Lecture 3:

More

recursion
and back- . .
tracking Lecture 3: More recursion and backtracking examples
examples

Robert BE5B33ALG — Algorithms
Pénitka,

Daniel

Praga
Simple Ing. Robert Pénitka, Ph.D.
;z?:i; doc. RNDr. Daniel Préi%a, Ph.D.
Simple
bdck’mck, Faculty of Electrical Engineering
ing Czech Technical University in Prague
examples

Q@ MULTI ROBOT

UU GROUP

f] FACULTY
OF ELECTRICAL
; ENGINEERING
CTU IN PRAGUE

Robert P&nitka, Daniel Priga (CTU in Prague) Lecture 3: More recursion and backtracking examples October 6th,

2025

Recursion reminder

Lecture 3:
More
recursion
and back-
tracking
examples
Robert e Recursion is when a function calls itself in order to solve a problem.
Pé&ni¢ka,
'33[':' e Instead of solving the whole (big) problem at once, we can break it down into smaller
rusa
subproblems that are solved recursively.
Simple
A e |t always has to have two key parts:
examples
o e Base case — a simple stopping condition so it does not call itself forever.
backtrack

e Recursive step — the function calling itself with a smaller or simpler input.

ing

examples

Daniel Priga (CTU in Prague) Lecture 3: More recursion and backtracking examples October 6tl

Example 1: Sum of digits in an integer

Lecture 3:

More

recursion

and back- Task: Compute recursively the sum of all digits in an integer.

tracking
examples

Robert .
. Method by Example: For integer 7136 we want to get result 7+ 1+ 3+ 6 = 17.
sumDigits(7136)

Daniel
Prasa

Simple

+6

recursion

| sumDigits(713)
examples . . .
e Any idea how to do it recursively?
Simple
bectimeee e What could be the recursive step and when to stop the

examples recursion?

sumDigits(7) +3

+7

sumDigits(0)

Robert P&nitka, Daniel Priga (CTU in Prague) Lecture 3: More recursion and backtracking examples October 6th, 2025

Lecture 3:

More

recursion

and back-

tracking

examples

Robert
Pé&ni¢ka,
Daniel
Prasa

Simple
recursion

examples

Simple
backtrack
ing

examples

Example 1: Sum of digits in an integer

Task: Compute recursively the sum of all digits in an integer.

Method by Example: For integer 7136 we want to get result 7+ 1+ 3+ 6 = 17.

How do we access the last (0-th order) digit of an

integer X7?

last digit = X mod 10

How do we remove the last (0-th order) digit of an

integer X?

(orin code: X = X // 10)

Robert P&nitka, Daniel Priga (CTU in Prague) Lecture 3: More recursion and backtracking examples

sumDigits(7136)

sumDigits(713)) +6
sumDigits(7) +3
sumDigits(0) +7

October 6th, 2025

Example 1a: Sum of digits in an integer — global variable

Lecture 3:
Maie Example of going from the end to the beginning with global variable (simple but not frequent
and back- recursion form):
tracking
Sl e For n = 7136: start with total_sum = 0
Robert
PS"“_"T' e Level 0: add 6 to total_sum, recurse on 713
Frisa e Level 1: add 3 to total_sum, recurse on 71
Simple
o e Level 2: add 1 to total_sum, recurse on 7
examples

e Level 3: add 7 to total_sum, recurse on 0

Simple

backtrack e Level 4: number is 0 — stop recursion

examples

Observation
Each recursive call processes the last digit of the number

until zero is reached.

Robert P&nitka, Daniel Priga (CTU in Prague) Lecture 3: More recursion and backtracking examples October 6th, 2025

Example 1a: Sum of digits in an integer — global variable

Lecture 3:
Maie Example of going from the end to the beginning with global variable (simple but not frequent
and back- recursion form):
tracking
SES e For n = 7136: start with total_sum = 0
Robert
PS"‘E_"T' e Level 0: add 6 to total_sum, recurse on 713 The code can look like:
Prise e Level 1: add 3 to total_sum, recurse on 71 total_sum = 0
e e Level 2: add 1 to total_sum, recurse on 7 def sumDigits(n):
examples lobal total_sum
e Level 3: add 7 to total_sum, recurse on 0 &
Simple if n ==
backtrack e Level 4: number is 0 — stop recursion

return

examples

total_sum += n % 10
Observation sumDigits(n // 10)
Each recursive call processes the last digit of the number

until zero is reached.

