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Introduction

Lecture 1:
Introduc-
tion and

asym;lxo_tic e Course page
“°:o::ty https://cw.fel.cvut.cz/b251/courses/bebb33alg/start
Pandia, e Credits
Priga 6 credits = 10 hours per week! (in 14 weeks 4+ 5-week exam period)
Introduction e Goals

Teach efficient solutions of various problems arising from elementary computer science. The main
topics include algorithmic complexity, sorting and searching algorithms,

e Prerequisites
Expected capability of proficient programming in either C, C++, Java or Python. Integral and
mandatory part are practical programming homeworks. Attendants are expected to be familiar
with basic data structures such as arrays, lists, files atc.

e Literature
Cormen TH, Leiserson CE, Rivest RL, Stein C. Introduction to algorithms. MIT press; 2022 Apr
5.
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Introduction

e e Timetable
R d 1.5h Lecture + 1.5h Practices https://intranet.fel.cvut.cz/en/education/rozvrhy-
e ng.B251/public/html/predmety/43/56/p4356206.html
Penitia e Brute system
Pria Upload system for homeworks and exams https://cw.felk.cvut.cz/brute/

o Plan of the semester

Introduction

week #  Topic

Computin

f o, 1 Order of growth of functions, asymptotic complexity
e 2 Trees, binary trees, recursion

3 More recursion and backtrack examples

4 Graph, graph representation, basic graph processing
5 Queue, Stack, Breadth/Depth First Search
6
7
8

Rate of
owth of

functions

Asymptotic

Array search, Binary search tree
AVL and B- trees
Sorting algorithms |

9 Sorting algorithms 11

10 Dynamic programming |

11 Dynamic programming Il

12 Complexity of recursive algorithms, Master theorem
13 Hashing | & 11

14 Individual repetitions and exam preparation
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Introduction

Lecture 1:

Introduc- e Points

tion and
asymptotic
CenER e Points gained by solving homeworks (max 36 points).

Robert e Points gained by solving the midterm test (max 12 points).

Danie Acceptable minimum from homeworks and the test is 24 points (out of 48 points).

e Points gained by solving the programming part (max 20 points).

fbioduction Acceptable minimum is 10 points. Each correctly processed input file of total 10 files is

worth 2 points.
e Points gained by solving the theoretical part (max 32 points).
Acceptable minimum is 16 points. The amount of points gained is decided by the examiner.

e Grading
Points total Grade
< 50 F
50 — 59.99 E
60 — 69.99 D
70 — 79.99 C
80 — 89.99 B
90 — 100 A
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Problems and algorithms

Lecture 1:
Introduc-

tion and o Computational problem P
asymptotic
AT The task of transforming an input I N into an output data OUT such that some prescribed
e conditions are satisfied.
Daniel .
Prita e Algorithm A

Introduction

e Computational process that reflects the progress of solution of problem P.

e Exact and unambiguous description of the sequence of computational steps which
transforms input data I N step by step into the output data OUT satisfying the conditions
of problem P.

o Problem instance |
Problem P taken together with one set of particular input data.
e Correctness

Property of algorithm A that guarantees that for each problem instance I the algorithm
produces appropriate output in finite time.
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How to compare algorithms?

Empirically?
e Based on the algorithm we can write a program which implements it and run it on a computer on
some set of instances
e We can compare the speed and memory demands of each implementation.
e However, is this a good way how to compare algorithms?

e What if the computer is different? What if the OS is different?
e What if the programming language is different? What if the compiler is different?
e What if the instances are different?

‘.

" Aastyear
Comp-Sci students

1Y
=

e A more fair comparison of particular algorithms is needed for independent comparison...
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How to compare algorithms?

Lecture 1:
I".tmd ue Visualization and Comparison of Sorting Algorithms
tion and

asymptotic

complexity

Robert
Pé&nicka,
Daniel
Priga

Introduction

Mezge Sort Quick Sort

Heap Sort

Bubble Sort

Cocktail Sort

M 1067425

https://www.youtube.com/watch?v=2ZuD6iUe3Pc

Robert P&nitka, Daniel Priga (CTU in Prague)
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Computing the complexity

e Elementary operation: an operation that takes a constant amount of time, e.g., arithmetic
operations, comparisons, assignments, memory moves.

e Complexity: the number of elementary operations performed by an algorithm (with respect to
input size).

e Worst case: when all conditions are unfavorable w.r.t. the complexity (e.g., searching for an
element in an unsorted list).

e Best case: when all conditions are favorable w.r.t. the complexity (e.g., searching for an element
in a sorted list).
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Robert P&nitka, Daniel Priga (CTU in Prague)

