

O OTEVŘENÁ INFORMATIKA

Distributed Constraint Reasoning 2

Michal Jakob

Artificial Intelligence Center,

Dept. of Computer Science, FEE, Czech Technical University

AE4M36MAS Autumn 2019 - Lect. 9

Formalism Review

Distributed Constraint Reasoning

Constraint Network

A **constraint network** \mathcal{N} is formally defined as a triple $\langle X, D, C \rangle$ where:

- $X = \{x_1, ..., x_n\}$ is a set of **variables**;
- $D = \{D_1, ..., D_n\}$ is a set of finite **variable domains**, which enumerate all possible values of the corresponding variables;
- $C = \{C_1, ..., C_m\}$ is a set of **constraints**; where a constraint C_i is defined on a subset of variables $S_i \subseteq X$ which comprise the **scope of the constraint**
 - $r_i = |S_i|$ is the **arity** of constraint i

Hard vs. Soft Constraints

Hard constraint C_i^h is a Boolean predicate P_i that defines valid joint assignments of variables in the scope

$$P_i: D_{i_1} \times \cdots \times D_{i_r} \to \{F, T\}$$

Soft constraint C_i^s is a **function** F_i that maps every possible joint assignment of all variables in the scope to a real value

$$F_i: D_{i_1} \times \cdots \times D_{i_r} \to \Re$$

We further assume F_i is **non-negative**

non-restrictive, can always shift

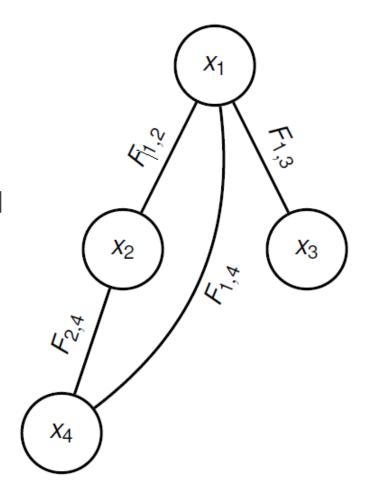
Binary Constraint Networks

Binary constraint networks are those where each **constraint** (soft or hard) is defined **over two variables**.

Every constraint network can be **mapped to a binary** constraint network

- requires the addition of variables and constraints
- may add complexity to the model

Binary constraint networks can be represented by a **constraint graph**



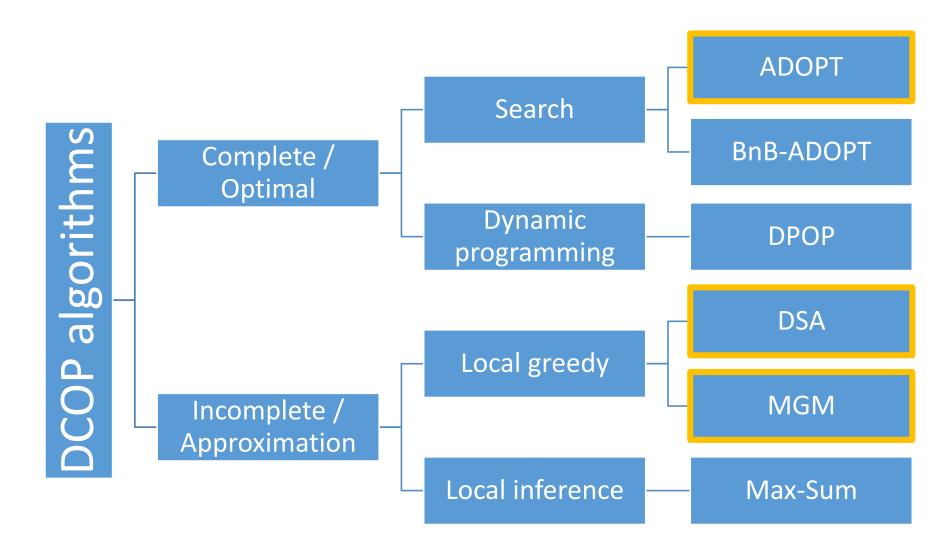
Distributed Constraint Reasoning Problem

A distributed constraint reasoning problem consists of a **constraint network** $\langle X, D, C \rangle$ and a **set of agents** $A = \{A_1, ..., A_k\}$ where each agent:

- controls a subset of the variables $X_i \subseteq X$
- is only aware of constraints that involve variable it controls
- communicates only with its neighbours

This lecture: Distributed Constraint Optimization Problems (DCOPs)

Algorithms for Distributed Constraint Optimization



Asynchronous Complete Algorithms

Search-based

- Uses distributed search
- Exchange individual values
- Small messages but
- . . . exponentially many
- Representative: ADOPT

Dynamic programming

- Uses distributed inference
- Exchange constraints
- Few messages but
- . . . exponentially large
- Representative: **DPOP**