Robert P&nitka, Daniel Priga (CTU in Prague) Lecture 3: More recursion and backtracking examples October 6th, 2025

Example 1b: Sum of digits — recursive return

Lecture 3:

More

. A more common recursion form: instead of using a global variable, each call returns a value that is
and back- d

tracking summe Up.

examples

Robert .

Penitka, e Base case: if n =0, return 0.

Daniel

Priga e Recursive case: return last digit 4 recursive result
Simple of the rest.
recursion .
examples e Each call contributes its digit to the final sum.
Simple
backtrack:
Recursive equation

examples

0, n=0

sumDigits(n) =
(n mod 10) + sumDigitS(L%J) » n>0

Robert P&nitka, Daniel Priga (CTU in Prague) Lecture 3: More recursion and backtracking examples October 6th, 2025

Example 1b: Sum of digits — recursive return

Lecture 3:

More
recursion A more common recursion form: instead of using a global variable, each call returns a value that is
and back- d
- summed up.
examples
Robert .

Penitka, e Base case: if n =0, return 0.
Daniel
Priita e Recursive case: return last digit + recursive result
Simple of the rest. The code can look like:
recursion i) L. .
examples e Each call contributes its digit to the final sum. def sumDigits2(n):
Simple if n ==
backtrack . " return O
Sf,mp\:_\ Recursive equation return (n % 10 + sumDigits2(n//10))

0, n=20
(n mod 10) + sumDigitS(L%J) » n>0

sumDigits(n) =

niel Priiga (CTU in Prague) Lecture 3: More recursion and backtracking examples

October 6th, 2025

Example 1b: Sum of digits — recursive return

Lecture 3:

More Tracing execution:
i For n = T7136:
tracking
examples e 7136 — 6+ sumDigits2b(713)
b e 713 — 3+ sumDigits2b(71) n = 7136
Daniel . print ("Example 2b, n =", n)
Pria e 71 — 1+ sumDigits2b(7)
s = sumDigits2b(n)
Zrur::on e 7 — 7+ sumDigits2b(0) print(s)
e e 0 — 0 (base case)
o . Observation
R e returning to the top:

The final result exists only after returning

ing

o Level 3returns 7+0=7

o Level 2 returns 1 +7=8

e Level 1 returns 3+8 =11
o Level O returns 6 + 11 = 17

examples

to the root of recursive tree.

Robert P&nitka, Daniel Priga (CTU in Prague) Lecture 3: More recursion and backtracking examples October 6th, 2025

Example 1c: Sum of digits — sum top — bottom

Lecture 3:
More
recursion
and back- Another recursion pattern: the partial result is computed in upper levels of recursion and passed
tracking
examples deeper.
Robert
PEnitka, e At each level, we accumulate the sum so far.
Daniel
PR e When n = 0, we return the accumulated sum.
Shpit e The result is already complete at the bottom of
recursion
examples recursion.
Simple
backtrack

ing Idea

examples

Unlike before, the sum is not built on the way back up,

but is carried downwards.

Daniel Priga (CTU in Prague) Lecture 3: More recursion and backtracking examples October 6th, 2025

Example 1c: Sum of digits — sum top — bottom

Lecture 3:
More
recursion
and back- Another recursion pattern: the partial result is computed in upper levels of recursion and passed
tracking
examples deeper.
Robert
PEnitka, e At each level, we accumulate the sum so far.
Daniel
Pria e When n = 0, we return the accumulated sum. The code can look like:
S e The result is already complete at the bottom of def sumDigits3(n, sumSoFar):
recursion if n == O:
e recursion.

return sumSoFar
Simple sumSoFar += n 7, 10

backtrack:

fitm Idea return sumDigits3(n // 10,

examples

Unlike before, the sum is not built on the way back up, sunSoFar)

but is carried downwards.