Computing the complexity - Examples

e Find minimum min and maximum max value in an array a.

e Standard variant iterate index i from 1 to n — 1 by one.

a=[3]2]7]10[0][5[-10]4]6]

e Result is min = —10, max = 10

1 min = a[0], maz = a[0]
2 fori < 1ton —1do

3 if a[i] < min then
4 [ min = a[i]
5 if a[i] > max then

| maz = ali]
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Computing the complexity — example

Lecture 1:

Introduc-

tion and e Find minimum min and maximum max value in an array a.
asymptotic
ComplExty e Faster variant: iterate index ¢ from 1 to n — 1 by two.
Robert
Pénicka,
Daniel a:‘3‘2‘7‘10‘0‘5‘-10‘4‘6‘

Priga

Introduction 1 min = a[O], max = a[O]
Computing 2 fortton —1withi =1+ 2 do

e 3 if a[i] < a[i + 1] then
complexity 4 if a[i] < min then
Rate of 5 | min = ali]
rowth of
Frmetions 6 if ali + 1] > maz then
Ea— ! L maez=ali+1]
estimations —
8 else
9 if a[i] > max then
10 | maz = ali]
11 if a[i + 1] < min then
12 | min =ali+1]
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Computing the complexity — example

ecture 1 e Assume N is the size of the input array a.
tion and e Complexity: the number of elementary operations performed.
ymproty . e .
complexity e Can be simplified to number of elementary operations on the data (e.g. on our array a).
Robert e Most commonly simplified to the number of comparisons made on the data.
ni¢ka,
Daniel
Priga _/—1 .—/—1
1 7 1 min = a[0], maz = al0]
Introduction - A A i (N=1)/2
Computing 1 min = a[0], maz = a[0] o T e
the 1 N_1 2forz<—1ton—1w1thz:z—\i—2‘do
, i ; LN
complexity 2 for ’—i %-I to ’_'n 7_\1 do 3 if a[%] < CL[Z + 1] then I P
Rate of N—1 4 if a[i] < min then 5
growth of —_—— 5 in=ali]} 0...(N —1)/2
functions 3 if a[i] < min then L min = ali]} ( ) )/
R 0..N—1 6 if afi + 1] > maz then }
estimations 2 min = ali] 7 L maz =ali+1]} 0... (N —1)/2
N —1
8 else‘ ‘ -
5 if afi] > max then 9 if a[i] > maz then | =
0...N—1 10 =ali]; 0...(N—1)/2
L P L maz=ali} 0...(N 1)/
6 maz = ali] 11 if afi + 1] < min then }
- 12 | min=ali+1]} 0... (N —1)/2
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Computing the complexity — example

Lecture 1:

jecture 1 e Assume N is the size of the input array a.
e e What is the number of elementary operations of the standard algorithm?
asymptotic . . .
complexity e What is the number of elementary operations on the data (array a?) of the standard algorithm?
Robert e What is the number of comparisons made on the data (array a?) of both algorithms?
ni¢ka,
Daniel
Priga 1 1
—_—t— ——
1 7 1 min = a[0], maz = al0]
Introduction A A i (N=1)/2
Computing 1 min = a[0], maz = a[0] o T e
the 1 N_1 2forz<—1ton—1w1thz:z—\i—2‘do
ST o T T o7 T do | ell<ali+ 1 then § T,
Rate of N—1 4 if a[i] < min then 5
growth of e N im =alt 0...(N—1)/2
Fnetions 3 if a[i] < min then ’ L min = ali]} ( ) )/
R 0..N—1 6 if afi + 1] > maz then }
B T 2 min = ali] 7 L maz =ali+1]} 0... (N —1)/2
N —1
—— 8 else ) ‘ -
5 if a[i] > maz then 9 if a[i] > maz then | =
L O...N—l-\ 10 | maz=ali]} 0...(N —1)/2
6 maz = ali] 11 if afi + 1] < min then }
- 12 | min=ali+1]} 0... (N —1)/2
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Computing the complexity — example