Complete Algorithms

Distributed Constraint Optimization

Asynchronous Backtracking: Assumptions

- 1. Agents communicate by sending messages
- 2. An agent can send messages to others, iff it knows their identifiers (directed communication / no broadcasting)
- 3. The delay transmitting a message is finite but random
- 4. For any pair of agents, messages are **delivered** in the order they were sent
- 5. Agents **know the constraints in which they are involved**, but not the other constraints
- Each agent owns a single variable (agents = variables)
- 7. Constraints are binary (2 variables involved)

not essential, can be lifted

ADOPT*: Asynchronous Distributed OPTimization

First **asynchonous complete** algorithm for optimally solving DCOP

Distributed backtrack search using a "opportunistic" best-first strategy

 agents keep on choosing the best value based on the current available information

Backtrack thresholds used to speed up the search of previously explored solutions.

Termination conditions that check if the bound interval is less than a given valid error bound (0 if optimal)

Pragnesh Jay Modi and colleagues

*ADOPT: asynchronous distributed constraint optimization with quality guarantees; P. Jay Modi, W. M. Shen, M. Tambe, M. Yokoo, Artificial Intelligence, 2005

ADOPT Overview

Opportunistic best-first search strategy, i.e., each agent keeps on choosing the value with **minimum lower bound**.

 Lower bounds are more suitable for asynchronous search—a lower bound can be computed without necessarily having accumulated global cost information.

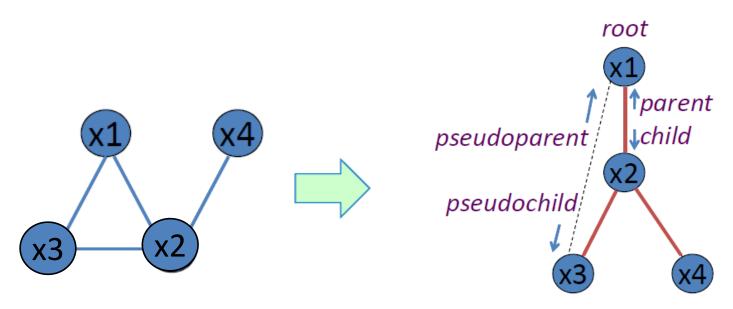
Each agent keeps a **lower and upper bound** on the cost for the **sub-problem below** it (given **assignments from above**) and on the **sub-problems for** each one of its **children**.

It then tells the children to **look for a solution** but **ignore** any **partial solution** whose **cost** is **above** the lower bound because it already knows that it can get that lower cost.

ADOPT: DFS Tree

ADOPT assumes that agents are arranged in a **depth-first search** (**DFS**) tree:

- split constraint graph into a spanning tree and backedges
- two constrained nodes must be in the same path to the root by tree links (same branch), i.e., backedges from a node go to the ancestors of the node



Every graph admits a DFS tree. A DFS can be constructed in polynomial time using a distributed algorithm.

ADOPT: Messages

```
value(parent \rightarrow children \cup pseudochildren, a): parent informs its descendants that it has taken value a;
```

 $cost(child \rightarrow parent, lower bound, upper bound, context)$: child informs parent of the best cost of its assignment; attached context to detect obsolescence;

threshold ($parent \rightarrow child$, threshold): minimum cost of solution in child is at least threshold

termination ($parent \rightarrow children$): solution found, terminated

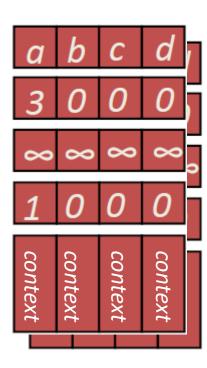
ADOPT: Data Structures (for agent x_i)

- 1. Current context (agent view): list (x_i, v) of values v of higher-level agents x_i sharing a constrain with x_i
- 2. Bounds: for each x_j 's value d and each child x_k
 - lower bounds $lb(d, x_k)$
 - upper bounds $ub(d, x_k)$
 - thresholds $th(d, x_k)$
 - contexts $C(d, x_k)$
- 3. Threshold th

Stored contexts must be **active**:

left-hand side is satisfied in the current context

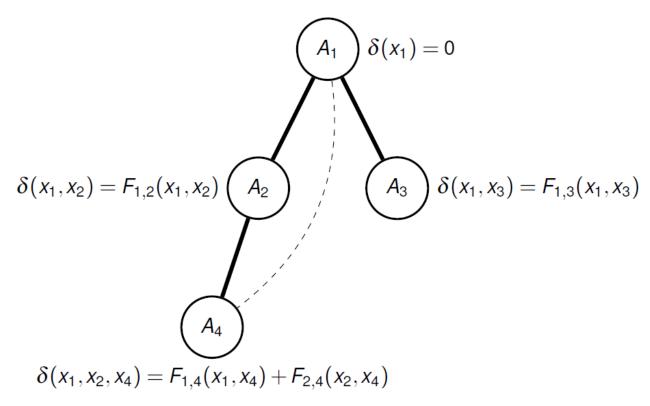
If a children's x_k context becomes **obsolete**, it is **removed/reset**, i.e., $lb(.,x_k)$, $th(.,x_k) \leftarrow 0$, $ub(.,x_k) \leftarrow \infty$



for each children x_k

Local Cost Function

The **local cost function** $\delta(x_i)$ for an agent A_i is the **sum** of the values of **constraints** involving only **higher-level** neighbours in the DFS.



