Lecture 5:
Queue,
Stack,

Breadth /

Depth First
Search

Robert

P&nitka,

Daniel
Priga

Queue

BFS in a
tree

DFS in a
graph

BFS in a
graph

Robert P&nitka, Daniel Priga (CTU in Prague)

BE5B33ALG — Algorithms

Ing. Robert P&nitka, Ph.D.
doc. RNDr. Daniel Priga, Ph.D.

Faculty of Electrical Engineering
Czech Technical University in Prague

FACULTY

2 w

v OF ELECTRICAL | 'M
ENGINEERING
CTU IN PRAGUE

Q MULTI-ROBOT
U U SYSTEMS

GROUP

Lecture 5: Queue, Stack, Breadth / Depth First Search

Lecture 5: Queue, Stack, Breadth / Depth First Search

October 20th, 2025

Lecture 5:

Queue,
Stack,
Breadth /
Depth First Queue
Search
Robert
P&nicka, H
ek e Operations Enqueue, Dequeue, Front, Empty....
Prus: . . .
e e Cyclic queue implementation
Queue
BFS in a
o Graphs
DFS in a
e o Breadth-first search (BFS) in a tree
BFS in a
graph e Depth-first search (DFS) in a graph

e Breadth-first search (BFS) in a graph

Search pruning

Robert P&nitka, Daniel Priga (CTU in Prague)

Lecture 5: Queue, Stack, Breadtl

Depth First Search

Stack

Lecture 5:
Queue, e Elements are stored at the stack top before they are processed.
Stack,

DBerss:t;‘irét push
Search 84
Robert Stack bottom Stack top
P&nicka, m
Daniel
Priga 14 55 11 71 08 44 23

Queue
| (4]

BFS in a

tree

DFS in a pop

graph

BFS in a e Elements are removed from the stack top and then they are processed.

graph

e Last In First Out (LIFO) principle.

Possible operations
o Push — Put at the top
Pop — Remove from the top
Top — Read the top
Empty — Is the stack empty?

October 20th, 2025

Robert P&nitka, Daniel Priga (CTU in Prague) Lecture 5: Queue, Stack, Breadth / Depth First Search

Queue

Lecture 5:

Queue,

BStadckh,/ e Elements are stored at the queue tail before they are processed.
readtl
Depth First

Search

. nqueue
Robert Queue front Queue tail
P&nicka,
Daniel

Pria dequeue 14 | 55 | 112 [72 | 08 | 44 | 23

Queue ‘ m

e Elements are removed from the queue front and then they are processed.
e First In First Out (FIFO) principle.

Possible operations
e Enqueue / InsertLast / Push — Insert at the tail
e Dequeue / DelFront / Pop — Remove from the front
e Front / Peek — Read the front element
e Empty — Is the queue empty?

Robert P&nitka, Daniel Priga (CTU in Prague) Lecture 5: Queue, Stack, Breadth / Depth First Search October 20th, 2025

. Queue — example life cycle

Lecture 5:

e o Easy example of a queue life cycle.
Degth Fit
Search
Robert Operation | Front <+—<<«<+< Tail
PS::I;T' Empty |
Priga
o Insert(24) [24]
BFS ina Insert(11) | [24]11]
tree
DFS in a Insert(90) I 24 | 11 | 90 |
graph

graph Insert(43) | [11]90[43]
DelFront() | [90]43]
DelFront() [43]
Insert(79) | [43]79]

l
I
l
l
BFS in 2 DelFront() | [11]90] |
l
l
l
l

Robert P&nitka, Daniel Priga (CTU in Prague) Lecture 5: Queue, Stack, Breadth / Depth First Search October 20th, 2025

. Cyclic queue implementation in an array

Lecture 5:
Queue,
Stack,

Breadth /

Depth First
Search

Robert
P&nicka,
Daniel
Priga

Queue

BFS in a
tree

DFS in a
graph

BFS in a
graph

Robert P&nitka, Daniel Priga (CTU in Prague)

Operation

An empty queue in a fixed length array

Insert 24,

DelFront,

Insert 10,

DelFront,

Insert 55,

DelFront,

11, 90, 43, 70

DelFront, DelFront

20

DelFront

22,33

DelFront

Queue state (queue front

, queue tail (‘)

F‘llll

&
[4J11[oo[4]70]]
£
L [[[a]7 |
&
120] [43] 70] 10 }

2
120 [|

[10])

420 [55 | 22 [33

| [55 [22 | 33

Lecture 5: Queue, Stack, Breadth / Depth First Search

October 20th, 2025

Cyclic queue implementation in an array

e e Tail index points to the first free position behind the last queue element.
Brse?;tk,{/ e Front index points to the first position occupied by a queue element.
Depth First . . . e .

Search e When both indices point to the same position the queue is empty.

Robert

P&nicka,

Daniel class Queue:

Prasa def __init__(self, size0fQ):
Queue self.size = size0fQ

- self.q = [None]l * size0fQ
tree self.front = 0

S self.tail = 0

graph

TS i e def isEmpty(self):
graph return (self.tail == self.front)

def Enqueue(self, node):
if self.tail+1l == self.front or \
self.tail - self.front == self.size-1:
pass # amplement overflow fixz here
self.qlself.tail] = node
self.tail = (self.tail + 1) 7 self.size

Continue...