Lecture 1:

e e Total operations: 3N best case and 5N — 2 worst case (includes also blue and green).
tion and
T e Operations on data: 2V best case and 4N — 2 worst case (includes also green).
complexity
N e Comparisons on data: always 2N — 2 for standard and always 3(IN — 1)/2 for faster variant.
Pé&nicka,
Daniel
Priga 1 1
N N—
1 1 1 min = a[0], maz = a[0]
Introduction ’A_H —_——— 1 (N—1)/2
— 1 min = al0], maz = a[0] —_— —
e 1 N—1 2 fori< 1ton — 1 withi =14+ 2 do
. — o H - - 1 N1
complexity > for 7 « TtO "1 do 3 if a[’.b] < a[l + 1] then J,] P
Rate of N—1 4 if afi] < min then |
growth of —_—— 5 in =ali]} 0...(N —1)/2
Hmr,ll\‘ons 3 if a[i] < min then L min = ali]} ( )/
P 0..N—1 6 if ali + 1] > max then }
symptotic e e . 5
estimations . in = ali] 7 | maz =ali+1]} 0...(N —1)/2
N 8 else
L —— . . | N—1
5 if a[i] > maz then 9 if afi] > max then | ~—
0...N—1 10 max =ali]} 0...(N —1)/2
L PRSI, L [} 0. (N ~1)/
6 maz = ali] 1 if afi + 1] < min then } ~ 1
- 12 | min=ali+1]}0...(N —1)/2
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Rate of growth of functions

Lecture 1: Growth of Time C
Introduc- 016 o o
tion and [DE .
asymptotic 0141 —e— n*
complexity - ::
Robert
i e n number of the data items (size of the data) 3"
Prisa e Assumes one operation takes exactly 1 -
educon e T'(n) time needed to process n data items oo
Computing
the ' 0.02
complexity L, . e
Rate of 25 5.0 75 100 125 15.0 175 200
growth of n
functions
Asymptotic n/T(n) 20 40 60 80 100
estimations log(n) 4.3 us 5.3 us 5.9 us 6.3 us 6.6 Lis
n 20 ps 40 ps 60 us 80 us 0.1 ms
nlog(n) 86 us 0.2 ms 0.35 ms 0.5 ms 0.7 ms
n? 0.4 ms 1.6 ms 3.6 ms 6.4 ms 10 ms
n? 8 ms 64 ms 0.22 sec 0.5 sec 1 sec
n* 0.16 sec 2.56 sec 13 sec 41 sec 100 sec
2n 1 sec 12.7 days | 36600 yrs | 10%% yrs 1016 yrs
n! 77100 yrs 1034 yrs 1098 yrs 1010° yrs 10144 yrs
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Asymptotic estimations — Upper asymptotic estimate O

Lecture 1:
Introduc-
tion and

asymptotic

complexity

Robert
Pénicka,
Daniel e Upper asymptotic estimate (big-O (omicron) notation)

f(n) € O(g(m)
e Meaning:
e function f is asymptotically upper-bounded (from above) by a function g disregarding the
S additive and multiplicative constants.

Introduction

Rate of

growth o e Definition:

Asympt;tic (Fe > 0)(Fno)(Yn > no) : f(n) < c-g(n)
. where: ¢ € R n,,neN f,ge N— R
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Asymptotic estimations — examples

fecture 1 e Is it true that f(n) € O(g(n)) and that h(n) € O(g(n)) ?
e e What are the values of c and no? (f(n) € O if f(n) < c-g(n))
complexity
Rol?ert 50
oanie — $h(x) = 3(x-1)~2
Priga o $g(X) - (x-1)"2
Introduction 40 7| — $f(x) = x
Computing
the
complexity 30 4
Rate of
growth of
functions 204
Asymptotic
estimations
10
0
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Asymptotic estimations — examples

e Is it true that f(n) € O(g(n)) YES and that h(n) € O(g(n)) YES?
e What are the values of ¢ and no? (f(n) € O if f(n) <c-g(n))

50 A

40 A

30 4

20

10

— $h(x) = 3(x-1)"2
— $9(x) = (x-1)"2
— $f(x) = x

Robert P&nitka, Daniel Priga (CTU in Prague)
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Asymptotic estimations — Lower asymptotic estimate {2

Lecture 1:
Introduc-
tion and

asymptotic

complexity

Robert
Pé&nitka, . . . .
Daniel e Lower asymptotic estimate (blg-Omega notatlon)

f(n) € Qg(n))
e Meaning:
e function f is asymptotically lower-bounded (bounded from below) by a function g disregarding
S the additive and multiplicative constants.