Robert P&nitka, Daniel Pria (CTU in Prague) Lecture 3: More recursion and backtracking examples October 6th, 2025

Lecture 3:

More

recursion

and back-

tracking

examples

Robert
Pé&ni¢ka,
Daniel
Prasa

Simple
recursion

examples

Simple
backtrack
ing

examples

Example 1c: Sum of digits — sum top — bottom

Tracing execution: For n = 45645622:

e Level 0: sumSoFar=0+2=2 n = 45645622
e Level 1: sumSoFar =2 42 =4 print("Example 1c, n =", n)

= Digits3(n, O
e Level 2: sumSoFar =4 + 6 = 10 s = sunDigits3(n, 0)

print(s)
e Level 3: sumSoFar =10 + 5 =15
* # condensed form
e Base case: n =0, return sumSoFar = 34 def sumDigits3b(n, sumSoFar):
if n ==
Observation return sumSoFar

The final result exists already at the bottom, no

need to add values while returning.

Robert P&nitka, Daniel Priga (CTU in Prague) Lecture 3: More recursion and backtracking examples

return sumDigits3b(n // 10,

sumSoFar + n % 10)

October 6th, 2025

Example 2: Minimum of an array (classical iterative)

Lecture 3:
More
recursion
and back-
tracking
seHES Task: Find the minimum value in an array.
Robert
Pé&ni¢ka,
Daniel e Classic approach: iterate through array elements.
Praga
e Keep track of the smallest value seen so far.
Simple
recursion e Return it at the end.
examples
Simple
backtrack- |dea
examples Compare each new element with the current minimum. J

Robert P&nitka, Daniel Priga (CTU in Prague) Lecture 3: More recursion and backtracking examples

October 6tl

Example 2: Minimum of an array (classical iterative)

Lecture 3:

More

recursion
and back- Task: Find the minimum value in an array.
tracking

examples

Robert e Classic approach: iterate through array elements.
P&nitka,

Daniel e Keep track of the smallest value seen so far.
Praga

s e Return it at the end.
imple

examples

def

Simple
backtrack-
ing

examples

Idea
Compare each new element with the current minimum. J

myMinO (arr) :
min = arr[0]
for i in range(l, len(arr)):
if arr[i] < min:
min = arr[i]

return min

Robert P&nitka, Daniel Pri%a (CTU in Prague) Lecture 3: More recursion and backtracking examples October 6tl

Example 2: Minimum of an array (recursive call)

Lecture 3: L.
More Recursive idea:

recursion

and back- o Base case: If only one element is left, that element is the minimum.
tracking

examples e Recursive case: Compare the current element with the minimum of the rest of the array.
Robert

Penitka, Tracing execution:
Daniel
Prisa e myMini(arr, 0) — compares arr|[0]

Simple with min of arr[1..end].

recursion

examples e Each call reduces the problem by 1

Sl element.

backtrack:

ing e Stops when one element is left.

examples

Observation
This is a linear recursion: one recursive call

per step, shrinking the problem.

Daniel Priga (CTU in Prague) Lecture 3: More recursion and backtracking examples October 6th, 2025

Example 2: Minimum of an array (recursive call)

Lecture 3: . .

More Recursive idea:

recursion

and back- e Base case: If only one element is left, that element is the minimum.

tracking

examples e Recursive case: Compare the current element with the minimum of the rest of the array.

Robert

Pénicka, Tracing execution:

Daniel

Priga e myMini(arr, 0) — compares arr|[0]
Simple with min of arr[1..end]. def myMin1(arr, iFrom):
recursion

stop recursion? just a single element?
examples e Each call reduces the problem by 1 i ? J J)
7 if iFrom == len(arr) - 1: return arr[iFrom]
Sl element.
backtrack
I ‘ e Stops when one element is left. # more elements
rightMin = myMinl(arr, iFrom+1)
Observation if arr[iFrom] < rightMin: return arr[iFrom]
This is a linear recursion: one recursive call else: return rightMin

per step, shrinking the problem.