Robert P&nitka, Daniel Priga (CTU in Prague) Lecture 5: Queue, Stack, Breadth / Depth First Search

Cyclic queue implementation in an array

Lecture 5:
Queue,
Stack,
Breadth o= . . e .
Depth 2 e Tail index points to the first free position behind the last queue element.
Search
Robert e Front index points to the first position occupied by a queue element.
P&nitka, . . . e .
Daniel e When both indices point to the same position the queue is empty.
Praga
Queue ... continued
S def Dequeue(self):
node = self.q[self.front]
lﬁif“' self.front = (self.front + 1) % self.size
e return node

graph
def pop(self):
return self.Dequeue()

def push(self, node):
self .Enqueue (node)

Robert P&nitka, Daniel Priga (CTU in Prague) Lecture 5: Queue, Stack, Breadth / Depth First Search

Breadth-first search (BFS) in a tree

Lecture 5:

Queue,

Stack, . o
Breadth / Search direction

Depth First
Search

Robert
P&nicka,
Daniel
Priga

Queue

BFSin a
tree

DFS in a
graph
BFS in a
graph

Order of visited nodes: 30, 21, 71, 12, 52, 82, 03, 13, 63, 73, 93, 54, 64

Neither the tree structure nor recursion support this approach directly.

Robert P&nitka, Daniel Priga (CTU in Prague) Lecture 5: Queue, Stack, Breadth / Depth First Search

October 20th, 2025

Breadth-first search (BFS) in a tree — Initialization

Lecture 5:
Queue,
Stack,

Breadth /

Depth First
Search

e Create an empty queue.

e Enqueue the tree root.

Robert
P&nicka,
Daniel
Priga

Queue

BFSin a
tree

Tail

@ [[[[]

DFS in a

graph

BFS in a

graph Output ‘

Main loop
While the queue is not empty do:

e Remove the first element from the queue and process it.

e Enqueue the children of removed element.

October 20th, 2025

Lecture 5: Queue, Stack, Breadth / Depth First Search

Robert P&nitka, Daniel Priga (CTU in Prague)

. Breadth-first search (BFS) in a tree — iteration

Lecture 5:
Queue,
Stack,

1. z = Dequeue(), print (x.key).

2. Enqueue(z.left), Enqueue(z.right)*.

4
[@l @]

graph 1. © = Dequeue(), print (x.key).

4
@l [[[]|

2. Enqueue(z.left), Enqueue(z.right)®.

4
@] [[[|
Output:) If the child exists.

Breadth /
Depth First
Search

Robert
P&nicka,
Daniel
Priga

Queu

BFSin a
tree

BFS in a

graph

Robert P&nitka, Daniel Priga (CTU in Prague) Lecture 5: Queue, Stack, Breadth / Depth First Search October 20th, 2025

. Breadth-first search (BFS) in a tree — iteration

Lecture 5:
Queue,
Stack,

Breadth /

Depth First
Search

1. z = Dequeue(), print (x.key).

4
@ [[[] |

2. Enqueue(z.left), Enqueue(z.right)*.

4
(@[] | | |

graph 1. z = Dequeue(), print (x.key).

&
©@le] | [| |

2. Enqueue(z.left), Enqueue(z.right)®.

4
@@ [|
Output:) If the child exists.

Robert
P&nicka,
Daniel
Priga

BFSin a
tree

BFS in
ph

Robert P&nitka, Daniel Priga (CTU in Prague) Lecture 5: Queue, Stack, Breadth / Depth First Search October 20th, 2025

. Breadth-first search (BFS) in a tree — iteration

Lecture 5:
Queue,
Stack,

Breadth /

Depth First
Search

1. z = Dequeue(), print (x.key).

4
@[] | | |

2. Enqueue(z.left), Enqueue(z.right)*.

4
(@|@|®|] | |

S 1. = = Dequeue(), print (z.key).

4
@] | | |

2. Enqueue(z.left), Enqueue(z.right)®.

4
0)|W|6)|@[6)] |

*) If the child exists.

Robert
Pénicka,
Daniel
Priga

BFSin a
tree

Output: |30 21 71 12 52 82

Robert P&nitka, Daniel Priga (CTU in Prague) Lecture 5: Queue, Stack, Breadth / Depth First Search October 20th, 2025

. Breadth-first search (BFS) in a tree — iteration

Lecture 5:
Queue,
Stack,

Breadth /

Depth First
Search

1. z = Dequeue(), print (x.key).

4
W@ | |

2. Enqueue(z.left), Enqueue(z.right)*.

4
W@ | |

1. = = Dequeue(), print (z.key).

4
@] | | |

2. Enqueue(z.left), Enqueue(z.right)®.

4
@[@|6)] | | |

*) If the child exists.