partial cost in the current context $C: \delta_j(d) = \sum_{(x_i,v) \in C} F_{ij}(v,d)$

Key Idea: Opportunistic Best First

$$OPT_{x_j}(\mathcal{C}) = \min_{d \in d_j} (\delta_{\mathbf{j}}(d) + \sum_{x_k \in children(x_j)} \underbrace{OPT_{x_k}(\mathcal{C} \cup (x_j, d)))}_{Not initially known.... but can be bounded!}$$

i.e. the best value for x_j is a value minimizing the **sum** of x_j 's **local cost** and the **lowest cost of children** under the context extended with the assignment

Bound Computation

 OPT_{x_k} values are **incrementally bounded** using $[lb_k, ub_k]$ intervals propagated in **cost** messages.

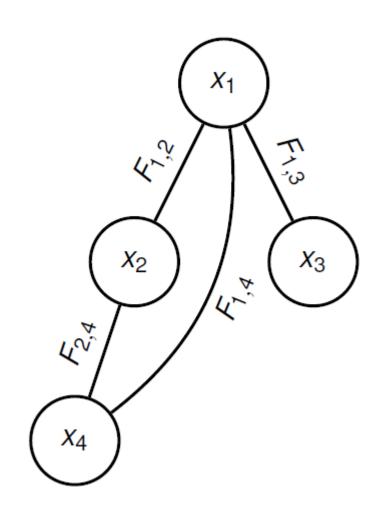
Lower bound computation:

- Each agent evaluates for each possible value of its variable: its local cost function with respect to the current context adding all the contextcompatible lower bound messages received from its children.
- $LB_j(d) = \delta_j(d) + \sum_{x_k \in children(x_i)} lb(d, x_k)$
- $LB_j = \min_{d \in d_j} LB_j(d)$

Upper bound computation:

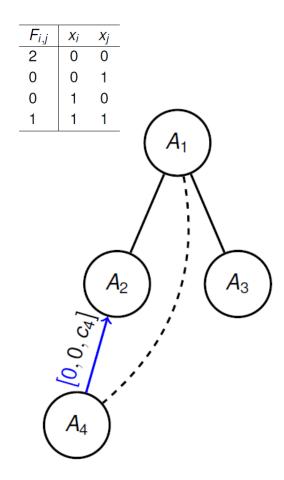
- $UB_j(d) = \delta_j(d) + \sum_{x_k \in children(x_j)} ub(d, x_k)$
- $UB_j = \min_{d \in d_j} UB_j(d)$

Lower Bound Calculation Example



$F_{i,j}$	Xi	Xj
2	0	0
0	0	1
0	1	0
1	1	1

Lower Bound Calculation Example



Local cost function of A_4 :

$$\delta(x_1, x_2, x_4) = F_{1,4}(x_1, x_4) + F_{2,4}(x_2, x_4)$$

Restricted to the current context

$$c_4 = \{x_1 = 0, x_2 = 0\}:$$

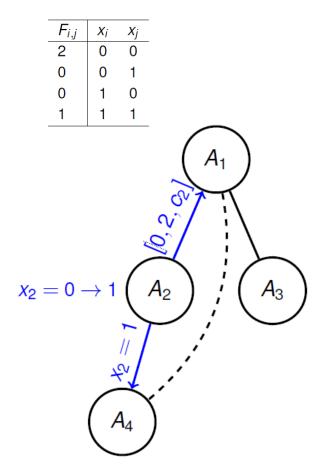
 $\delta(0,0, x_4) = F_{1,4}(0, x_4) + F_{2,4}(0, x_4)$

For
$$x_4 = 0$$
:
 $\delta(0,0,0) = F_{1,4}(0,0) + F_{2,4}(0,0) = 2 + 2 = 4$

For
$$x_4 = 1$$
:
 $\delta(0,0,1) = F_{1,4}(0,1) + F_{2,4}(0,1) = 0 + 0 = 0$

Then the minimum lower bound across variable values is **LB=0**.

Lower Bound Calculation Example



 A_2 computes for each possible value of its variable x_2 its local function restricted to the current context $c_2 = \{x_1 = 0\}$: $\delta(0, x_2) = F_{1,2}(0, x_2)$ and adding lower bound message lb from A_4 :

- For $x_2 = 0$: $LB(x_2 = 0) = \delta(0, x_2 = 0) + lb(x_2 = 0) = 2 + 0 = 2$
- For $x_2 = 1$: $LB(x_2 = 1) = \delta(0, x_2 = 1) + 0 = 0 + 0 = 0$.