Introduction

Rate of

growth o o Definition:

Asympt;tic (3e > 0)(Ino)(Vn > ng) : ¢+ g(n) < f(n)
. where: ¢ €R”% n,,neN f,ge N— R
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Asymptotic estimations for functions of more variables

Lecture 1:
Introduc-
tion and
asymptotic
complexity
Robert
Pé&nicka,
Daniel . . . . .
Priga e Upper asymptotic estimate (big-O (omicron) notation)
Introduction flna, - ’nk) € O(g(n1,- - ank))
Gompuifis o Definition:
complesity (3e > 0)(3no)(Vn1 > no) - -+ (Ve > no) : f(na,- - nk) <c-g(na,- -+, nk)
e where: ¢ € R”% ng,n1,--- ,nx €N f,g € N = R2°
growth o . . . . . . . .
Fetions e Lower asymptotic estimate (big-Omega notation) can be defined similarly for functions of more
Asymptotic variables as the for the single-variable functions.
estimations
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Asymptotic estimations — Optimal asymptotic estimate ©

Lecture 1:

Introduc-
tion and
asymptotic
complexity
Robert . . . . .
PSL";';T' e Optimal asymptotic estimate (capital Theta notation)
Prisa f(n) € ©(g(n))
Introduction e Meaning:
Computing function f is asymptotically bounded from above and from below by a function g disregarding
complexity the additive and multiplicative constants.
Lo o Definition:
S ©(g(n)) := O(g(n)) N Q(g(n))
Asympotc i.e. (Je1,c2 > 0)(3no)(Vn > no) :e1-g(n) < f(n) < cz-g(n)

where: ¢1,¢2 € R no,neN f,g e N— R2°
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Asymptotic estimations — examples

fecture 1 e Is it true that f(n) € ©(g(n)) and that h(n) € O(g(n)) ?
a:;‘f,"‘pa;fic e What are the values of ¢1,¢2 and ng? ( ©(g(n)) : c1-g(n) < h(n) <cz-g(n))
complexity
Rol?ert 50
e — $h(x) = 3(x-1)~2
Priga — $g(X) - (x-1)"2
Introduction 401 — $f(x) = x
Computing
the
complexity 30 4
Rate of
growth of
functions 204
Asymptotic
estimations
10 -
0 .
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Asymptotic estimations — examples

fecture 1 e Is it true that f(n) € ©(g(n)) NO and that h(n) € ©(g(n)) YES ?
a:;‘f,"‘pa;fic e What are the values of ¢1,¢2 and ng? ( ©(g(n)) : c1-g(n) < h(n) <cz-g(n))
complexity
Rol?ert 50
o — $h(x) = 3(x-1)~2
Priga — $g(X) - (x-1)"2
Introduction 401 — $f(x) = x
Computing
the
complexity 30 4
Rate of
growth of
functions 204
Asymptotic
estimations
10 -
0 .
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Asymptotic estimations — examples

Lecture 1:

Introduc-

tion and
asymptotic
complexity

Robert . . . . .
Penitka, e Example: What is the asymptotic complexity of finding maximum value in 2D array with M x N

Daniel

Prita numbers?

Which are upper bounds? .
Introduction Which are lower bounds?
([{mpmms. M+N
o ) ) e Q1)
O(max(M, N)7)

oo oN?) * QM)
functions ° Q(M . N)

As)./mptlotic [ ] O(M . N)
estimations Which is the optimal asymptotic complexity of finding maximum value in 2D array with M x N
numbers?
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Asymptotic estimations — examples

Lecture 1:

Introduc-

tion and

asymptotic

complexity

pzf.?:ﬁ, e Example: What is the asymptotic complexity of finding maximum value in 2D array with M x N

panel numbers?

Which are upper bounds? .
[ Which are lower bounds?
Computing ° M+N YES
o) . Q1) YES
: e O(max(M,N)*) YES

Rate of ) e Q(M) YES
growth of ° (N ) NO
functions ° Q(M . N) YES
Asymptotic L] O(M . N) YES
Stimaticrs Which is the optimal asymptotic complexity of finding maximum value in 2D array with M x N

numbers? O(N - V)
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Asymptotic estimations — typical classes

Lecture 1:

Introduc-
tion and
asymptotic
complexity
Robel
Pgniql:%, An algorithm with complexity f(n) is said to be:
Prisa o o logarithmic, if f(n) € ©(log(n))
[ o linear, if f(n) € ©(n)
Gt e quadratic, if f(n) € ©(n?)
o cubic, if f(n) € O(n?)
Rate of e polynomial, if f(n) € ©(n*) for some k € N
genincl e exponential, if f(n) € ©(2") for some k € N
Asymptotic e Note that logarithmic complexities do not require to include the base of the logarithm, as for any
e base a, b it holds that log,(n) = ©(log,(n)).
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Asymptotic estimations — typical classes

Lecture 1:

Introduc-

tion and
asympto.tic
S An algorithm with complexity f(n) is said to be:

Robert

T e Why exactly this holds log,(n) = ©(log,(n))?

Prisa e Using formula for change of base of logarithm:
Introduction

log, (n) 1

Computing log (n=-—"222~— _ " .log,.(n
o 5 = Togy(a) ~ logy(a) ")
complexity
Rate of constant
growth of
functions e We can show that there exists c1, c2 such that for all n > ng it holds that
Asymptotic
estimations

1 - log,(n) <log,(n) < cz - log,(n)

where ¢; < <c2 and ng = 1.