Robert
P&nicka,
Daniel
Priga

BFSin a
tree

Output: [30 21 71 12 52 82 03 13

Robert P&nitka, Daniel Priga (CTU in Prague) Lecture 5: Queue, Stack, Breadth / Depth First Search October 20th, 2025

. Breadth-first search (BFS) in a tree — iteration

Lecture 5:
Queue,
Stack,

Breadth /

Depth First
Search

1. z = Dequeue(), print (x.key).

@le] [1 | [|

2. Enqueue(z.left), Enqueue(z.right)*.
eeeel [| |

1. = = Dequeue(), print (z.key).

4
@lee] | | |

2. Enqueue(z.left), Enqueue(z.right)®.

4
@leje] | | |

) . .
Output: [30 21 71 12 52 82 03 13 63 73 If the child exists.

Robert
P&nicka,
Daniel
Priga

BFSin a
tree

Robert P&nitka, Daniel Priga (CTU in Prague) Lecture 5: Queue, Stack, Breadth / Depth First Search October 20th, 2025

. Breadth-first search (BFS) in a tree — iteration

Lecture 5:
Queue,
Stack,

Breadth /

Depth First
Search

1. z = Dequeue(), print (x.key).

GIET T

2. Enqueue(z.left), Enqueue(z.right)™).

4
eje] | T [|

1. = = Dequeue(), print (z.key).

el [| [[|

2. Enqueue(z.left), Enqueue(z.right)®.

4
el | [[| |

) . .
3021 71 12 52 82 03 13 63 73 93 54| |1 the child exists.

Robert
P&nicka,
Daniel
Priga

BFSin a

tree Output: ‘30 21 71 12528203 13 63 73 93

Output:

Robert P&nitka, Daniel Priga (CTU in Prague) Lecture 5: Queue, Stack, Breadth / Depth First Search October 20th, 2025

Breadth-first search (BFS) in a tree — completion

Lecture 5:
Queue,
Stack,

Breadth /

Depth First
Search

1. © = Dequeue(), print (z.key).

2. Enqueue(z.left), Enqueue(z.right)*).

The queue is empty, BFS is complete.

Robert
P&nicka,
Daniel
Priga

(
Queu

BFSin a
tree

B Output: [30 21 71 12 52 82 03 13 63 73 93 54 64 |

BFS in a
ph
An nonempty queue always contains exactly:
e some (or all) nodes of one level and

e all children of those nodes of this level which have already left the queue.

Sometimes the queue contains just nodes of one level.

Robert P&nitka, Daniel Priga (CTU in Prague) Lecture 5: Queue, Stack, Breadth / Depth First Search October 20th, 2025

Breadth-first search (BFS) in a tree

Lecture 5:

Queue,
Stack,
Breadth /
S (s e BFS in a tree graph algorithm.
Robert
s def binaryTreeBFS(node) :
Prisa if node == None:
Qe return
BFS in a q = Queue(100) # init
e q.Enqueue (node) # root into queue
S while (not q.isEmpty()):
BFS in a node = q.Dequeue()

graph

print(node.key, end=' ') # process node
if node.left !'= None:

q.Enqueue (node.left)

if node.right != None:
q.Enqueue (node.right)

Robert P&nitka, Daniel Pri%a (CTU in Prague) Lecture 5: Queue, Stack, Breadth / Depth First Search October 20th, 2025

Graphs recap

Lecture 5:
Queue,
Stack,

Breadth /

Depth First
Search

Robert
P&nitka,

Daniel Graph is an ordered pair of set of vertices (nodes) V'
and set of pairs of vertices F.

Queue
— Each pair in E is an edge.

Graph is G = (V, E)
DFSina
graph

Example:
:ny . o V={a,b,cde}
o E= {{U’v b}7 {bv 6}, {b7 0}7 {C, 6}, {57 d}}

Robert P&nitka, Daniel Priga (CTU in Prague) Lecture 5: Queue, Stack, Breadth / Depth First Search

Graphs recap — directed/undirected

Lecture 5:

Queue,
Stack,
Breadth /
Depth First
Search

Robert Undirected graph Directed graph
P&nitka,
it e An edge is an unordered pair of vertices. e An edge is an ordered pair of vertices.

o B = {{a,b}. (b.c}. {bc}. {e e} ferd}) o E={(@.b),(b.e), (b.0), (c.c), (e.)}

Queue

BFS in a

tree

DFSina
graph

BFS in a
graph

October 20th, 2025

Robert P&nitka, Daniel Priga (CTU in Prague) Lecture 5: Queue, Stack, Breadth / Depth First Search

Graph — adjacency matrix

Lecture 5:
Queue,
Stack,
Breadth /)
Depih Fist e Let G = (V, E) be a graph with n
earcl .
Robert vertices.
P&nicka, . .
ek e Denote vertices v1,...,v, (in an
Prisa arbitrary order).
Queue e Adjacency matrix of GG is a matrix of
JRE order n
DFS in a
h n
e Ac = (ai;)ij=1
BFS in a
graph defined by the relation
1 for {v;,v;} € E,
Ai,j =

Robert P&nitka, Daniel Priga (CTU in Prague)

0 otherwise.