 A_2 changes its value to $x_2 = 1$ with $\mathbf{LB} = \mathbf{0}$.

ADOPT Operation

Each time an agent receives a message:

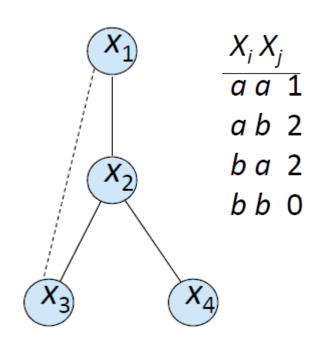
- 1. Processes it:
 - can invalidate context
 - may take a new value minimizing its lower bound
- 2. Sends value messages to its children and pseudochildren
- 3. Sends a **cost** message to its parent
- 4. (threshold messages)

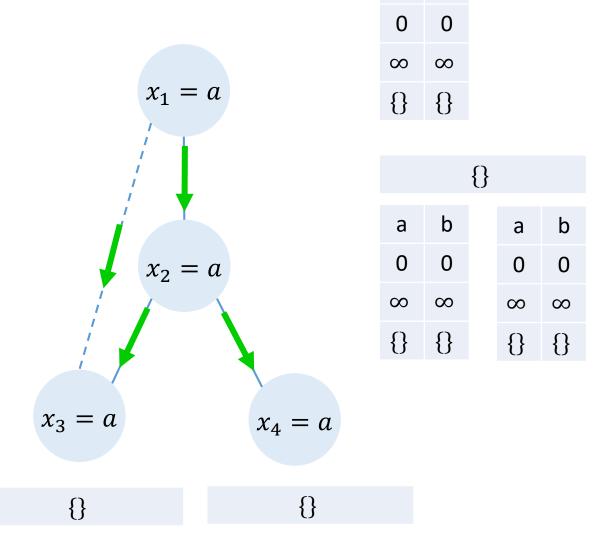
ADOPT: Example

4 Variables (4 agents) x_1 , x_2 , x_3 x_4 with $D = \{a, b\}$

4 binary identical cost functions

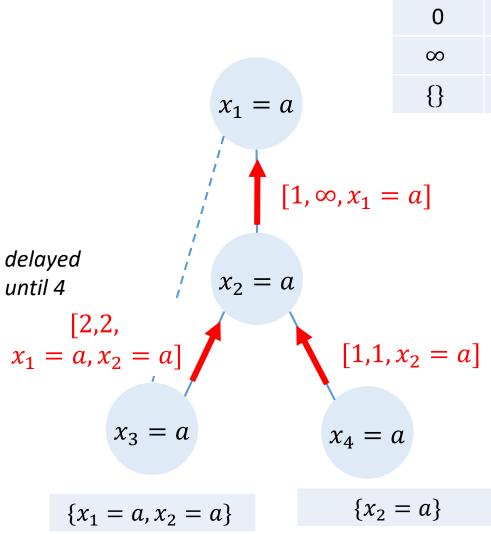
Constraint graph:





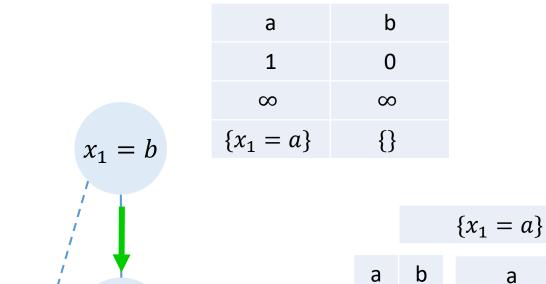
b

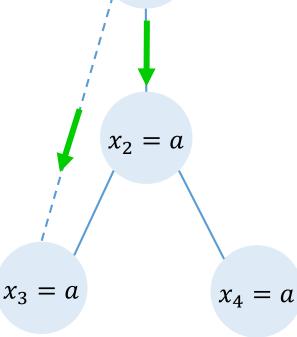
а



b
0
∞
{}

$\{x_1=a\}$					
а	b		а	b	
0	0		0	0	
∞	∞		∞	∞	
{}	{}		{}	{}	





0

 ∞

{}

0

 ∞

{}

$$\{x_2=a\}$$

b

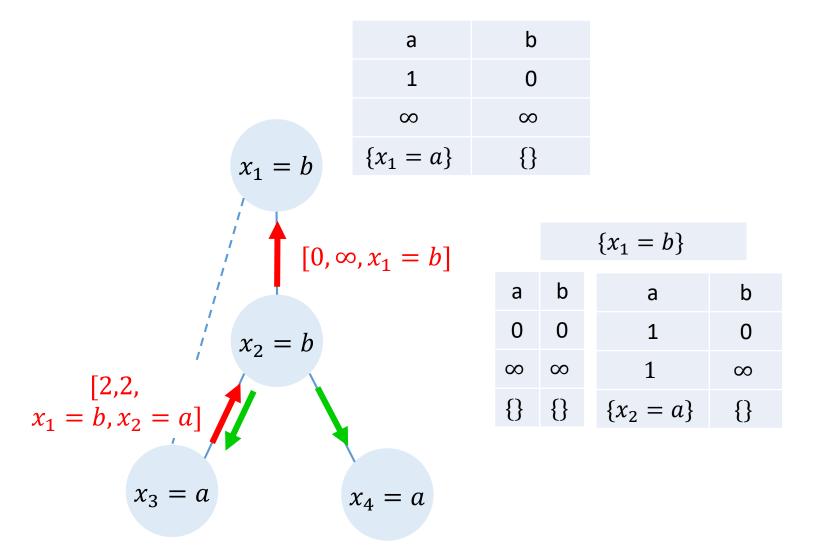
0

 ∞

{}

a

 $\{x_2 = a\}$



$${x_1 = b, x_2 = a}$$

$$\{x_2 = a\}$$

а	b
1	0
∞	∞
$\{x_1 = a\}$	{}

$$x_{1} = b$$

$$\{x_{1} = b\}$$

$$[0,3, x_{1} = b]$$

$$x_{2} = b$$

$$x_{1} = b, x_{2} = b$$

$$x_{2} = b$$

$$x_{3} = b$$

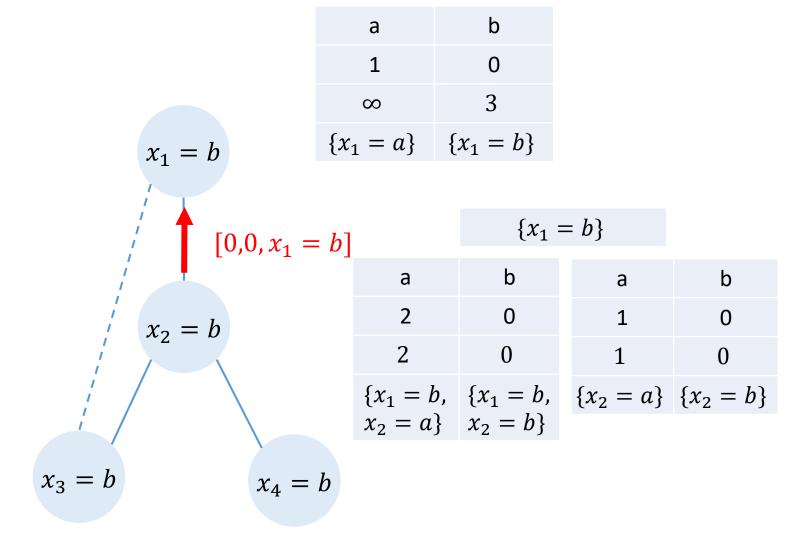
$$x_{4} = b$$

а	b	а	b	
2	0	1	0	
2	∞	1	∞	
$\begin{cases} x_1 = b, \\ x_2 = a \end{cases}$	{}	$\{x_2 = a\}$	{}	
$x_2 = a$				

 $\{x_1=b\}$

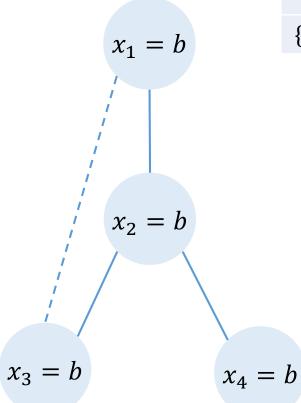
$${x_1 = b, x_2 = b}$$

$$\{x_2 = b\}$$



$${x_1 = b, x_2 = b}$$

$$\{x_2 = b\}$$



а	b	
1	0	TEDNAINIATE
∞	$\left(\begin{array}{c} 0 \end{array}\right) \Rightarrow$	TERMINATE
$\{x_1=a\}$	$\{x_1 = b\}$	

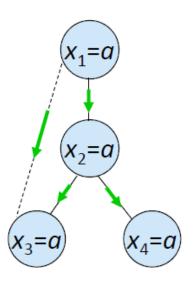
а	b	a	b
2	0	1	0
2	0	1	0
$ \begin{cases} x_1 = b, \\ x_2 = a \end{cases} $	$ \begin{cases} x_1 = b, \\ x_2 = b \end{cases} $	$\{x_2=a\}$	$\{x_2=b\}$