Robert P&nitka, Daniel Priga (CTU in Prague) Lecture 3: More recursion and backtracking examples October 6th, 2025

Example 2: Minimum of an array (recursive binary)

Lecture 3:
More
recursion . . .
. Recursive idea with two calls:
tracking))) . L.
examples e Base case: if the interval has a single element, that element is the minimum.
Robert« .
e, e Recursive case: halving the array and computing the minimum of each half.
Daniel
Pria Observation:
Simple e This is a binary recursion.
recursion
examples e The recursion tree resembles a binary
Simple tree.
backtrack
ing ‘ e Each level halves the problem size.
e Depth of recursion = log,(n).
[]

Divide and conquer strategy.

Daniel Priga (CTU in Prague) Lecture 3: More recursion and backtracking examples October 6th, 2025

Example 2: Minimum of an array (recursive binary)

Lecture 3:

Mo Recursive idea with two calls:
recursion
and back- e Base case: if the interval has a single element, that element is the minimum.
tracking
examples e Recursive case: halving the array and computing the minimum of each half.
Robert
P&nitka,
Daniel def myMin2(arr, iFrom, iTo):
Praga H
Observation: # stop recursion? just a single element?
Simple if iFrom == iTo: return arr[iFrom]

e This is a binary recursion.

recursion

examples

e The recursion tree resembles a binary # more elements

Simple
N tree. iMid = (iFrom + iTo) // 2 # indez of middle elem

ing # recursive calls

cmplks e Each level halves the problem size.
leftMin = myMin2(arr, iFrom, iMid)
e Depth of recursion = log,(n). rightMin = myMin2(arr, iMid+1, iTo)
.. # t t l
e Divide and conquer strategy. compute return value

if leftMin < rightMin: return leftMin

else: return rightMin

Robert P&nitka, Daniel Pri%a (CTU in Prague) Lecture 3: More recursion and backtracking examples October 6th, 2025

Backtracking

Lecture 3:
More
and back- e Backtracking is a general algorithmic technique for solving problems incrementally.
tracking
examples e It builds candidates for solutions step by step, and abandons (backtracks) as soon as it
Robert
Penitka, determines that the partial candidate cannot lead to a valid solution.
Daniel
Bt o Often used in:
Simple e Combinatorial search problems (e.g., subset sum, knapsack, N-Queens).
::V‘" e Constraint satisfaction (e.g., Sudoku, puzzles).
Simple
backtrack-
ing Key Idea
examples e .
’ e Explore all possibilities, but prune paths early when they cannot succeed.

e Traverses this search tree recursively, from the root down, in depth-first order

October 6th, 2025

Robert P&nitka, Daniel Priga (CTU in Prague) Lecture 3: More recursion and backtracking examples

Lecture 3:

More

recursion

and back-

tracking

examples

Robert
Pé&ni¢ka,
Daniel
Prasa

Simple
recursion

examples

Simple
backtrack-
ing
examples

Example: Container Filling Problem

Task: We are given a set of items, each with
a certain weight. We also have a container
with a fixed weight capacity.
e We must select a subset of items so that
the sum of their weights is exactly equal

to the container’s capacity.
e If no such combination exists, the
container cannot be filled completely.

Example

Items: {2,3,7,8,10}
Capacity: 11

Possible solution: 348 =11

Robert P&nitka, Daniel Priga (CTU in Prague) Lecture 3: More recursion and backtracking examples

October 6th, 2025

Example: Container Filling Problem - recursive backtracking strategy

Lecture 3:

More
recursion
and back-
tracking
examples
Robert
Ps:':_':' The recursive function pack(...) explores two choices for each item:
i
Praga . . .
e Try including the current item.

