Planning for transport and logistics

Jiří Vokřínek A4M36PAH - 28.4.2014

Logistics

plural noun: logistics

- the detailed coordination of a complex operation involving many people, facilities, or supplies.
 "the logistics and costs of a vaccination campaign"
 synonyms: organization, planning, plans, management, arrangement, administration, orchestration, coordination, execution, handling, running More
 - MILITARY

the organization of moving, housing, and supplying troops and equipment. noun: logistics

the commercial activity of transporting goods to customers.
 "Germany's largest beverage logistics organization"

Logistics – 218 B.C.

- 1 600 km
- 60 000 infantry, 10 000 cavalry, 37 war horses

Logistics

- Production, storage, transportation
- When should the resource to be produced
 Resource planning, production scheduling
- Where should the resource to be produced
 Facility location optimization, layout planning

• Inventory vs. location vs. transportation

Logistics ...

• Strategic (years)

Facilities size, location, transport modes (air, sail, rail, ...)

- Tactical (months)
 - Inventory positioning, seasonal transport, customer rules, market optimization
- Operational (hours or days)

- Routing, material replenishment, order expedition

... Transport

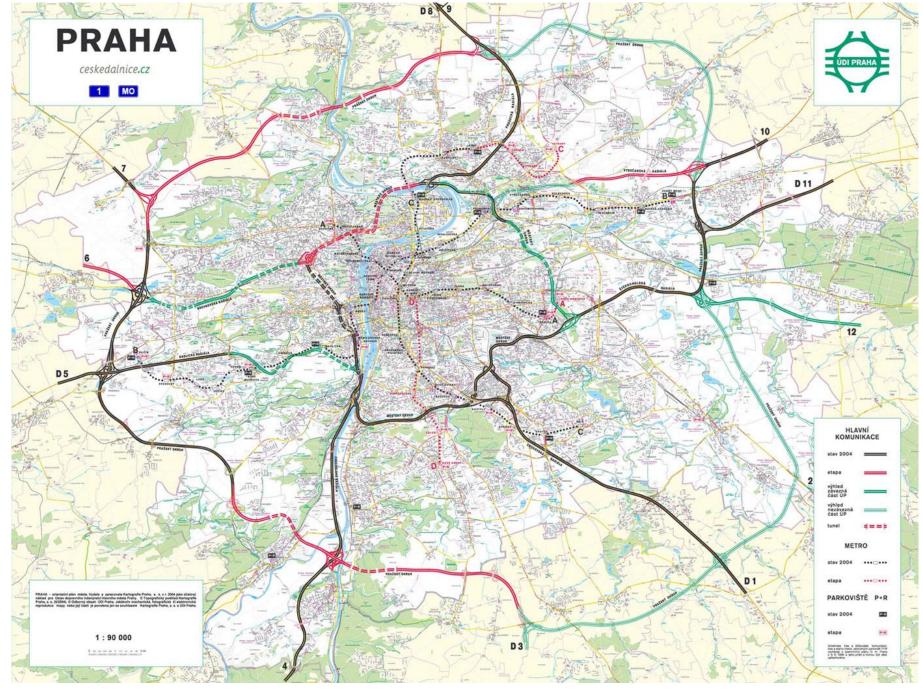
• Strategic (years)