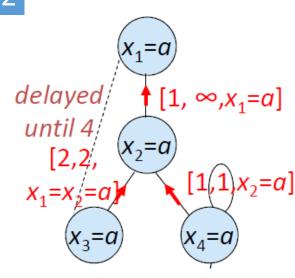
 $\{x_1 = b\}$

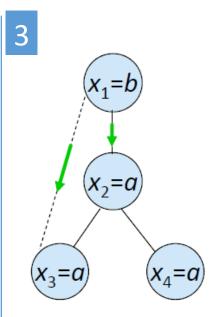
$${x_1 = b, x_2 = b}$$

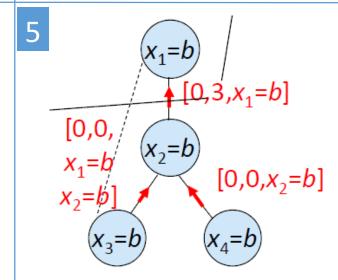
$$\{x_2 = b\}$$

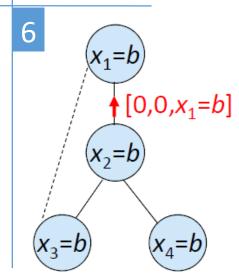
ADOPT Example: Summary











Backtrack Thresholds

The search strategy is based on lower bounds.

Problem

- Lower/upper bounds only stored for the current context
- Values abandoned before proven to be suboptimal

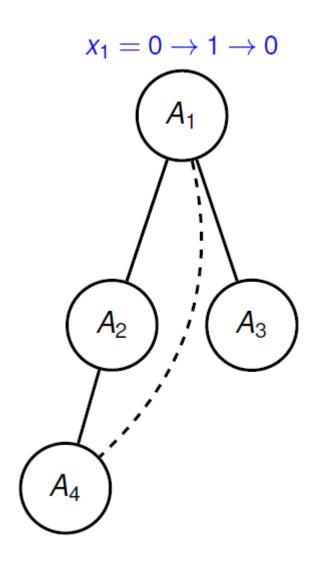
Reconstruction of Abandoned Solutions

 A_1 changes its value and the context with $x_1 = 0$ is visited again.

- Reconstructing from scratch is inefficient
- Remembering solutions is expensive

Detailed cost information **lost** but stored at parent's node in an **aggregated** form.

Can be used for **effective reconstruction** of **abandoned** solutions.



Backend Threshold

Backtrack thresholds: used to speed up the search of previously explored solutions.

- lower bound previously determined by children
- polynomial space

Send by parents to a child as allowance on solution cost:

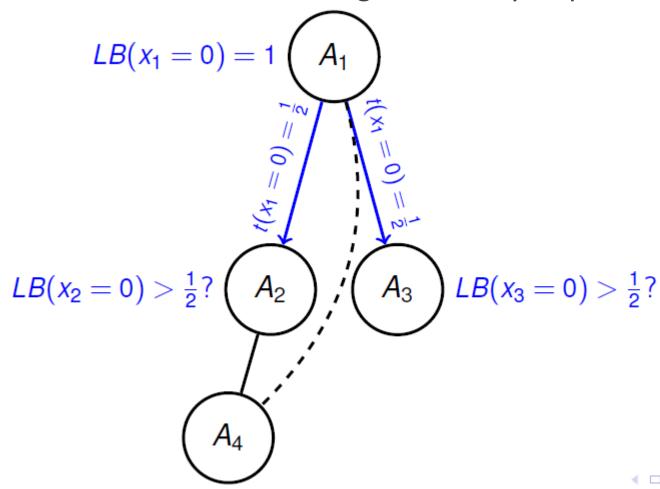
- child then heuristically re-subdivides, or allocates, the threshold among its own children.
- can be incorrect: correct for over-estimates over time as cost feedback is (re)received from the children.

Control backtracking to efficiently search

• **Key point:** do not change value until LB(currentvalue) > threshold, i.e., there is a strong reason to believe that current value is not the best (wait until having accumulated enough cost messages)

Backend Threshold: Example

A child agent will not change its variable value so long as **cost is less** than the **backtrack threshold** given to it by its parent.



Threshold Reballancing

Parent distributes the accumulated bound among children and corrects subdivision as feedback is received from children

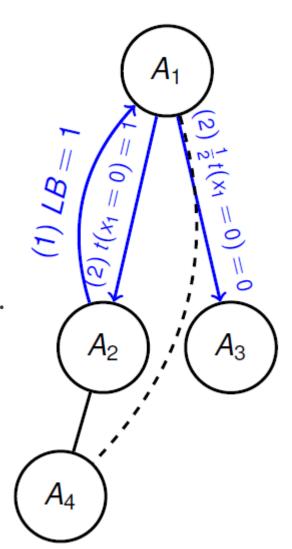
Maintain invariants:

- allocation invariant: the threshold on cost for x_j must equal the local cost of choosing d plus the sum of the thresholds allocated to x_j 's children.
- child threshold invariant: The threshold allocated to child x_k by parent x_j cannot be less than the lower bound or greater than the upper bound reported by x_k to x_j .

Reballancing

When A_1 receives a new lower bound from A_2 rebalances thresholds.