Simple
e e Skip the current item.
examples
Stopping conditions:
Simple
backtrack-
ing
examples

October 6th, 2025

Robert P&nitka, Daniel Priga (CTU in Prague) Lecture 3: More recursion and backtracking examples

Example: Container Filling Problem - recursive backtracking strategy

Lecture 3:

More

e The recursive function pack(...) explores two choices for each item:
tracking . . .

examples e Try including the current item.

Robert . .

pentio, e Skip the current item.

Daniel . -

o Stopping conditions:
Sl e If sumSoFar == capacity — valid solution found.
S e If iltem == len(items) — no more items left.
i’i"‘k"'e . e If even all remaining items cannot fill capacity — prune branch.
acktrack-
ing
examples

Key Point

At each recursive call, the algorithm branches into two possibilities, building a decision tree of subsets.J

Robert P&nitka, Daniel Priga (CTU in Prague) Lecture 3: More recursion and backtracking examples October 6th, 2025

Recursive Packing Function

Lecture 3:
More The pack function:
recursion
and back- def pack(items, chosenItems, iltem, capacity, sumSoFar):
R if sumSoFar == capacity: # solution found?
examples
; " on'
- print("solution", chosenItems)
P&nitka, return
Daniel e . . .
;2; if iltem == len(items): # no more items available?
return
Simple if sumSoFar + sum(items[iltem:]) < capacity : # not enough left
recursion
examples return
Simple
backtrack- currltem = items[iltem] # a) try adding current item
e if currItem + sumSoFar <= capacity:
examples

chosenItems.append(currltem)
pack(items, chosenltems, iltem+l, capacity, sumSoFar+currItem)
chosenItems.pop() # remove the item after recurstion!

pack(items, chosenItems, iltem+1l, capacity, sumSoFar) # b) adding next item

Robert P&nitka, Daniel Priga (CTU in Prague) Lecture 3: More recursion and backtracking examples October 6tl

Lecture 3:

More

recursion

and back-

tracking

examples

Robert
Pé&ni¢ka,
Daniel
Prasa

Simple
backtrack-
ing
examples

Example: Coin Change Problem

Task: Express a given total as a sum of coins of

given value. Each coin value may be used

@@@EEOO

Inputs:

e A list of available coin values (e.g., [50, +++=100
20, 10, 5, 2, 1])

e The target amount (e.g., 100)

Goal: Find all combinations of coins whose sum equals the target.

e Example solution: [50, 20, 20, 10], [20, 20, 20, 20, 20], etc.

o Note: for the above coin set, there are 4562 ways to make change for 100.

Robert P&nitka, Daniel Priga (CTU in Prague) Lecture 3: More recursion and backtracking examples October 6th, 2025

Example: Recursive Algorithm for Coin Change

Lecture 3:
More
recursion
and back-
tracking X X
examples The recursive function keeps track of:
Robert X i
. e coins — the coin values (read-only)
Daniel i A
Priga e changeList — current partial solution
e iCoin — index of the coin currently
considered
Simple e givenTotal — target sum
backtrack-
ing e sumSoFar — sum of chosen coins so far
examples

Select your coin now! (source: dig.watch)

Robert P&nitka, Daniel Priga (CTU in Prague) Lecture 3: More recursion and backtracking examples October 6th, 2025 17 /25

Example: Recursive Algorithm for Coin Change

Lecture 3:

More
recursion The recursive function keeps track of:
and back-
tracking e coins — the coin values (read-only)
examples
Robert e changelList — current partial solution
P&nitka,
Daniel e iCoin — index of the coin currently
Praga
considered
e givenTotal — target sum
. e sumSoFar — sum of chosen coins so far
imple
backtrack: Select your coin now! (source: dig.watch)
ing
examples
Base cases
o |f sumSoFar == givenTotal = we found a solution.

e If no more coins are available = stop recursion.