 Urban planning, transport systems construction optimization

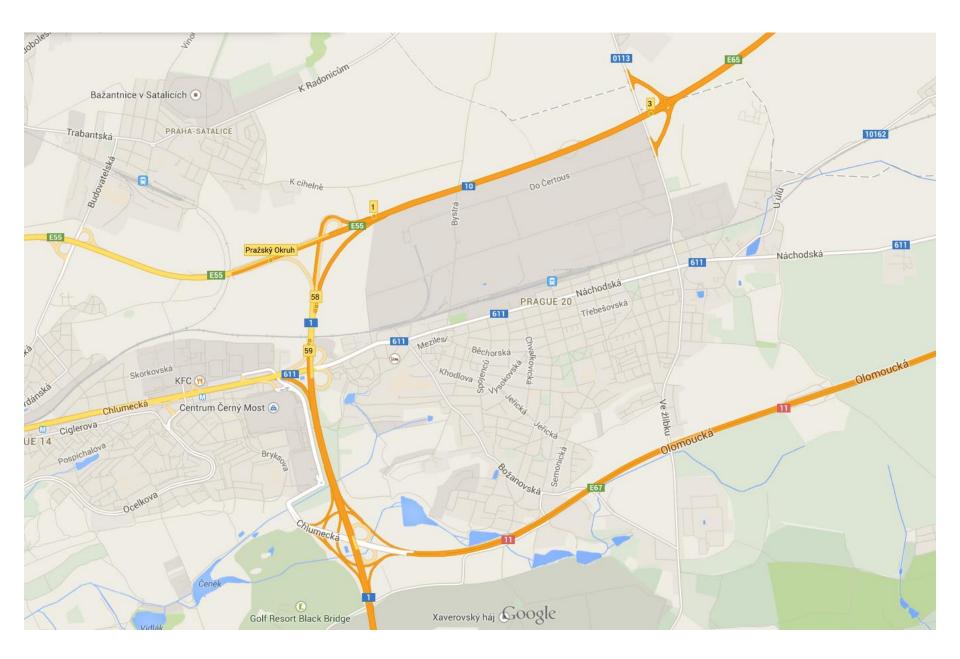
- Tactical (months)
 - Trip modelling, travel forecasts, transport system optimization
- Operational (hours or days)
 - Routing problems, cost optimization

... Transport

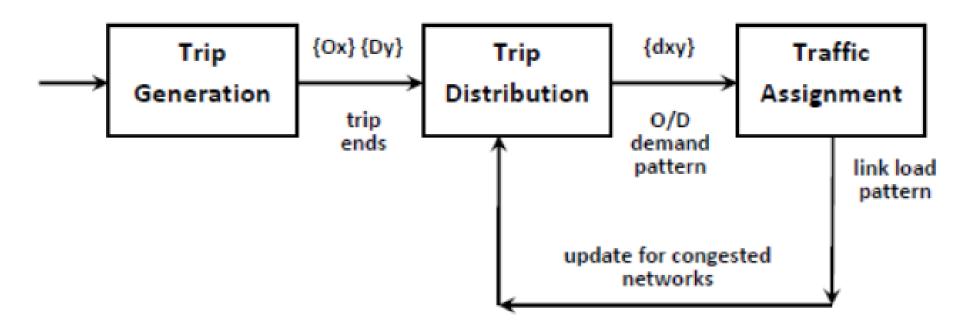
• Strategic (years)

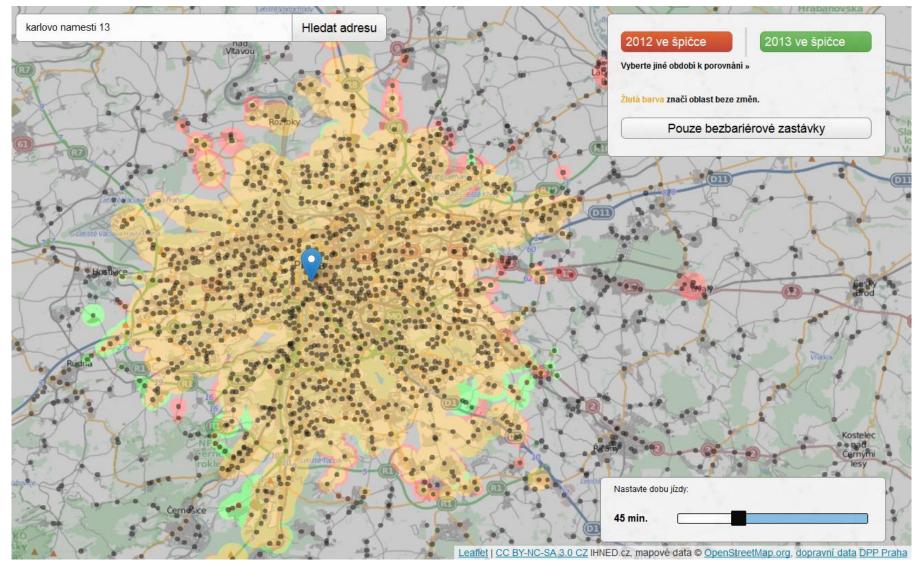

 Urban planning, transport systems construction optimization

- Tactical (months)
 - Trip modelling, travel forecasts, transport system optimization
- Operational (hours or days)
 - Routing problems, cost optimization


- Existing network models + existing traffic patterns
 - O/D (origin/destination) demand tables
 - Counters, statistics
 - Traffic flow patterns (predictions)
 - Urban planning/plans, population development
- Travel demand modelling was first developed in late 1950' for highway planning