Lecture 5: Queue, Stack, Breadth / Depth First Search

Directed graph example

HlOolololola

o|o|o|o|—|T
o|o|o|r|o|n
O|OoO|+H oo

0o QL 0|T|lo
o|o|o|o|o|v

October 20th, 2025

Graph — adjacency matrix

Lecture 5:
Queue,
Stack,

Breadth /

Depth First
Search

Robert
P&nitka,

Bl Directed graph example

Priga

Queue

BFS in a

tree

DFSina
graph

BFS in a

graph

oO|o|o|o|—| T

o|lQo|T|o
O|Oo|Oo|o0|0o|v

= OlOo|olola

o|o|o|—=|Oo|n
Oo|o|—|=|lOo|o

Robert P&nitka, Daniel Priga (CTU in Prague)

Lecture 5: Queue, Stack, Breadth

Depth First Search

October 20th, 2025

Graph — list of neighbours

Lecture 5:

Queue,
Bresdtn / e Let G = (V, E) be an (un)directed graph with n vertices.

Depth First
Search e Denote vertices v1,...,v, (in an arbitrary order).

Robert
Penitka, e List of neighbours of GG is an array P of size n of pointers.
Daniel

Priga e PJi] points to the list of all vertices which are adjacent to v;.

5Bk

o (F— =]
N D
(F—-]
(F—Le e]

(9]

o

o

(0]

niel Priig&a (CTU in Prague) Lecture 5: Queue, Stack, Breadth / Depth First Search

. Graph most usual representations

Lecture 5:
Queue,
Stack,

Breadth /

Depth First
Search

Robert
P&nicka,
Daniel
Priga

R ’ Linked list representation ‘ ‘ Adjacency matrix
NONE [ABCDEFGH
graph . @
S 1) B|/1 0010000
[E—{0}>+{F}>() cClooo10110
[D>{c]>{c}>{e}>{a}>(4] D1 1 101010
[E}>{+}>(D] E|0 001 000 1
E'—> F{0O 01 00010
G~ (>EF Gloo oo
0 0001010

[B—>{c}>(¢)

Robert P&nitka, Daniel Priga (CTU in Prague) Lecture 5: Queue, Stack, Breadth / Depth First Search October 20th, 2025

Depth-first search (DFS) in a graph — notation for example that follows

Lecture 5:

Queue,

Stack,

Breadth /
Depth First

Search

- o Node colors: 4/7
ey e White node: fresh node not visited yet. o e

Priisa e Green node: currently open node (discovered, but not

finished/closed).
e Red node: closed node (completely explored/finished). e
e Numbers on nodes: X/Y

DFSin a
graph e X = iteration when first visited / added to the stack. Example DFS state

e Y = finish iteration (when removed from the stack). Stack (active nodes):

Blue arrow: the DFS is currently expanded along this edge. @...

Stack: a node is pushed onto the stack when discovered (green). Output:

e Qutput: a node is printed when it is first entered. @@..

Robert P&nitka, Daniel Priga (CTU in Prague) Lecture 5: Queue, Stack, Breadth / Depth First Search October 20th, 2025 24 /54

. Depth-first search (DFS) in a graph

Lecture 5:
Queue,
Stack,

Breadth /

Depth First
Search

Robert
P&nicka,
Daniel
Priga

o stack: @ [[[[[1] stack: OO [[[[]]

o Output: | | | | | I
DFSina
graph

S

Stack: | | | | | Stack: @@@‘B | | | |
Output: | | | | I Output: @@@‘B | | | I

Robert P&nitka, Daniel Priga (CTU in Prague) Lecture 5: Queue, Stack, Breadth / Depth First Search October 20th, 2025

. Depth-first search (DFS) in a graph

Lecture 5:
Queue,
Stack,

Breadth /

Depth First
Search

Robert
P&nicka,
Daniel
Priga

Queu Stack: L@J@LJLJLJ... Stack: @@@‘B | | | |
S output: COGHEIEL | [| Output: COGENEL | [|

DFSina
graph

BFS in a

Stack: | | | | | Stack: @@@G | | | |
Output: CoeeE [[] Output: COGHEE] [|

Robert P&nitka, Daniel Priga (CTU in Prague) Lecture 5: Queue, Stack, Breadth / Depth First Search October 20th, 2025

. Depth-first search (DFS) in a graph

Lecture 5:
Queue,
Stack,

Breadth /

Depth First
Search

Robert
P&nicka,
Daniel
Priga

BFS in a

DFSina
graph

BFS in a

Stack: CoE® | | | I

GO EMEGRN
Output: (COHEXEXBXA)

Robert P&nitka, Daniel Priga (CTU in Prague) Lecture 5: Queue, Stack, Breadth / Depth First Search October 20th, 2025

. Depth-first search (DFS) in a graph

Lecture 5:
Queue,
Stack,

Breadth /

Depth First
Search

Robert
P&nicka,
Daniel
Priga

Stack: HEEE

BFS in a
- Output: @uuu@@@d

DFSina
graph

BFS in a

stack: © [[[[[[] Stack: I
Output: COEBEEE® Output: CoEBEEE®

Robert P&nitka, Daniel Priga (CTU in Prague) Lecture 5: Queue, Stack, Breadth / Depth First Search October 20th, 2025

Depth-first search (DFS) in a graph — Life cycle

Lecture 5: Life cycle of a node during the DFS: Fresh — Open — Closed

BEE%{E ; Fresh nodes
SO o Fresh nodes are those nodes which have not been visited yet.
p?.?;ﬁ, e Before the search starts, all nodes are fresh.
Daniel e A fresh node becomes open when it is visited for the first time.
e The set of fresh nodes shrinks or remains the same during the search.
Open nodes
DFS in a e Open nodes are those nodes which have already been visited but are not closed yet.

raph
- e The set of open nodes may grow and shrink during the search.

