: C

A B

C D E

F G H

0 1

1

1

Queue: D F G

Output: C

Robert Pěnička, Daniel Pr̊uša (CTU in Prague) Lecture 5: Queue, Stack, Breadth / Depth First Search October 20th, 2025 38 / 54

Lecture 5:
Queue,
Stack,

Breadth /
Depth First

Search

Robert
Pěnička,
Daniel
Pr̊uša

Queue

BFS in a
tree

DFS in a
graph

BFS in a
graph

Breadth-first search (BFS) in a graph

A B

C D E

F G H

0 1

1

1

Queue: D F G

Output: C D

A B

C D E

F G H

0 1

1

1

2

Queue: F G A

Output: C D

A B

C D E

F G H

0 1

1

1

2 2

Queue: F G A B

Output: C D

A B

C D E

F G H

0 1

1

1

2 2

2

Queue: F G A B E

Output: C D

Robert Pěnička, Daniel Pr̊uša (CTU in Prague) Lecture 5: Queue, Stack, Breadth / Depth First Search October 20th, 2025 39 / 54

Lecture 5:
Queue,
Stack,

Breadth /
Depth First

Search

Robert
Pěnička,
Daniel
Pr̊uša

Queue

BFS in a
tree

DFS in a
graph

BFS in a
graph

Breadth-first search (BFS) in a graph

A B

C D E

F G H

0 1

1

1

2 2

2

Queue: F G A B E

Output: C D F

A B

C D E

F G H

0 1

1

1

2

2

2

Queue: G A B E

Output: C D F G

A B

C D E

F G H

0 1

1

1

2 2

2

2

Queue: A B E H

Output: C D F G

A B

C D E

F G H

0 1

1

1

2 2

2

2

Queue: A B E H

Output: C D F G A

Robert Pěnička, Daniel Pr̊uša (CTU in Prague) Lecture 5: Queue, Stack, Breadth / Depth First Search October 20th, 2025 40 / 54

Lecture 5:
Queue,
Stack,

Breadth /
Depth First

Search

Robert
Pěnička,
Daniel
Pr̊uša

Queue

BFS in a
tree

DFS in a
graph

BFS in a
graph

Breadth-first search (BFS) in a graph

A B

C D E

F G H

0 1

1

1

2

2 2

2

Queue: B E H

Output: C D F G A B

A B

C D E

F G H

0 1

1

1

2

2 2

2

Queue: E H

Output: C D F G A B E

A B

C D E

F G H

0 1

1

1

2

2 2

2

Queue: H

Output: C D F G A B E H

A B

C D E

F G H

0 1

1

1

2

2 2

2

Queue:

Output: C D F G A B E H

Robert Pěnička, Daniel Pr̊uša (CTU in Prague) Lecture 5: Queue, Stack, Breadth / Depth First Search October 20th, 2025 41 / 54

Lecture 5:
Queue,
Stack,

Breadth /
Depth First

Search

Robert
Pěnička,
Daniel
Pr̊uša

Queue

BFS in a
tree

DFS in a
graph

BFS in a
graph

Breadth-first search (BFS) in a graph

A B

C D E

F G H

0 1

1

1

2 2

2

2

The open and close times are not essential
in BFS.

BFS-tree with distances from the start node (root)

C

D

A B E

F G

H

0

1 1
1

2
2 2

2
The node depth in the BFS tree is equal to its distance

from the start node in BFS.

Applications of BFS

• Testing graph connectivity

• Testing existence of a cycle in a graph

• Testing if a graph is bipartite

• Computing distance(s) from a given node to one or all other nodes

Robert Pěnička, Daniel Pr̊uša (CTU in Prague) Lecture 5: Queue, Stack, Breadth / Depth First Search October 20th, 2025 42 / 54

Lecture 5:
Queue,
Stack,

Breadth /
Depth First

Search

Robert
Pěnička,
Daniel
Pr̊uša

Queue

BFS in a
tree

DFS in a
graph

BFS in a
graph

Breadth-first search (BFS) in a graph — Implementation remark

• Fresh: A fresh node is assigned no distance from the start node.

• Open: An open node is assigned a distance from the start node and it is in the queue.

• Closed: A closed node is assigned a distance from the start node and it is not in the queue.

It is not necessary to register explicitly fresh/open/closed state of the nodes. The contents of the
queue and the distance (assigned / not assigned) define unambiguously the node state.

BFS is an iterative process — a recursive variant is not used. (A recursive implementation would be
more artificial and less clear.)