Source: www.ceskedalnice.cz


Source: www.ceskedalnice.cz


Source: www.google.com/maps

- Model building finding parameters of the system
 - Number of trips attracted or generated to/by a certain area
 - Generate O/D travel demand table
 - Will then know how many travellers from O_x will go to D_y; for all x,y pair.
- O_x = # of trips produced (generated) at zone x (production zone) D_y = # of trips attracted to zone y (attraction zone)

- Travel demand $d_{xy} = kO_x D_y f(c_{xy})$
- Find how this travel demand is distributed among deferent routes and modes of transport
- Evaluate traffic network
- Forecast future O/D travel demand table
- Plan the network changes
- Evaluate network changes in simulation

Source of the scheme: Dr. Anna Nagurney, FOMGT 341 Transportation and Logistics – L1

Source: ihned.cz/mhd

nad Vltavou Odolena Slaný Kostelec Voda MIlovice nad Labem Lysá nad Libcice nad. 38 Brandýs nad Labem Vitavou -Libeznice Brandysek čno Labem-Stará Nymb Boleslav bušín Velké Celakovice Roztoky Buštěhrad Přílepy 8 Kladno Mochov Sadská Prague 18 Zeleneč Nehvizdy Praha-Suchdol E67 Praha-Tro Jirny Prague 20 lká Dobrá Pradue 9 Praha-Klar ovice 6 Pečky Unhošť Tuklaty . Hostiv Praque Cesky Brod Case Do all Prague T3 ague 12 ha-Reporyjer Prague 17 Prague 22 Chyňava Prague 12 Pruhonice Kouřim Kostelec nad Lodénice skov Bleany Mukarov Cernými lesy Zbraslav. *Cesky Kras Jesenice Beroun *Černe sice Český kras Zásmuk Dvůr Vrane ad Mnichoviče Psáry Karlštejn Vltavou . **Revnice** Liteň Jílové Kamenice Senohraby Davle u Prahy E65 Pyšely Jar Mníšek Sázava Hradištko Kamenný pod Brdy Přívoz Cercany **Štěchovice** Tynec nad Sázavou 3 E50 Nový Knín Divišov Benešov Dobříš Kácov vodní nadrž Neveklov

Source: transport.felk.cvut.cz/TransportAnalyser

- Main issues
 - How to collect the data?
 - How to represent the data?
 - Quality of future predictions?

- What will a community look like in the future? Birth/deaths rates, migration rates, age of population
- What are the travel patterns in the future? Employment, economic multipliers, urban development

- Main issues
 - How to collect the data?
 - How to represent the data?
 - Quality of future predictions?
- Main tools
 - Trip modelling
 - Network modelling
 - Path planning and simulation
 - Network optimization

- Trip modelling
 - Multiple regression
 - Combination of linear functions for each trip type
 - Cross-classification
 - Based on individual data (surveys), non-linearity
 - Modal split
 - Weighted priorities, time vs. cost -> trip planning
 - Typically based on "zoning system"
 - Affect the model, good at city-to-city level
- Trip planning for individuals based on model

... Transport

• Strategic (years)

 Urban planning, transport systems construction optimization

- Tactical (months)
 - Trip modelling, travel forecasts, transport system optimization
- Operational (hours or days)
 - Routing problems, cost optimization

Transport System Optimization

- Given the
 - Transport system
 - Transport resources
 - Demand model
 - Trip model
 - A set of dynamic models variables
 - Easy (cheap) to change in transport system
 - Dynamic changes in demand/trip model (workdays, holidays, events, ...)

-> find adjustments of the system to fit the needs

... Transport

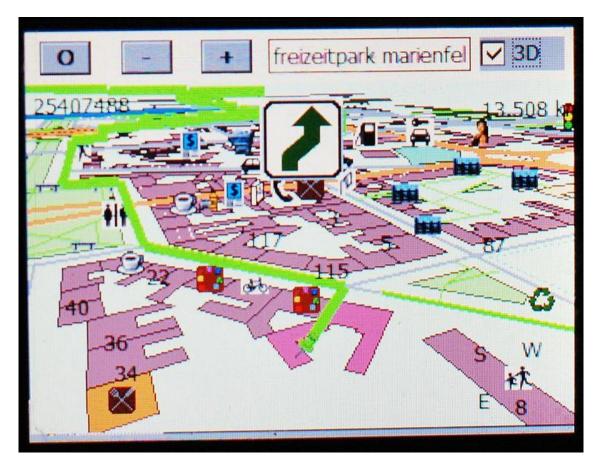
• Strategic (years)

 Urban planning, transport systems construction optimization

- Tactical (months)
 - Trip modelling, travel forecasts, transport system optimization
- Operational (hours or days)
 - Routing problems, cost optimization

Cost of Transportation

• Time, money, comfort, ecology ...