Closed nodes

e Closed nodes are those nodes which will not be visited any more.

e When each neighbour of a current node in the search is either open or closed, the current node
becomes closed.
The set of closed nodes only grows during the search.

e When the search terminates, all nodes are closed.

Robert P&nitka, Daniel Priga (CTU in Prague) Lecture 5: Queue, Stack, Breadth / Depth First Search October 20th, 2025 29 /54

Lecture 5:
Queue,
Stack,

Breadth /

Depth First
Search

Robert
P&nicka,
Daniel
Priga

DFSin a
graph

Depth-first search (DFS) in a graph

Implementation remark
e Fresh: A fresh node is assigned no time (neither open nor closed).
e Open: An open node is assigned open time and no close time.
e Closed: A closed node is assigned both open and close times.
In some implementations, it is not necessary to produce the open and close times.

However, it is always necessary to register explicitly the state of each node — fresh/closed. Open
nodes are then those which were not closed yet and are still on the stack.

In the recursive variant of DFS, each recursive call corresponds to a single node processing, including
all visits to this node. The node becomes open when the node is the actual parameter of the current
recursive function call. The node becomes closed when the same call terminates.

The neighbours of the node are checked one by one in the body of the function, and the fresh ones
become the parameters of the recursive calls. Therefore, it is enough to register only one-bit
information in each node: Fresh or not fresh.

Robert P&nitka, Daniel Priga (CTU in Prague) Lecture 5: Queue, Stack, Breadth / Depth First Search October 20th, 2025

Lecture 5:
Queue,
Stack,

Breadth /

Depth First
Search

Robert
P&nicka,
Daniel
Priga

Robert P&nitka, Daniel Priga (CTU in Prague)

Stack contents

C

CD

CDG

CDGH

CDGHE

CDGH

CDG

CDGF

CDG

CD

CDB

CDBA

CDB

Depth-first search (DFS) in a graph

Printing the node when it
becomes open:

CDGHEFBA

Printing the node when it
becomes closed:

EHFGABDC

Processing a node when it becomes closed is used in algorithms of:
e bridges and cut-vertices detection in undirected graphs

e strongly connected components detection in directed graphs

Lecture 5: Queue, Stack, Breadth / Depth First Search October 20th, 2025

Depth-first search (DFS) in a graph

v, DFS-tree with open and close times of the
12/1 1/14 nodes

Stack,
Breadth /
Depth First
Search

1/16

Robert
Penitka, 1/1

Daniel
Priga

Queue 8/
BFS in a 3/10 4/7

tree

DFSina
graph

BFS in a
graph

Properties:
e For subtree rooted at X it holds for each node Y # X:
OpenTime(X) < OpenTime(Y) < CloseTime(Y) < CloseTime(X)
e If Y is not in subtree of X: CloseTime(X) < OpenTime(Y) or
CloseTime(Y') < OpenTime(X)
o Number of nodes in subtree of X is always: (CloseTime(X) + 1 — OpenTime(X))/2

Robert P&nitka, Daniel Priga (CTU in Prague) Lecture 5: Queue, Stack, Breadth / Depth First Search October 20th, 2025

Lecture 5:
Queue,
Stack,

Breadth

Depth First
Search

Robert

P&nicka,

Daniel
Priga

Queue

BFS in a

tree

DFSina
graph

BFS in a
graph

/
def DFS(graph):

Depth-first search (DFS) in a graph — iteratively

visited = [False] * graph.size

stack = Stack()

stack.push(graph.nodes[0]) # start search in node 0

visited[0] = True

while not stack.isEmpty():
node = stack.pop()
print(node.id, end=" ") # process the node
for neigh in node.neighbours:
if not visited[neigh.id]:
stack.push(neigh)
visited[neigh.id] = True

Robert P&nitka, Daniel Priga (CTU in Prague)

Lecture 5: Queue, Stack, Breadth / Depth First Search

October 20th, 2025

Depth-first search (DFS) in a graph — recursively

Lecture 5:
Queue,
Stack,
Breadth /
Depth First
Search
Robert def DFSrec(node, visited):
nicka,
Daniel visited[node.id] = True

Pras;

- print(node.id, end=" ") # process the node
Queue for neigh in node.neighbours:
JRE if visited[neigh.id] == False:
e DFSrec(neigh, visited)
graph
BFS in a def DFSrecRun(graph):

S visited = [False] * graph.size

DFSrec(graph.nodes[0], visited)

