
Lecture 3:

More

recursion

and back-

tracking

examples

Robert

Pěnička,

Daniel

Pr̊uša

Simple

recursion

examples

Simple

backtrack-

ing

examples

Lecture 3: More recursion and backtracking examples

BE5B33ALG — Algorithms

Ing. Robert Pěnička, Ph.D.

doc. RNDr. Daniel Pr̊uša, Ph.D.

Faculty of Electrical Engineering
Czech Technical University in Prague

Robert Pěnička, Daniel Pr̊uša (CTU in Prague) Lecture 3: More recursion and backtracking examples October 6th, 2025 1 / 25

Lecture 3:

More

recursion

and back-

tracking

examples

Robert

Pěnička,

Daniel

Pr̊uša

Simple

recursion

examples

Simple

backtrack-

ing

examples

Recursion reminder

• Recursion is when a function calls itself in order to solve a problem.

• Instead of solving the whole (big) problem at once, we can break it down into smaller

subproblems that are solved recursively.

• It always has to have two key parts:

• Base case — a simple stopping condition so it does not call itself forever.

• Recursive step — the function calling itself with a smaller or simpler input.

Robert Pěnička, Daniel Pr̊uša (CTU in Prague) Lecture 3: More recursion and backtracking examples October 6th, 2025 2 / 25

Lecture 3:

More

recursion

and back-

tracking

examples

Robert

Pěnička,

Daniel

Pr̊uša

Simple

recursion

examples

Simple

backtrack-

ing

examples

Example 1: Sum of digits in an integer

Task: Compute recursively the sum of all digits in an integer.

Method by Example: For integer 7136 we want to get result 7 + 1 + 3 + 6 = 17.

• Any idea how to do it recursively?

• What could be the recursive step and when to stop the

recursion?

Robert Pěnička, Daniel Pr̊uša (CTU in Prague) Lecture 3: More recursion and backtracking examples October 6th, 2025 3 / 25

Lecture 3:

More

recursion

and back-

tracking

examples

Robert

Pěnička,

Daniel

Pr̊uša

Simple

recursion

examples

Simple

backtrack-

ing

examples

Example 1: Sum of digits in an integer

Task: Compute recursively the sum of all digits in an integer.

Method by Example: For integer 7136 we want to get result 7 + 1 + 3 + 6 = 17.

How do we access the last (0-th order) digit of an

integer X?

last digit = X mod 10

How do we remove the last (0-th order) digit of an

integer X?

X =

⌊
X

10

⌋
(or in code: X = X // 10)

Robert Pěnička, Daniel Pr̊uša (CTU in Prague) Lecture 3: More recursion and backtracking examples October 6th, 2025 3 / 25

Lecture 3:

More

recursion

and back-

tracking

examples

Robert

Pěnička,

Daniel

Pr̊uša

Simple

recursion

examples

Simple

backtrack-

ing

examples

Example 1a: Sum of digits in an integer — global variable

Example of going from the end to the beginning with global variable (simple but not frequent

recursion form):

• For n = 7136: start with total sum = 0

• Level 0: add 6 to total sum, recurse on 713

• Level 1: add 3 to total sum, recurse on 71

• Level 2: add 1 to total sum, recurse on 7

• Level 3: add 7 to total sum, recurse on 0

• Level 4: number is 0 → stop recursion

Observation

Each recursive call processes the last digit of the number

until zero is reached.

Robert Pěnička, Daniel Pr̊uša (CTU in Prague) Lecture 3: More recursion and backtracking examples October 6th, 2025 4 / 25

Lecture 3:

More

recursion

and back-

tracking

examples

Robert

Pěnička,

Daniel

Pr̊uša

Simple

recursion

examples

Simple

backtrack-

ing

examples

Example 1a: Sum of digits in an integer — global variable

Example of going from the end to the beginning with global variable (simple but not frequent

recursion form):

• For n = 7136: start with total sum = 0

• Level 0: add 6 to total sum, recurse on 713

• Level 1: add 3 to total sum, recurse on 71

• Level 2: add 1 to total sum, recurse on 7

• Level 3: add 7 to total sum, recurse on 0

• Level 4: number is 0 → stop recursion

Observation

Each recursive call processes the last digit of the number

until zero is reached.