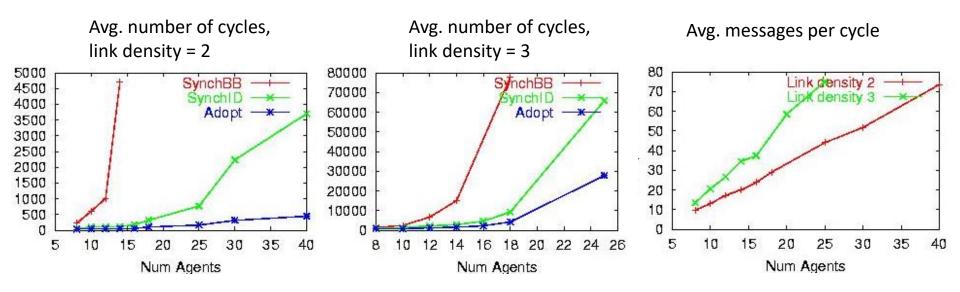
 A_1 resends threshold messages to A_2 and A_3 .



ADOPT Properties

For finite DCOPs with binary **non-negative** constraints, ADOPT is **guaranteed to terminate** with the **globally optimal solution**.

Performance on Graph Coloring



- ADOPT's lower bound search method and parallelism yields significant efficiency gains.
- Sparse graphs (density 2) solved optimally and efficiently by ADOPT.
- Communication only grows linearly
 - thanks to the sparsity of constraint graph

ADOPT Approximation

ADOPT can be used for finding **suboptimal** solutions with **guaranteed error** bound b.

Terminate when **lower bound** at the **root** get within b of the **upper bound**.

Using error bound, **less** of the solution space **explored** → ADOPT is able to find a solution faster, thereby providing a method to **trade-off computation time** for **guaranteed** solution **quality**.

Adopt Summary – Key Ideas

Optimal, asynchronous algorithm for DCOP

polynomial space at each agent

Weak Backtracking

- lower bound-based search method
- Parallel search in independent subtrees

Efficient reconstruction of abandoned solutions

backtrack thresholds to control backtracking

Bounded error approximation

- sub-optimal solutions faster
- bound on worst-case performance

Approximation Algorithms

Distributed Constraint Optimization

Why Approximate Algorithms

Optimality in practical applications often not achievable

Approximate algorithms

- sacrifice optimality in favour of computational and communication efficiency
- well-suited for large-scale distributed applications

NOTE: In the following, we assume the maximization version of DCOPs.

Centralized Local Greedy approaches

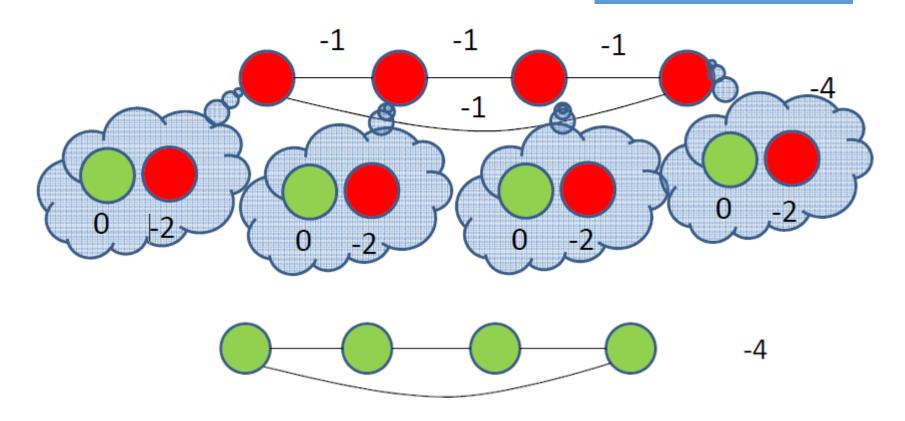
Start from a **random** assignment for all the variables

Do **local moves if** the new assignment **improves** the value (local gain)

Local: changing the value of a **small set** of variables (in most case just one)

The search **stops** when there is **no local move** that provides a **positive gain**, i.e., when the process reaches a local maximum.

Issues with Distributed Local Greedy Algorithms Maximization problem



Parallel execution: A greedy local move might be harmful/useless

→ Need coordination

Issues with Distributed Local Greedy Alg

When operating in a decentralized context:

Problem: Out-of-date local knowledge

- Assumption that other agents do not change their values
- A greedy local move might be harmful/useless

Solution:

- Stochasticity on the decision to perform a move (DSA)
- Coordination among neighbours on who is the agent that should move (MGM)

Distributed Stochastic Algorithm (DSA)

Greedy local search with **activation probability** to mitigate issues with parallel executions