Robert P&nitka, Daniel Priga (CTU in Prague) Lecture 5: Queue, Stack, Breadth / Depth First Search October 20th, 2025

DFS animation

Lecture 5:

Queue,
Brsetaadctl; / . current x
Depth First) O discovered y
Search)) > @ node done
PR;Z?;;:, . Undiscovered edge
Daniel
Praga

\\ Discovered edge

DFS in a
graph

B G b w =

https://wuw.youtube.com/watch?v=NUgMa5coCoE

Prague) Lecture 5: Queue, Stack, Breadth / Depth First Search October 20th, 2025

https://www.youtube.com/watch?v=NUgMa5coCoE

Breadth-first search (BFS) in a graph

Lecture 5: Life cycle of a node during BFS

BEE%{E'/ is conceptually identical to the node lifecycle during DFS.
P (e Fresh nodes
Robert e Fresh nodes are those nodes which have not been visited yet.
PS:;ZT' e Before the search starts, all nodes are fresh.
F e A fresh node becomes open when it is visited for the first time.
e The set of fresh nodes shrinks or remains the same during the search.
Open nodes
e Open nodes are those nodes which have been already visited but were not closed yet.
BFS in a e The set of open nodes may grow and shrink during the search.

graph
Closed nodes
e Closed nodes are those nodes which will not be visited any more.
e When each neighbour of a current node in the search is either open or closed, the current node
becomes closed.
e The set of closed nodes only grows during the search.
o When the search terminates, all nodes are closed.

Robert P&nitka, Daniel Priga (CTU in Prague) Lecture 5: Queue, Stack, Breadth / Depth First Search October 20th, 2025 36 /54

Breadth-first search (BFS) in a graph — notation for example that follows

Lecture 5:

Queue,
Stack,
Breadth /
Depth First
Search e Node colors: 0 1
o e White node: fresh node not visited yet. 0 e
Daniel e Green node: currently open node (discovered, in the queue).
e Red node: closed node (fully processed, removed from
queue). e
e Numbers on nodes: k Example BFS state
e k = distance from the BFS start node.
BFS in a o Blue arrow: BFS is currently exploring an edge from the active eue:
aroh node. L[]

e Queue: a node is enqueued when discovered (green). The queue Output:
evolves as BFS processes nodes in FIFO order. @...

e Output: a node is printed when it is processed (dequeued/closed).

Robert P&nitka, Daniel Priga (CTU in Prague) Lecture 5: Queue, Stack, Breadth / Depth First Search October 20th, 2025 37 /54

. Breadth-first search (BFS) in a graph

Lecture 5:
Queue,
Stack,

Breadth /

Depth First
Search

Robert
P&nicka,
Daniel
Priga

Queue Queue:|©|||||||| Queue:'@llllllll
o Output:l@l HEEEEE Output:|©| [T T[]

Queue:llllll Queue:lllll
0utput:|©|||||||| Output:l@llllllll

Robert P&nitka, Daniel Priga (CTU in Prague) Lecture 5: Queue, Stack, Breadth / Depth First Search October 20th, 2025

. Breadth-first search (BFS) in a graph

Lecture 5:
Queue,
Stack,

Breadth /

Depth First
Search

Robert
P&nicka,
Daniel

Priga
» Queue: | '| '| '| '| 'I Queue: EEER
S OUtPUt: Output: | | | | | |

2 2

DFS in a
graph

BFSin a
graph

Queve: EDGAIBL [[| | Queve: (EXGIAIBIEL [[|
0utput:|||||| Output:||||||

Robert P&nitka, Daniel Priga (CTU in Prague) Lecture 5: Queue, Stack, Breadth / Depth First Search October 20th, 2025

. Breadth-first search (BFS) in a graph

Lecture 5:
Queue,
Stack,

Breadth /

Depth First
Search

Robert
P&nicka,
Daniel
Priga

Queve: EXGIAXBIE] | | | Queue: ©AIBIEL [[[]
o Output: coE [[[1] Output: CoGCHENN

BFSin a
graph

Queue: ABEH | | | | Queue: @‘3@@ | | | |
Output: CoEE | [1] Output: CoEeA | |]

Robert P&nitka, Daniel Priga (CTU in Prague) Lecture 5: Queue, Stack, Breadth / Depth First Search October 20th, 2025

. Breadth-first search (BFS) in a graph

Lecture 5:
Queue,
Stack,

Breadth /

Depth First
Search

Robert
P&nicka,
Daniel
Priga

Queue:|®|®|||||||

O END GO EENRDD
Output: (CXOAEXC [[] Output: CoECAEEL]

BFSin a
graph

0

1 2
Queue: |®| | | | | | | | Queue: | | | | | | | | |
rﬂrﬂriri@rﬂrwri r1717171@®7171
Output: ANNSMENENT) Output: ANASIMERENT)

Robert P&nitka, Daniel Priga (CTU in Prague) Lecture 5: Queue, Stack, Breadth / Depth First Search October 20th, 2025

Breadth-first search (BFS) in a graph

Lecture 5:

Queue,
Stack,

2 2
Breadth /
Depth First
Search
Robert 0
P&nicka,
Daniel
Priga
Queue G
S 2

BFS in a
The open and close times are not essential ~ The node depth in the BFS tree is equal to its distance

BFS-tree with distances from the start node (root)

tree

WT\ " in BFS. from the start node in BFS.
BFSin a 5 .
graph Applications of BFS

e Testing graph connectivity

e Testing existence of a cycle in a graph

e Testing if a graph is bipartite

e Computing distance(s) from a given node to one or all other nodes

October 20th, 2025

Robert P&nitka, Daniel Priga (CTU in Prague) Lecture 5: Queue, Stack, Breadth / Depth First Search

Breadth-first search (BFS) in a graph — Implementation remark

Lecture 5:

Queue,
Stack,
Breadth /
Depth First
Search
pzf.?éeﬁ, e Fresh: A fresh node is assigned no distance from the start node.
Daniel
Priisa e Open: An open node is assigned a distance from the start node and it is in the queue.
Queu e Closed: A closed node is assigned a distance from the start node and it is not in the queue.
BFS in a
e It is not necessary to register explicitly fresh/open/closed state of the nodes. The contents of the
fl*;"“' : queue and the distance (assigned / not assigned) define unambiguously the node state.
Z’:;\‘H BFS is an iterative process — a recursive variant is not used. (A recursive implementation would be

more artificial and less clear.)

October 20th, 2025

Robert P&nitka, Daniel Priga (CTU in Prague) Lecture 5: Queue, Stack, Breadth / Depth First Search

Breadth-first search (BFS) in a graph

Lecture 5:
Queue,
Stack,
Breadth /
Depth First
Search def BFS(graph):
L visited = [False] * graph.size
Daniel queue = Queue(200)
Frisa queue . Enqueue (graph.nodes[0])
Queue visited[0] = True
BFS in a while not queue.isEmpty():
tree
L node = queue.Dequeue()
- print(node.id, end=" ") # process node
BFS ina for neigh in node.neighbours:
graph

if not visited[neigh.id]:
queue . Enqueue (neigh)
visited[neigh.id] = True

Robert P&nitka, Daniel Priga (CTU in Prague) Lecture 5: Queue, Stack, Breadth / Depth First Search

October 20th, 2025

Node distances by BFS in a graph

peciicled def BFSdist(graph):

B%EE) visited = [False] * graph.size

Depth First dist = [9999999999999] * graph.size # anfinity == 99...9
izi queue = Queue(graph.size)

P&nitka,

225 queue . Enqueue (graph.nodes [0]) # start in node 0

o visited[0] = True

B dist[0] = 0

tree

DFS in while not queue.isEmpty():

o node = queue.Dequeue ()

Zi?a print(node.id, end=" ") # process node

for neigh in node.neighbours:
if not visited[neigh.id]:
queue . Enqueue (neigh)
visited[neigh.id] = True
dist[neigh.id] = dist[node.id] + 1

print (dist) # process the distances or return, etc.

Robert P&nitka, Daniel Priga (CTU in Prague) Lecture 5: Queue, Stack, Breadth / Depth First Search October 20th, 2025

BFS animation

Lecture 5:
Queue,
Stack,
Breadth / current x
Depth First) discovered y
Search G
_ node done
pF;OI?;: : e Undiscovered edge
ni¢ka,
Daniel 3 G 3 \ Discovered edg
Praga 3
new queue called q
push x onto q
BFS in a & > while q not empty
graph o

popgintox
for cach y in X connections

Prague) Queue, Stack, Breadth / Depth First Se:

https://www.youtube.com/watch?v=x-VTfcmrLEQ

Breadth-first and Depth-first search (BFS & DFS) in a graph — Asymptotic complexity

Lecture 5:

Queue,
Stack,
Breadth /
Depth First
Search Asymptotic complexity
pzf‘?,;[; Each single operation on the queue/stack and each single operation on additional data structures and
Daniel nodes/edges is of constant time (and memory) complexity.
Queu Each node enters the queue/stack only once and it leaves the queue/stack only once. The state of
. the node (fresh/open/closed) is tested more times. The number of these tests is equal to the degree
- of the node (the search tries to access the node from its neighbours).
DFS in a
graph The sum of all node degrees is equal to twice the number of edges, in any graph.
BFSin a
graph In total:

o(VI+IE])

Robert P&nitka, Daniel Priga (CTU in Prague) Lecture 5: Queue, Stack, Breadth / Depth First Search October 20th, 2025

DFS and BFS comparison animation

Lecture 5:
Queue,
Stack,

Breadth /

Depth First
Search

Robert
P&nicka,
Daniel (] (]

Priiga © o © ¢ ®© ®© © ©

©

[
BFS in a bs(x): e current X . current x
graph

make a new queue called q

mark x visited O discovered y) O discovered y

push x onto q 3

while q not empty: 5 markxasvisi . node done
pop q into x . § T eq in x connections: .
or each y in x connections Undiscovered edge fy pot : Undiscovered edge
if y not visites =

mark y visited \ Discovered edge \ Discovered edge

push y onto

Breadth / Depth First Search

https://www.youtube.com/watch?v=VsEla1bVVro

Search pruning

Lecture 5:

Queue, e Search speedup
Stack, T

Bretadth/ e Pruning (skipping) of unpromising possibilities
Depth First .