The code can look like:

total_sum = 0

def sumDigits(n):

global total_sum

if n == 0:

return

total_sum += n % 10

sumDigits(n // 10)

Robert Pěnička, Daniel Pr̊uša (CTU in Prague) Lecture 3: More recursion and backtracking examples October 6th, 2025 4 / 25

Lecture 3:

More

recursion

and back-

tracking

examples

Robert

Pěnička,

Daniel

Pr̊uša

Simple

recursion

examples

Simple

backtrack-

ing

examples

Example 1b: Sum of digits — recursive return

A more common recursion form: instead of using a global variable, each call returns a value that is

summed up.

• Base case: if n = 0, return 0.

• Recursive case: return last digit + recursive result

of the rest.

• Each call contributes its digit to the final sum.

Recursive equation

sumDigits(n) =

0, n = 0

(n mod 10) + sumDigits
(⌊

n
10

⌋)
, n > 0

The code can look like:

def sumDigits2(n):

if n == 0:

return 0

return (n % 10 + sumDigits2(n//10))

Robert Pěnička, Daniel Pr̊uša (CTU in Prague) Lecture 3: More recursion and backtracking examples October 6th, 2025 5 / 25

Lecture 3:

More

recursion

and back-

tracking

examples

Robert

Pěnička,

Daniel

Pr̊uša

Simple

recursion

examples

Simple

backtrack-

ing

examples

Example 1b: Sum of digits — recursive return

A more common recursion form: instead of using a global variable, each call returns a value that is

summed up.

• Base case: if n = 0, return 0.

• Recursive case: return last digit + recursive result

of the rest.

• Each call contributes its digit to the final sum.

Recursive equation

sumDigits(n) =

0, n = 0

(n mod 10) + sumDigits
(⌊

n
10

⌋)
, n > 0

The code can look like:

def sumDigits2(n):

if n == 0:

return 0

return (n % 10 + sumDigits2(n//10))

Robert Pěnička, Daniel Pr̊uša (CTU in Prague) Lecture 3: More recursion and backtracking examples October 6th, 2025 5 / 25

Lecture 3:

More

recursion

and back-

tracking

examples

Robert

Pěnička,

Daniel

Pr̊uša

Simple

recursion

examples

Simple

backtrack-

ing

examples

Example 1b: Sum of digits — recursive return

Tracing execution:

For n = 7136:

• 7136 → 6+ sumDigits2b(713)

• 713 → 3+ sumDigits2b(71)

• 71 → 1+ sumDigits2b(7)

• 7 → 7+ sumDigits2b(0)

• 0 → 0 (base case)

• returning to the top:

• Level 3 returns 7 + 0 = 7

• Level 2 returns 1 + 7 = 8

• Level 1 returns 3 + 8 = 11

• Level 0 returns 6 + 11 = 17

n = 7136

print("Example 2b, n =", n)

s = sumDigits2b(n)

print(s)

Observation

The final result exists only after returning

to the root of recursive tree.

Robert Pěnička, Daniel Pr̊uša (CTU in Prague) Lecture 3: More recursion and backtracking examples October 6th, 2025 6 / 25

Lecture 3:

More

recursion

and back-

tracking

examples

Robert

Pěnička,

Daniel

Pr̊uša

Simple

recursion

examples

Simple

backtrack-

ing

examples

Example 1c: Sum of digits — sum top → bottom

Another recursion pattern: the partial result is computed in upper levels of recursion and passed

deeper.

• At each level, we accumulate the sum so far.

• When n = 0, we return the accumulated sum.

• The result is already complete at the bottom of

recursion.

Idea

Unlike before, the sum is not built on the way back up,

but is carried downwards.

The code can look like:

def sumDigits3(n, sumSoFar):

if n == 0:

return sumSoFar

sumSoFar += n % 10

return sumDigits3(n // 10,

sumSoFar)

Robert Pěnička, Daniel Pr̊uša (CTU in Prague) Lecture 3: More recursion and backtracking examples October 6th, 2025 7 / 25

Lecture 3:

More

recursion

and back-

tracking

examples

Robert

Pěnička,

Daniel

Pr̊uša

Simple

recursion

examples

Simple

backtrack-

ing

examples

Example 1c: Sum of digits — sum top → bottom

Another recursion pattern: the partial result is computed in upper levels of recursion and passed

deeper.

• At each level, we accumulate the sum so far.