Robert P&nitka, Daniel Priga (CTU in Prague) Lecture 3: More recursion and backtracking examples October 6th, 2025

Example: Coin Change - choices at each step

Lecture 3:

More
recursion
and back-
tracking

examples

Robert
Pé&ni¢ka,
Daniel

o At each level of recursion we have two options:
rusa

e Option A: Add another coin of the same value (if it does not exceed the total).

Simple
recursion

coinChange(coins, changelList+[currCoin], iCoin, givenTotal, sumSoFar+currCoin)

examples

Simple
backtrack-
ing
examples

Robert P&nitka, Daniel Priga (CTU in Prague) Lecture 3: More recursion and backtracking examples October 6tl

Example: Coin Change - choices at each step

Lecture 3:
More
recursion
and back-
Cacke At each level of recursion we have two options:
examples
Robert e Option A: Add another coin of the same value (if it does not exceed the total).
Pé&ni¢ka,
Daniel coinChange (coins, changeList+[currCoin], iCoin, givenTotal, sumSoFar+currCoin)
Praga
e Option B: Skip to the next coin value. coinChange(coins, changelList, iCoin+1,
Simple
recursion givenTotal, sumSoFar)
examples
Simple
backtrack- 0
i Observation
examples

This is a classic backtracking pattern: explore a choice, recurse, and then undo the choice. J

Robert P&nitka, Daniel Priga (CTU in Prague)

Lecture 3: More recursion and backtracking examples

October 6th, 2025

Example: Coin Change function

Lecture 3:
More The coin change function:
recursion
andback- 1 def coinChange(coins, changelist, iCoin, givenTotal, sumSoFar):

tracking

if sumSoFar == givenTotal: # solution found?
examples
+=

- numSol 1

Pénicka, 4 print(numSol, changeList)

Daniel

. return
Praga
6 if iCoin == len(coins): # no more coin type avatlable?

Simple return

recursion

examples 8

currCoin = coins[iCoin] # try to add another coin of the same value. ..

Simple
backtrack- 10 if currCoin + sumSoFar <= givenTotal:
e 11 changeList.append(currCoin)
examples
12 coinChange(coins, changeList, iCoin, givenTotal, sumSoFar + currCoin) # (*)
13 changeList.pop () # remove the item after recursion!
14
15 coinChange(coins, changelist, iCoin + 1, givenTotal, sumSoFar) # try nezt coin

Robert P&nitka, Daniel Priga (CTU in Prague) Lecture 3: More recursion and backtracking examples October 6tl

Coin Change vs. Item Packing

Lecture 3:
More
recursion
and back- L. .)
tracking Remark: The two problems are structurally very similar with only one key difference:
examples
Robert
Penitka, e Item Packing: pack(items, chosenlItems, iltem+l, capacity, sumSoFar+currItem)
Daniel . .
Prita e Index is increased = each item can be used at most once.
Simple
““““““" e Coin Change: coinChange(coins, changelist, iCoin, givenTotal, sumSoFar+currCoin)
S
e e Index is not increased = current coin can be used repeatedly.
backtrack-
ing
s Conclusion: By controlling whether the index is advanced, we decide if elements are used once or

many times. Combination without repetition or with repetition.

Robert P&nitka, Daniel Priga (CTU in Prague) Lecture 3: More recursion and backtracking examples October 6th, 2025

Tiling a rectangular board with given tiles

Lecture 3:

More e Given: a rectangular board and a multiset of rectangular tiles.
and back- e Goal: list all tilings that exactly cover the board.

tracking

examples e Constraints: tiles cannot overlap, cannot go outside the board, and all tiles must be used.
Robert : .

e e Representation:

ool o A tile is [height, width] (no stored position).

e Board cells store freeSpace or the tile index.
Simple
recursion o We try placements using the tile’s bottom-right corner (posY,posX).
examples
Simple 0 1 2 3 4 ... X axis
backtrack-
ing o
examples
PO T T R N B B
The board

Robert P&nitka, Daniel Priga (CTU in Prague) Lecture 3: More recursion and backtracking examples October 6th, 2025

Feasibility test and place/unplace operations

Lecture 3:

More

recursion . . o
o back. e We backtrack: for each tile, try every valid position.

tracking .

examples e canPutTile checks bounds and emptiness of the rectangle.

pi‘;?;f, e putTile/liftTile write/erase the tile id on the board.