Robert Pěnička, Daniel Pr̊uša (CTU in Prague) Lecture 5: Queue, Stack, Breadth / Depth First Search October 20th, 2025 43 / 54

Lecture 5:
Queue,
Stack,

Breadth /
Depth First

Search

Robert
Pěnička,
Daniel
Pr̊uša

Queue

BFS in a
tree

DFS in a
graph

BFS in a
graph

Breadth-first search (BFS) in a graph

def BFS(graph):

visited = [False] * graph.size

queue = Queue(200)

queue.Enqueue(graph.nodes[0])

visited[0] = True

while not queue.isEmpty():

node = queue.Dequeue()

print(node.id, end=" ") # process node

for neigh in node.neighbours:

if not visited[neigh.id]:

queue.Enqueue(neigh)

visited[neigh.id] = True

Robert Pěnička, Daniel Pr̊uša (CTU in Prague) Lecture 5: Queue, Stack, Breadth / Depth First Search October 20th, 2025 44 / 54

Lecture 5:
Queue,
Stack,

Breadth /
Depth First

Search

Robert
Pěnička,
Daniel
Pr̊uša

Queue

BFS in a
tree

DFS in a
graph

BFS in a
graph

Node distances by BFS in a graph

def BFSdist(graph):

visited = [False] * graph.size

dist = [9999999999999] * graph.size # infinity == 99...9

queue = Queue(graph.size)

queue.Enqueue(graph.nodes[0]) # start in node 0

visited[0] = True

dist[0] = 0

while not queue.isEmpty():

node = queue.Dequeue()

print(node.id, end=" ") # process node

for neigh in node.neighbours:

if not visited[neigh.id]:

queue.Enqueue(neigh)

visited[neigh.id] = True

dist[neigh.id] = dist[node.id] + 1

print(dist) # process the distances or return, etc.

Robert Pěnička, Daniel Pr̊uša (CTU in Prague) Lecture 5: Queue, Stack, Breadth / Depth First Search October 20th, 2025 45 / 54

Lecture 5:
Queue,
Stack,

Breadth /
Depth First

Search

Robert
Pěnička,
Daniel
Pr̊uša

Queue

BFS in a
tree

DFS in a
graph

BFS in a
graph

BFS animation

https://www.youtube.com/watch?v=x-VTfcmrLEQ

Robert Pěnička, Daniel Pr̊uša (CTU in Prague) Lecture 5: Queue, Stack, Breadth / Depth First Search October 20th, 2025 46 / 54

https://www.youtube.com/watch?v=x-VTfcmrLEQ

Lecture 5:
Queue,
Stack,

Breadth /
Depth First

Search

Robert
Pěnička,
Daniel
Pr̊uša

Queue

BFS in a
tree

DFS in a
graph

BFS in a
graph

Breadth-first and Depth-first search (BFS & DFS) in a graph — Asymptotic complexity

Asymptotic complexity
Each single operation on the queue/stack and each single operation on additional data structures and
nodes/edges is of constant time (and memory) complexity.

Each node enters the queue/stack only once and it leaves the queue/stack only once. The state of
the node (fresh/open/closed) is tested more times. The number of these tests is equal to the degree
of the node (the search tries to access the node from its neighbours).

The sum of all node degrees is equal to twice the number of edges, in any graph.

In total:

Θ(|V |+ |E|)

Robert Pěnička, Daniel Pr̊uša (CTU in Prague) Lecture 5: Queue, Stack, Breadth / Depth First Search October 20th, 2025 47 / 54

Lecture 5:
Queue,
Stack,

Breadth /
Depth First

Search

Robert
Pěnička,
Daniel
Pr̊uša

Queue

BFS in a
tree

DFS in a
graph

BFS in a
graph

DFS and BFS comparison animation

https://www.youtube.com/watch?v=VsEla1bVVro

Robert Pěnička, Daniel Pr̊uša (CTU in Prague) Lecture 5: Queue, Stack, Breadth / Depth First Search October 20th, 2025 48 / 54

https://www.youtube.com/watch?v=VsEla1bVVro

Lecture 5:
Queue,
Stack,

Breadth /
Depth First

Search

Robert
Pěnička,
Daniel
Pr̊uša

Queue

BFS in a
tree

DFS in a
graph

BFS in a
graph

Search pruning

• Search speedup

• Pruning (skipping) of unpromising possibilities

• When the analysis of the current state reveals that

• it is an unpromising state
• surely it does not lead to the solution

• We ”cut off” (prune) the whole subtree of states of which the current state is the root

Explored

Pruned subtree

Robert Pěnička, Daniel Pr̊uša (CTU in Prague) Lecture 5: Queue, Stack, Breadth / Depth First Search October 20th, 2025 49 / 54

Lecture 5:
Queue,
Stack,

Breadth /
Depth First

Search

Robert
Pěnička,
Daniel
Pr̊uša

Queue

BFS in a
tree

DFS in a
graph

BFS in a
graph

Pruning example – magic square

• Magic square of order N
• square matrix of order N
• contains exactly once each value from 1 to N 2