• When n = 0, we return the accumulated sum.

• The result is already complete at the bottom of

recursion.

Idea

Unlike before, the sum is not built on the way back up,

but is carried downwards.

The code can look like:

def sumDigits3(n, sumSoFar):

if n == 0:

return sumSoFar

sumSoFar += n % 10

return sumDigits3(n // 10,

sumSoFar)

Robert Pěnička, Daniel Pr̊uša (CTU in Prague) Lecture 3: More recursion and backtracking examples October 6th, 2025 7 / 25

Lecture 3:

More

recursion

and back-

tracking

examples

Robert

Pěnička,

Daniel

Pr̊uša

Simple

recursion

examples

Simple

backtrack-

ing

examples

Example 1c: Sum of digits — sum top → bottom

Tracing execution: For n = 45645622:

• Level 0: sumSoFar = 0 + 2 = 2

• Level 1: sumSoFar = 2 + 2 = 4

• Level 2: sumSoFar = 4 + 6 = 10

• Level 3: sumSoFar = 10 + 5 = 15

• . . .

• Base case: n = 0, return sumSoFar = 34

Observation

The final result exists already at the bottom, no

need to add values while returning.

n = 45645622

print("Example 1c, n =", n)

s = sumDigits3(n, 0)

print(s)

condensed form

def sumDigits3b(n, sumSoFar):

if n == 0:

return sumSoFar

return sumDigits3b(n // 10,

sumSoFar + n % 10)

Robert Pěnička, Daniel Pr̊uša (CTU in Prague) Lecture 3: More recursion and backtracking examples October 6th, 2025 8 / 25

Lecture 3:

More

recursion

and back-

tracking

examples

Robert

Pěnička,

Daniel

Pr̊uša

Simple

recursion

examples

Simple

backtrack-

ing

examples

Example 2: Minimum of an array (classical iterative)

Task: Find the minimum value in an array.

• Classic approach: iterate through array elements.

• Keep track of the smallest value seen so far.

• Return it at the end.

Idea

Compare each new element with the current minimum.

Robert Pěnička, Daniel Pr̊uša (CTU in Prague) Lecture 3: More recursion and backtracking examples October 6th, 2025 9 / 25

Lecture 3:

More

recursion

and back-

tracking

examples

Robert

Pěnička,

Daniel

Pr̊uša

Simple

recursion

examples

Simple

backtrack-

ing

examples

Example 2: Minimum of an array (classical iterative)

Task: Find the minimum value in an array.

• Classic approach: iterate through array elements.

• Keep track of the smallest value seen so far.

• Return it at the end.

Idea

Compare each new element with the current minimum.

def myMin0(arr):

min = arr[0]

for i in range(1, len(arr)):

if arr[i] < min:

min = arr[i]

return min

Robert Pěnička, Daniel Pr̊uša (CTU in Prague) Lecture 3: More recursion and backtracking examples October 6th, 2025 9 / 25

Lecture 3:

More

recursion

and back-

tracking

examples

Robert

Pěnička,

Daniel

Pr̊uša

Simple

recursion

examples

Simple

backtrack-

ing

examples

Example 2: Minimum of an array (recursive call)

Recursive idea:

• Base case: If only one element is left, that element is the minimum.

• Recursive case: Compare the current element with the minimum of the rest of the array.

Tracing execution:

• myMin1(arr, 0) → compares arr[0]

with min of arr[1..end].

• Each call reduces the problem by 1

element.

• Stops when one element is left.

Observation

This is a linear recursion: one recursive call

per step, shrinking the problem.

Robert Pěnička, Daniel Pr̊uša (CTU in Prague) Lecture 3: More recursion and backtracking examples October 6th, 2025 10 / 25

Lecture 3:

More

recursion

and back-

tracking

examples

Robert

Pěnička,

Daniel

Pr̊uša

Simple

recursion

examples

Simple

backtrack-

ing

examples

Example 2: Minimum of an array (recursive call)

Recursive idea:

• Base case: If only one element is left, that element is the minimum.

• Recursive case: Compare the current element with the minimum of the rest of the array.

Tracing execution:

• myMin1(arr, 0) → compares arr[0]

with min of arr[1..end].

• Each call reduces the problem by 1

element.

• Stops when one element is left.