Daniel

Priiga freeSpace = -1

def putTile(tileNo, posY, posX):
Simple def canPutTile(tileNo, posY, posX): h, w = tileList[tileNo]
eenmen currTile = tileList[tileNo] # [h, wl for y in range(posY - h + 1, posY + 1):
examples yO = posY - currTile[0] + 1 # UL corner for x in range(posX - w + 1, posX + 1):
Simple x0 = posX - currTile[1] + 1 board[y] [x] = tileNo
backtrack- if y0O < 0 or x0 < O:
ing return False def liftTile(tileNo, posY, posX):
e for y in range(yO, posY + 1): h, w = tileList[tileNo]
for x in range(x0, posX + 1): for y in range(posY - h + 1, posY + 1):
if board[y][x] != freeSpace: for x in range(posX - w + 1, posX + 1):
return False board[y] [x] = freeSpace

return True

iel Priga (CTU in Prague) Lecture 3: More recursion and backtracking examples

Lecture 3:

More
recursion
and back-
tracking

examples

Robert
Pé&ni¢ka,
Daniel
Prasa

Simple
recursion

examples

Simple
backtrack-
ing
examples

Recursive enumeration and practical improvements

def tileBoard(currTileNo):
If all tiles are placed, we found a tiling.
if currTileNo == len(tileList):
printBoard ()
return
Try every board cell for current tile. Idea:
for posY in range(len(board)):
for posX in range(len(board[0])): e Test all placements of bottom right corner of
if canPutTile(currTileNo, posY, posX): .
putTile(currTileNo, posY, posX) all tiles.
tileBoard(currTileNo + 1)

. .
11£¢T11e (cureTileNo, post, post) Backtrack when tile can not be placed

e When tile is placed test the next tile.

Ezample instance:

tileList = [[3,3], [2,2], [2,2], [2,1], [3,2]]

boardHeight, boardWidth = 5, 5

board = [[freeSpacel*boardWidth for _ in range(boardHeight)]
tileBoard(0)

Lecture 3: More recursion and backtracking examples

Homework: Dangling paths in a binary tree

Lecture 3:
More

recursion

and back- e Two nodes are neighbours if one is the parent of the
tracking other.

examples
Robert e The degree of a node = number of its neighbours.
Pé&ni¢ka,)
Daniel e A path of length N is a sequence (z1,22,...,ZN)
PR such that each consecutive pair are neighbours, and all

Simple nodes are unique.

recursion . . .

— e A path is a dangling path if:

_ e degree of each node < 2;

Simple -

backtrack- e 11 is a leaf;

- e the parent of 2,y either does not exist or has

examples

degree 3.

e The cost of a path = sum of keys of all nodes in it.

Goal: Given a binary rooted tree, find the minimum and maximum cost of a dangling path.

Robert P&nitka, Daniel Priga (CTU in Prague) Lecture 3: More recursion and backtracking examples October 6th, 2025

Examples and expected output

Lecture 3:
More
recursion Example 1
and back-
tracking e Imput: N=16,R=17
examples
Robert e Output: 2 36
P&nitka,
D:Li; Dangling paths with minimum and maximum cost are highlighted.
Praga HintS'
Simple e Representing the tree as a matrix is
FEMIE convenient given tree node indices are
S 0..N-1 and input data are unordered.
backtrack-
e | o Ideally first traverse the tree to find which
examples

nodes are in a dangling path.

e Then traverse the tree to find min/max cost Another example illustrating different tree

of dangling paths. structure.

Robert P&nitka, Daniel Pri%a (CTU in Prague) Lecture 3: More recursion and backtracking examples October 6th, 2025

	Simple recursion examples
	Simple backtracking examples