• sum of all rows and all columns is the same

• Example

2 9 4

7 5 3

6 1 8

• Brute force approach: Generate all possible permutations of positions of numbers from 1 to N 2

• Pruning: Whenever the sum of the row or column is not correct:

• sum of all values in the square is 1
2
N 2(N 2 + 1)

• sum of all values in a row or column is 1
2
N (N 2 + 1)

Robert Pěnička, Daniel Pr̊uša (CTU in Prague) Lecture 5: Queue, Stack, Breadth / Depth First Search October 20th, 2025 50 / 54

Lecture 5:
Queue,
Stack,

Breadth /
Depth First

Search

Robert
Pěnička,
Daniel
Pr̊uša

Queue

BFS in a
tree

DFS in a
graph

BFS in a
graph

Search pruning heuristics

Heuristic is a hint which tells us which order of actions is likely to produce quickly the solution.

• The effectivity of the solution is not guaranteed.

• Heuristics can be used to assess the order of vertices/edges/paths in which they are processed
during the search in large graphs.

Example: Knight tour on an N× N chessboard (visit all fields).

• Problem of: finding a sequence of moves of a knight on a chessboard such that the knight visits
every square exactly once.

• Good heuristic: Explore first those fields from which there are fewest possibilities of continuing
the tour in different directions.

• Speedup on the 8× 8 chessboard: Almost 100 000 times.

Robert Pěnička, Daniel Pr̊uša (CTU in Prague) Lecture 5: Queue, Stack, Breadth / Depth First Search October 20th, 2025 51 / 54

Lecture 5:
Queue,
Stack,

Breadth /
Depth First

Search

Robert
Pěnička,
Daniel
Pr̊uša

Queue

BFS in a
tree

DFS in a
graph

BFS in a
graph

Homework Assignment — Drawing Binary Tree (PY)

Goal: Draw a binary tree in a square grid so that:

• Each node is a circle centered at a grid intersection point.

• Neighbouring nodes are connected by a straight line segment.

• The radius of each circle is less than 0.5.

Geometric placement rules:

• Nodes at the same depth share the same y coordinate.

• Deeper nodes have smaller y values.

• Nodes in the left subtree of a node have smaller x coordinates.

• Nodes in the right subtree have larger x coordinates.

• The drawing should minimize the area of the bounding rectangle.

Example

Examples of tree drawings in a grid:

• (a) 3× 4, (b) 4× 6, (c) 4× 10 area rectangles.

Robert Pěnička, Daniel Pr̊uša (CTU in Prague) Lecture 5: Queue, Stack, Breadth / Depth First Search October 20th, 2025 52 / 54

Lecture 5:
Queue,
Stack,

Breadth /
Depth First

Search

Robert
Pěnička,
Daniel
Pr̊uša

Queue

BFS in a
tree

DFS in a
graph

BFS in a
graph

Homework Assignment — Drawing Binary Tree

Goal: Draw a binary tree in a square grid such that:

• Each node is a circle centered at a grid
intersection.

• Neighbouring nodes are connected by a straight
line segment.

• The radius of each circle is less than 0.5.

Geometric placement rules:

• Nodes at the same depth share the same y
coordinate.

• Deeper nodes have smaller y values.

• Left subtree ⇒ smaller x coordinate.

• Right subtree ⇒ larger x coordinate.

• The goal is to minimize total rectangular area.

Robert Pěnička, Daniel Pr̊uša (CTU in Prague) Lecture 5: Queue, Stack, Breadth / Depth First Search October 20th, 2025 53 / 54

Lecture 5:
Queue,
Stack,

Breadth /
Depth First

Search

Robert
Pěnička,
Daniel
Pr̊uša

Queue

BFS in a
tree

DFS in a
graph

BFS in a
graph

Homework Assignment — Drawing Binary Tree

Input format:

• First line: three integers N R L, where N is number of
nodes (0 ≤ i < N), R is label of the root node, and L
is number of inspected nodes.

• Next N−1 lines: edges (u, v) of the tree.

• The edge to the left child appears before the edge to
the right child.

• Last L lines: labels of inspected nodes.

Output format:

• L lines: for each inspected node ui, output coordinates
x y.

Task: Compute coordinates (x, y) for each inspected node
so that all rules are met and the drawing area is minimal.

Hints:

• Remember the in-order traversal of a binary tree and
its nice properties.

• Remember how to calculate depth of a tree node
recursively.Robert Pěnička, Daniel Pr̊uša (CTU in Prague) Lecture 5: Queue, Stack, Breadth / Depth First Search October 20th, 2025 54 / 54

	Queue
	BFS in a tree
	DFS in a graph
	BFS in a graph