Observation

This is a linear recursion: one recursive call

per step, shrinking the problem.

def myMin1(arr, iFrom):

stop recursion? just a single element?

if iFrom == len(arr) - 1: return arr[iFrom]

more elements

rightMin = myMin1(arr, iFrom+1)

if arr[iFrom] < rightMin: return arr[iFrom]

else: return rightMin

Robert Pěnička, Daniel Pr̊uša (CTU in Prague) Lecture 3: More recursion and backtracking examples October 6th, 2025 10 / 25

Lecture 3:

More

recursion

and back-

tracking

examples

Robert

Pěnička,

Daniel

Pr̊uša

Simple

recursion

examples

Simple

backtrack-

ing

examples

Example 2: Minimum of an array (recursive binary)

Recursive idea with two calls:

• Base case: if the interval has a single element, that element is the minimum.

• Recursive case: halving the array and computing the minimum of each half.

Observation:

• This is a binary recursion.

• The recursion tree resembles a binary

tree.

• Each level halves the problem size.

• Depth of recursion = log2(n).

• Divide and conquer strategy.

Robert Pěnička, Daniel Pr̊uša (CTU in Prague) Lecture 3: More recursion and backtracking examples October 6th, 2025 11 / 25

Lecture 3:

More

recursion

and back-

tracking

examples

Robert

Pěnička,

Daniel

Pr̊uša

Simple

recursion

examples

Simple

backtrack-

ing

examples

Example 2: Minimum of an array (recursive binary)

Recursive idea with two calls:

• Base case: if the interval has a single element, that element is the minimum.

• Recursive case: halving the array and computing the minimum of each half.

Observation:

• This is a binary recursion.

• The recursion tree resembles a binary

tree.

• Each level halves the problem size.

• Depth of recursion = log2(n).

• Divide and conquer strategy.

def myMin2(arr, iFrom, iTo):

stop recursion? just a single element?

if iFrom == iTo: return arr[iFrom]

more elements

iMid = (iFrom + iTo) // 2 # index of middle element

recursive calls

leftMin = myMin2(arr, iFrom, iMid)

rightMin = myMin2(arr, iMid+1, iTo)

compute return value

if leftMin < rightMin: return leftMin

else: return rightMin

Robert Pěnička, Daniel Pr̊uša (CTU in Prague) Lecture 3: More recursion and backtracking examples October 6th, 2025 11 / 25

Lecture 3:

More

recursion

and back-

tracking

examples

Robert

Pěnička,

Daniel

Pr̊uša

Simple

recursion

examples

Simple

backtrack-

ing

examples

Backtracking

• Backtracking is a general algorithmic technique for solving problems incrementally.

• It builds candidates for solutions step by step, and abandons (backtracks) as soon as it

determines that the partial candidate cannot lead to a valid solution.

• Often used in:

• Combinatorial search problems (e.g., subset sum, knapsack, N-Queens).

• Constraint satisfaction (e.g., Sudoku, puzzles).

Key Idea

• Explore all possibilities, but prune paths early when they cannot succeed.

• Traverses this search tree recursively, from the root down, in depth-first order

Robert Pěnička, Daniel Pr̊uša (CTU in Prague) Lecture 3: More recursion and backtracking examples October 6th, 2025 12 / 25

Lecture 3:

More

recursion

and back-

tracking

examples

Robert

Pěnička,

Daniel

Pr̊uša

Simple

recursion

examples

Simple

backtrack-

ing

examples

Example: Container Filling Problem

Task: We are given a set of items, each with

a certain weight. We also have a container

with a fixed weight capacity.

• We must select a subset of items so that

the sum of their weights is exactly equal

to the container’s capacity.

• If no such combination exists, the

container cannot be filled completely.

Example

Items: {2, 3, 7, 8, 10}
Capacity: 11

Possible solution: 3 + 8 = 11

Robert Pěnička, Daniel Pr̊uša (CTU in Prague) Lecture 3: More recursion and backtracking examples October 6th, 2025 13 / 25

Lecture 3:

More

recursion

and back-

tracking

examples

Robert

Pěnička,

Daniel

Pr̊uša

Simple

recursion

examples

Simple

backtrack-

ing

examples

Example: Container Filling Problem - recursive backtracking strategy

The recursive function pack(...) explores two choices for each item:

• Try including the current item.

• Skip the current item.