• Graph search on the traffic model for a trip

Source: www.google.com/maps

Cost of Transportation

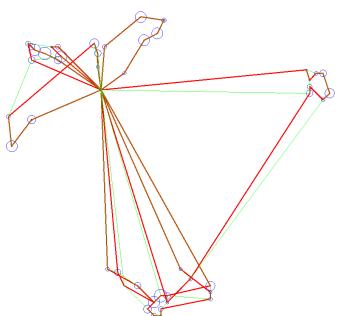
• Personal (car) navigation – bike example

Source: Wikimedia Commons, Gosmore

Cost of Transportation in Logistics

• "Time is money ..."

- High number of trips to be planned
- (shared) Transport resources to be optimized
- Large amount of constraints to be addressed
- Distribution networks and mail services


-> Hard planning problem

Cost of Transportation in Logistics

- Fixed
 - Terminals, hubs, administration
 - Transport equipment
 - Infrastructure (rail, pipelines, ...)
- Variable
 - Fuel, labour, maintenance
 - Taxes, fees, handling, pickup/delivery
- Varies for different mode of transport

- *m* vehicles with defined capacity to deliver to *n* customers required volumes
- Using minimal m bin-packing (BP) problem
- Using shortest trajectories m-TSP problem

 Goal is to find a set of routes keeping given constraints and serving all the costumers

- Exact algorithms
 - Integer programming
 - Branch and bound
 - Optimal, but may be slow on large problems
 - Difficult to include additional constraints

- Heuristic
 - Construction h. building feasible routes
 - Improvement h. improve feasible routes
 - Consistency and feasibility given by a set of constraints
 - Not optimal, but efficient
 - Usually modifications of TSP heuristics
 - In practical cases *m* is given by strategic planning

- Construction heuristics
 - Cluster methods
 - Cluster first, route second (BP -> m-TSP)
 - Route first, cluster second (TSP -> satisfy BP)
- Routing
 - Nearest neighbour
 - Cheapest insertion
 - Sweep algorithm
 - Savings method

- Nearest neighbour
 - Start with the closest customer
 - Add unserved customer nearest to the end of the route
 - Start a new route when vehicle is full
 - Re-optimize each route at the end
 - Easy to build
 - Good TSP heuristic
 - Overlapping routes

- Cheapest insertion
 - Start with empty routes
 - Add an unserved customer to the route with minimal route cost increase
 - Stop using a new route when vehicle is full
 - Re-optimize each route at the end
 - Incremental method
 - Good TSP heuristic
 - Overlapping routes

- Sweep algorithm
 - Draw a ray starting from depot
 - Sweep clockwise and add customers to the route
 - Start a new route when vehicle is full
 - Re-optimize each route at the end
 - Geometrically easy understanding
 - Not overlapping routes
 - Such clustering is good for TSP

- Savings method
 - Build a route for each customer separately
 - Calculate savings for joining two routes
 - Join the routes for the best savings
 - Stop using a route when vehicle is full
 - Stop when no routes can be joined
 - Iterative construction keeping feasibility of the solution
 - Good results, more complex than previous ones

- Improvement heuristics
 - Given (feasible) set of routes find an improved solution
 - Exchange within a route
 - *k*-opt arc exchange, customer position switch
 - Exchange between routes
 - Move customer, switch two (three) customers
 - Local search
 - Simulated annealing, tabu search, genetic algorithms

- Solution constraints
 - Affect feasibility, consistency and cost of the solution
 - Enrich problem variants
 - Time windows, heterogeneous vehicles, multipledepots, drivers working hours, demands compatibility, priorities, pick-up and deliveries, on demand delivery, backhauls, ...
- A lot of problem variants very complex and (often) unique constraints in the real world

Future Transport Planning?

Development is fast Need a good planning

Source: www.amazon.com, www.transportjournal.com/uploads/pics/Goodman-Amazon-Poland.jpg