1
logy (a)
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Asymptotic estimations — properties

campieity e Properties of the asymptotic complexity:

Pé%:i? n™ e (nm ) ifm<m
o f(n) € O(f(n))

S O(f(n)) = O(c- f(n)) = O(f(n))
compleity ( (f(n)) = O(f(n))

. O(f(n)) + O(g(n)) = O(max{f(n),g(n)})
; O(f(n)) - O(g(n)) = O(f(n) - g(n))
wsimains O(f(n) - g(n)) = f(n) - O(g(n))

e The class of the complexity of a polynomial is given by the term with the highest exponent:
Yipai-ntT € YL, 0(n") = k- O(n*) = Ok - n*) = O(n")

Robert P&nitka, Daniel Priga (CTU in Prague) Lecture 1: Introduction and asymptotic complexity September 22nd, 2025



Properties of asymptotic estimations

Lecture 1:

Introduc-

tion and

asympto.tic

complety o Theorem: If functions f(n), g(n) are always positive, then for the limit at infinity:
Robert

o tim LM o = fn) € O(g(n), but not () € B(9(m))
Priga n—r oo g(n)

. . fn) _

Introduction lim == =a, 0<a<oo = f(n)e€O(g(n))

n—oo g(n)

complexity fim £ _ o o g(n) € O(f(n)), but not g(n) € O(f(n))

n=eo g(n)

growth of

functions

A e Corollary: Let i € N be a fixed integer. Then

estimations

(logn)’ € O(n)

You may use L'Hopital’s rule to prove the corollary.
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Why complexity is important?

Lecture 1:
Introduc- . .
tionjand e What is better complexity, log(n), n or n? ?
asymptotic
complexity o what is the log(n) complexity associated with and why? what about the n and n??
Robert
Pé&nicka,
Daniel
Prisa A B C D E F
Introduction
0 1 2 3 4 5
Computing
the 0 1 2 3 4 5
complexity
0
Rate of
growth of
functions 1
Asymptotic
estimations 2
3
4
5
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Why complexity is important?

Lecture 1: H H 2
ey e What is better complexity, log(n), n or n° ?
a:'y‘j,"‘pa;fic o what is the log(n) complexity associated with and why? what about the n and n??
complexity
Robert
Penitka,
D:InieT A B C D E E
Priga
0 1 2 3 4 5
Introduction
Computing 1D Array: linear
the ; 0 1 2 3 4 5
complexity
0
Rate of
growth of
functions 1
Asymptotic
estimations 2
3
4
Tree: often logarithmic (search), or linear (traversal) .

2D Array: quadratic (full scan), linear (row/col scan)

niel Priig&a (CTU in Prague) Lecture 1: Introduction and asymptotic complexity September 22nd



Homework: Orchard Division

Lecture 1:
Introduc-

o e Problem setup: m|
asymptotic
compleity e Orchard is an N x N grid of trees. ~ 0 3 -
ntger qualty O 0 JO JORE
Penitla, e Each tree has an integer quality index. (m}
Pte e Divide into 4 rectangular parts using: = E 3 3 3
- 5083 2) 2) 3)
e One horizontal cut (East-West). o
e One vertical cut in the North. - 0O - -
e One vertical cut in the South. 3)5 é) 3) \1) f)
OOOO0000O0O00000O0O0000
Goal: Minimize the difference between the max and min ]
. . 3 4 -1 4 2
part quality. (Part quality = sum of tree values) -
Asymptotic
SUWE lnput: N, then N f N integers. Output: Mini ) 0, .
pu , then N rows o integers. Outpu inimum -3 6 2)5 4 3
possible difference. 5
a

Example division of the orchard.

Maybe some hint?
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Prefix sums

Lecture 1:

Introduc- Let:

tion and

CETEs e A ... array of numbers indexed from 1 to N

complexity

Robert e P ... array of prefix sums (same length as A), indexed from 0 to N
Pénicka,
Daniel

e _
e Definition:

Introduction P[’L] = A[l] + A[Q} + -+ A[i], P[O] =0

Computing
the

complexity Example:
Rate of A={1,-2,4,5,—-1,-5,2,7}

growth of
P=1{0,1,-1,3,8,7,2,4,11}

functions
Asymptotic
estimations

Any subarray sum can be computed in constant time:

Ali] + Ali + 1]+ - + A[j) = Plj] — P[i — 1]

See more: https://en.wikipedia.org/wiki/Prefix_sum
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