Stopping conditions:

Robert Pěnička, Daniel Pr̊uša (CTU in Prague) Lecture 3: More recursion and backtracking examples October 6th, 2025 14 / 25

Lecture 3:

More

recursion

and back-

tracking

examples

Robert

Pěnička,

Daniel

Pr̊uša

Simple

recursion

examples

Simple

backtrack-

ing

examples

Example: Container Filling Problem - recursive backtracking strategy

The recursive function pack(...) explores two choices for each item:

• Try including the current item.

• Skip the current item.

Stopping conditions:

• If sumSoFar == capacity → valid solution found.

• If iItem == len(items) → no more items left.

• If even all remaining items cannot fill capacity → prune branch.

Key Point

At each recursive call, the algorithm branches into two possibilities, building a decision tree of subsets.

Robert Pěnička, Daniel Pr̊uša (CTU in Prague) Lecture 3: More recursion and backtracking examples October 6th, 2025 14 / 25

Lecture 3:

More

recursion

and back-

tracking

examples

Robert

Pěnička,

Daniel

Pr̊uša

Simple

recursion

examples

Simple

backtrack-

ing

examples

Recursive Packing Function

The pack function:

def pack(items, chosenItems, iItem, capacity, sumSoFar):

if sumSoFar == capacity: # solution found?

print("solution", chosenItems)

return

if iItem == len(items): # no more items available?

return

if sumSoFar + sum(items[iItem:]) < capacity : # not enough left

return

currItem = items[iItem] # a) try adding current item

if currItem + sumSoFar <= capacity:

chosenItems.append(currItem)

pack(items, chosenItems, iItem+1, capacity, sumSoFar+currItem)

chosenItems.pop() # remove the item after recursion!

pack(items, chosenItems, iItem+1, capacity, sumSoFar) # b) adding next item

Robert Pěnička, Daniel Pr̊uša (CTU in Prague) Lecture 3: More recursion and backtracking examples October 6th, 2025 15 / 25

Lecture 3:

More

recursion

and back-

tracking

examples

Robert

Pěnička,

Daniel

Pr̊uša

Simple

recursion

examples

Simple

backtrack-

ing

examples

Example: Coin Change Problem

Task: Express a given total as a sum of coins of

given value. Each coin value may be used

repeatedly.

Inputs:

• A list of available coin values (e.g., [50,

20, 10, 5, 2, 1])

• The target amount (e.g., 100)

• Goal: Find all combinations of coins whose sum equals the target.

• Example solution: [50, 20, 20, 10], [20, 20, 20, 20, 20], etc.

• Note: for the above coin set, there are 4562 ways to make change for 100.

Robert Pěnička, Daniel Pr̊uša (CTU in Prague) Lecture 3: More recursion and backtracking examples October 6th, 2025 16 / 25

Lecture 3:

More

recursion

and back-

tracking

examples

Robert

Pěnička,

Daniel

Pr̊uša

Simple

recursion

examples

Simple

backtrack-

ing

examples

Example: Recursive Algorithm for Coin Change

The recursive function keeps track of:

• coins — the coin values (read-only)

• changeList — current partial solution

• iCoin — index of the coin currently

considered

• givenTotal — target sum

• sumSoFar — sum of chosen coins so far

Select your coin now! (source: dig.watch)

Robert Pěnička, Daniel Pr̊uša (CTU in Prague) Lecture 3: More recursion and backtracking examples October 6th, 2025 17 / 25

Lecture 3:

More

recursion

and back-

tracking

examples

Robert

Pěnička,

Daniel

Pr̊uša

Simple

recursion

examples

Simple

backtrack-

ing

examples

Example: Recursive Algorithm for Coin Change

The recursive function keeps track of:

• coins — the coin values (read-only)

• changeList — current partial solution

• iCoin — index of the coin currently

considered

• givenTotal — target sum

• sumSoFar — sum of chosen coins so far

Select your coin now! (source: dig.watch)

Base cases

• If sumSoFar == givenTotal ⇒ we found a solution.

• If no more coins are available ⇒ stop recursion.

