Introduction

Planning and games
Adam Horky



Lectures

* Trajectorial planning (today Jan Faigl)

e Carmel Domschlack
— block of lectures 4.-8.3.2013

* Rest at the end of semester
— 22.4. Graphplan
— 29.4. Hierarchical planning
— 6.5. Game theory introduction
— 13.5. From one to many



Tutorials

* Before Carmel
— State Space Search revision
— Trajectorial planning

* After Carmel

— Classical planning
— PDDL



Assighemnts

* Two (2 x 15)

e The first will have deadline before Carmel
— 3.3.2013
— Trajectorial planning

* The second around 21.4.2013
— Classical planning - PDDL



State Space Search

Planning and games



Search Space

e Search Space S is a set of states, where the
goal is to find the states that satisfy the
condition g using actions (operators).

* Formally the problem is defined as a tuple
(sO,g, O), where:

— s0 is the initial state
— g is the goal condition
— O is a set of state — transition operators



Uninformed search

 There are various strategies for “uninformed
search” (blind search)

— breadth-first (BFS)

— depth-first (DFS)

— iterative deepening (IDS)
— bidirectional search (BS)
— Uniform cost search



Uninformed search complexity

* Breadth-First Search (complete, optimal)
— Time O(bY)
— Space O(b9)
* Depth-First Search (not complete, not optimal)
— Time O(bd), can be infinite
— Space O(bd)
* |terative deepening (complete, optimal)
— Time O(b9)
— Space O(bd)



Imformed search

e Based on heuristic function h(x)

e The most common
— Hill climbing
— Best-first search
— A¥



State Space Search Framework

begin
OPEN := [Start], CLOSED := []
while OPEN !=[] do
remove node x with the best f(x) value from OPEN
if(x == goal)
return path from Start to x
else expand node x and for each child x;
if(x, is not in OPEN and CLOSED)
compute f(x;)
add x; to OPEN
if(x; is in OPEN)

reset value f(x,), if the new is better
add x to CLOSED

return err



State Space Search Framework

General algorithm

Based on the computation of f(x) we get
different method

f(x) = g(x), g(x) the cost from start to node x,
f(x) = h(x), h(x) estimated cost from x to end,
f(x) = g(x) + h(x), the overall estimated cost



State Space Search Framework

* f(x) = g(x) -> Uniform Cost Search
(uninformed),

* f(x) = h(x), Greedy Best First Search,
* f(x) = g(x) + h(x), A*



Example



Homework

* Implement A*
* Try to do it as a general framework

— use general concepts — state, action, node

— it can be reused then for any other planning
problem