Search e When the analysis of the current state reveals that

PZ?.?SQ, e it is an unpromising state

Danie e surely it does not lead to the solution

e We "cut off’ (prune) the whole subtree of states of which the current state is the root

Queue
BFS in a
tree
DFS in a
graph
BFS in a
graph

niel Priig&a (CTU in Prague) Lecture 5: Queue, Stack, Breadth / Depth First Search

Pruning example — magic square

Lecture 5:

Queue,
Stack,
Breadth .
e e Magic square of order N
Search .
o e square matrix of order N/
obert .
Pénitka, e contains exactly once each value from 1 to A/
Daniel .
Pria e sum of all rows and all columns is the same
Queue e Example
BFS in a
tree 2 9 4
DFS ina 71513
graph
BFSin a 6 1 8
graph
o Brute force approach: Generate all possible permutations of positions of numbers from 1 to N2

e Pruning: Whenever the sum of the row or column is not correct:

e sum of all values in the square is JN*(N? + 1)
e sum of all values in a row or column is SN (NV? +1)

Daniel Priga (CTU in Prague) Lecture 5: Queue, Stack, Breadth / Depth First Search

Search pruning heuristics

Lecture 5:

Queue,

Stack,
Breadth /
Depth First

Search Heuristic is a hint which tells us which order of actions is likely to produce quickly the solution.
Pﬁ?;[; e The effectivity of the solution is not guaranteed.

Daniel

Priga e Heuristics can be used to assess the order of vertices/edges/paths in which they are processed
. during the search in large graphs.
S Example: Knight tour on an N x N chessboard (visit all fields).
fj*?’;““' : e Problem of: finding a sequence of moves of a knight on a chessboard such that the knight visits
aFS s every square exactly once.
e e Good heuristic: Explore first those fields from which there are fewest possibilities of continuing

the tour in different directions.
e Speedup on the 8 x 8 chessboard: Almost 100000 times.

October 20th, 2025

Lecture 5: Queue, Stack, Breadth / Depth First Search

Robert P&nitka, Daniel Priga (CTU in Prague)

Lecture 5:
Queue,
Stack,

Breadth /

Depth First
Search

Robert
P&nicka,
Daniel
Priga

BFSin a
graph

Homework Assignment — Drawing Binary Tree (PY)

Goal: Draw a binary tree in a square grid so that:
e Each node is a circle centered at a grid intersection point.
e Neighbouring nodes are connected by a straight line segment.
e The radius of each circle is less than 0.5.

Geometric placement rules:
e Nodes at the same depth share the same y coordinate.
e Deeper nodes have smaller y values.
e Nodes in the left subtree of a node have smaller z coordinates.
e Nodes in the right subtree have larger = coordinates.
e The drawing should minimize the area of the bounding rectangle.

Example
Examples of tree drawings in a grid:
e (a) 3 x4, (b)4x6, (c) 4x 10 area rectangles.

52 /54

Robert P&nitka, Daniel Pria (CTU in Prague) Lecture 5: Queue, Stack, Breadth / Depth First Search October 20th, 2025

Homework Assignment — Drawing Binary Tree

Lecture 5:

Queue, . . .

Stack, Goal: Draw a binary tree in a square grid such that:
Breadth / . A .
Depth First e Each node is a circle centered at a grid

earcl . .

Intersection.

Robert

s e Neighbouring nodes are connected by a straight

Priga line segment.
Qe e The radius of each circle is less than 0.5.
BFS in a
tree
D Geometric placement rules:
graph

‘ e Nodes at the same depth share the same y
BFS i .
graphm ¢ coordinate.

Deeper nodes have smaller y values.

o Left subtree = smaller x coordinate.

Right subtree = larger x coordinate.

The goal is to minimize total rectangular area.

Robert P&nitka, Daniel Pria (CTU in Prague) Lecture 5: Queue, Stack, Breadth / Depth First Search

Homework Assignment — Drawing Binary Tree

Input format:

Lecture 5:

Queue, . . . H

Stack, e First line: three integers N R L, where N is number of
if?:?irﬁt nodes (0 < i < N), R is label of the root node, and L
Search is number of inspected nodes.

Robert

Penicka e Next N—1 lines: edges (u,v) of the tree.

Prisa e The edge to the left child appears before the edge to

the right child.
e Last L lines: labels of inspected nodes.
Output format:

S in s e [lines: for each inspected node u;, output coordinates

graph X y
Task: Compute coordinates (z,y) for each inspected node
so that all rules are met and the drawing area is minimal.
Hints:
e Remember the in-order traversal of a binary tree and
its nice properties.
e Remember how to calculate depth of a tree node

Robert P&nitka, Daniel Priga (CTU in Prague) Lecture 5: Queue, Stack, Breadth / Depth First Search

October 20th, 2025

	Queue
	BFS in a tree
	DFS in a graph
	BFS in a graph