Robert Pěnička, Daniel Pr̊uša (CTU in Prague) Lecture 3: More recursion and backtracking examples October 6th, 2025 17 / 25

Lecture 3:

More

recursion

and back-

tracking

examples

Robert

Pěnička,

Daniel

Pr̊uša

Simple

recursion

examples

Simple

backtrack-

ing

examples

Example: Coin Change - choices at each step

At each level of recursion we have two options:

• Option A: Add another coin of the same value (if it does not exceed the total).

coinChange(coins, changeList+[currCoin], iCoin, givenTotal, sumSoFar+currCoin)

Robert Pěnička, Daniel Pr̊uša (CTU in Prague) Lecture 3: More recursion and backtracking examples October 6th, 2025 18 / 25

Lecture 3:

More

recursion

and back-

tracking

examples

Robert

Pěnička,

Daniel

Pr̊uša

Simple

recursion

examples

Simple

backtrack-

ing

examples

Example: Coin Change - choices at each step

At each level of recursion we have two options:

• Option A: Add another coin of the same value (if it does not exceed the total).

coinChange(coins, changeList+[currCoin], iCoin, givenTotal, sumSoFar+currCoin)

• Option B: Skip to the next coin value. coinChange(coins, changeList, iCoin+1,

givenTotal, sumSoFar)

Observation

This is a classic backtracking pattern: explore a choice, recurse, and then undo the choice.

Robert Pěnička, Daniel Pr̊uša (CTU in Prague) Lecture 3: More recursion and backtracking examples October 6th, 2025 18 / 25

Lecture 3:

More

recursion

and back-

tracking

examples

Robert

Pěnička,

Daniel

Pr̊uša

Simple

recursion

examples

Simple

backtrack-

ing

examples

Example: Coin Change function

The coin change function:

1 def coinChange(coins, changeList, iCoin, givenTotal, sumSoFar):

2 if sumSoFar == givenTotal: # solution found?

3 numSol += 1

4 print(numSol, changeList)

5 return

6 if iCoin == len(coins): # no more coin type available?

7 return

8

9 currCoin = coins[iCoin] # try to add another coin of the same value...

10 if currCoin + sumSoFar <= givenTotal:

11 changeList.append(currCoin)

12 coinChange(coins, changeList, iCoin, givenTotal, sumSoFar + currCoin) # (*)

13 changeList.pop() # remove the item after recursion!

14

15 coinChange(coins, changeList, iCoin + 1, givenTotal, sumSoFar) # try next coin

Robert Pěnička, Daniel Pr̊uša (CTU in Prague) Lecture 3: More recursion and backtracking examples October 6th, 2025 19 / 25

Lecture 3:

More

recursion

and back-

tracking

examples

Robert

Pěnička,

Daniel

Pr̊uša

Simple

recursion

examples

Simple

backtrack-

ing

examples

Coin Change vs. Item Packing

Remark: The two problems are structurally very similar with only one key difference:

• Item Packing: pack(items, chosenItems, iItem+1, capacity, sumSoFar+currItem)

• Index is increased ⇒ each item can be used at most once.

• Coin Change: coinChange(coins, changeList, iCoin, givenTotal, sumSoFar+currCoin)

• Index is not increased ⇒ current coin can be used repeatedly.

Conclusion: By controlling whether the index is advanced, we decide if elements are used once or

many times. Combination without repetition or with repetition.

Robert Pěnička, Daniel Pr̊uša (CTU in Prague) Lecture 3: More recursion and backtracking examples October 6th, 2025 20 / 25

Lecture 3:

More

recursion

and back-

tracking

examples

Robert

Pěnička,

Daniel

Pr̊uša

Simple

recursion

examples

Simple

backtrack-

ing

examples

Tiling a rectangular board with given tiles

• Given: a rectangular board and a multiset of rectangular tiles.

• Goal: list all tilings that exactly cover the board.

• Constraints: tiles cannot overlap, cannot go outside the board, and all tiles must be used.

• Representation:

• A tile is [height, width] (no stored position).

• Board cells store freeSpace or the tile index.

• We try placements using the tile’s bottom-right corner (posY,posX).

0 1 2 3 4 ... X axis

+---+---+---+---+---+---+---+

0 | | | | | | | |

+---+---+---+---+---+---+---+

1 | | | | | | | |

+---+---+---+---+---+---+---+ The board

2 | | | | | | | |

+---+---+---+---+---+---+---+

... | | | | | | | |

+---+---+---+---+---+---+---+

Y axis

Robert Pěnička, Daniel Pr̊uša (CTU in Prague) Lecture 3: More recursion and backtracking examples October 6th, 2025 21 / 25

Lecture 3:

More

recursion

and back-

tracking

examples

Robert

Pěnička,

Daniel

Pr̊uša

Simple

recursion

examples

Simple

backtrack-

ing

examples

Feasibility test and place/unplace operations

• We backtrack: for each tile, try every valid position.

• canPutTile checks bounds and emptiness of the rectangle.

• putTile/liftTile write/erase the tile id on the board.

freeSpace = -1

def canPutTile(tileNo, posY, posX):

currTile = tileList[tileNo] # [h, w]

y0 = posY - currTile[0] + 1 # UL corner

x0 = posX - currTile[1] + 1

if y0 < 0 or x0 < 0:

return False

for y in range(y0, posY + 1):

for x in range(x0, posX + 1):

if board[y][x] != freeSpace:

return False

return True

def putTile(tileNo, posY, posX):

h, w = tileList[tileNo]

for y in range(posY - h + 1, posY + 1):

for x in range(posX - w + 1, posX + 1):

board[y][x] = tileNo

def liftTile(tileNo, posY, posX):

h, w = tileList[tileNo]

for y in range(posY - h + 1, posY + 1):

for x in range(posX - w + 1, posX + 1):

board[y][x] = freeSpace

Robert Pěnička, Daniel Pr̊uša (CTU in Prague) Lecture 3: More recursion and backtracking examples October 6th, 2025 22 / 25

Lecture 3:

More

recursion

and back-

tracking

examples

Robert

Pěnička,

Daniel

Pr̊uša

Simple

recursion

examples

Simple

backtrack-

ing

examples

Recursive enumeration and practical improvements

def tileBoard(currTileNo):

If all tiles are placed, we found a tiling.

if currTileNo == len(tileList):

printBoard()

return

Try every board cell for current tile.

for posY in range(len(board)):

for posX in range(len(board[0])):

if canPutTile(currTileNo, posY, posX):

putTile(currTileNo, posY, posX)

tileBoard(currTileNo + 1)

liftTile(currTileNo, posY, posX)

Example instance:

tileList = [[3,3], [2,2], [2,2], [2,1], [3,2]]

boardHeight, boardWidth = 5, 5

board = [[freeSpace]*boardWidth for _ in range(boardHeight)]

tileBoard(0)

Idea:

• Test all placements of bottom right corner of

all tiles.

• Backtrack when tile can not be placed

• When tile is placed test the next tile.

Robert Pěnička, Daniel Pr̊uša (CTU in Prague) Lecture 3: More recursion and backtracking examples October 6th, 2025 23 / 25

Lecture 3:

More

recursion

and back-

tracking

examples

Robert

Pěnička,

Daniel

Pr̊uša

Simple

recursion

examples

Simple

backtrack-

ing

examples

Homework: Dangling paths in a binary tree

• Two nodes are neighbours if one is the parent of the

other.

• The degree of a node = number of its neighbours.

• A path of length N is a sequence (x1, x2, . . . , xN)

such that each consecutive pair are neighbours, and all

nodes are unique.

• A path is a dangling path if:

• degree of each node ≤ 2;

• x1 is a leaf;

• the parent of xN either does not exist or has

degree 3.

• The cost of a path = sum of keys of all nodes in it.

Goal: Given a binary rooted tree, find the minimum and maximum cost of a dangling path.

Robert Pěnička, Daniel Pr̊uša (CTU in Prague) Lecture 3: More recursion and backtracking examples October 6th, 2025 24 / 25

Lecture 3:

More

recursion

and back-

tracking

examples

Robert

Pěnička,

Daniel

Pr̊uša

Simple

recursion

examples

Simple

backtrack-

ing

examples

Examples and expected output

Example 1

• Input: N = 16, R = 7

• Output: 2 36

Dangling paths with minimum and maximum cost are highlighted.

Hints:

• Representing the tree as a matrix is

convenient given tree node indices are

0..N-1 and input data are unordered.

• Ideally first traverse the tree to find which

nodes are in a dangling path.

• Then traverse the tree to find min/max cost

of dangling paths.

Another example illustrating different tree

structure.

Robert Pěnička, Daniel Pr̊uša (CTU in Prague) Lecture 3: More recursion and backtracking examples October 6th, 2025 25 / 25

	Simple recursion examples
	Simple backtracking examples