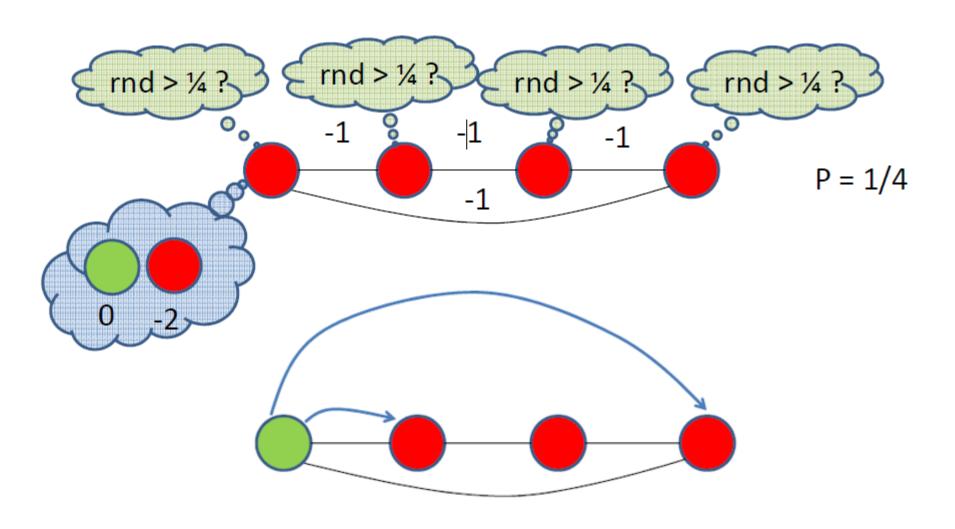
DSA-1: change value of one variable at time

Initialize agents with a random assignment and communicate values to neighbours

Each agent:

- Generates a random number and executes only if it is less than activation probability
- When executing choose a value for the variable such that the local gain is maximized
- Communicate and receive possible variables change to/from neighbours

DSA-1: Execution Example



DSA-1: Discussion

Extremely low computation/communication

Good performance in various domains

- e.g. target tracking [Fitzpatrick Meertens 03, Zhang et al. 03],
- Shows an anytime property (not guaranteed)
- Benchmarking technique for coordination

Problems with the activation probability

- must be tuned [Zhang et al. 03]
- domain-dependent: no general rule, hard to characterise results across domains

Maximum Gain Message (MGM-1)

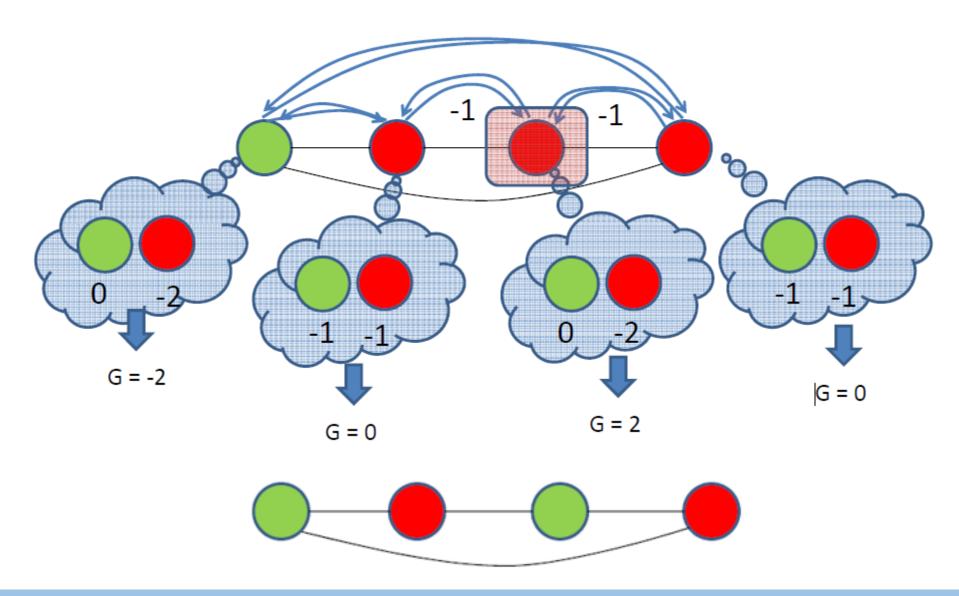
Coordinate among neighbours to decide which **single agent** is going to move

Initialize agents with a **random assignment** and **communicate** values to **neighbours**

Each agent:

- Compute and exchange possible gains
- Agent with maximum (positive) gain executes
- Communicate and receive possible variables changes to/from neighbours

MGM-1: Example



MGM-1 Discussion

More communication than DSA (but still linear)

Empirically, similar to DSA

No threshold to set

Does not require any parameter tuning.

Guaranteed to be monotonic (Anytime behavior)

Local Greedy Approaches

Very little memory and computation.

Anytime behaviours.

But: Could result in very bad solutions (no guarantees)

local maxima arbitrarily far from optimal.

Quality Guarantees for Approximation Techniques

Key area of research

Address trade-off between guarantees and computational effort

Particularly important for:

- dynamic settings
- severe constrained resources (e.g. embedded devices)
- safety critical applications (e.g. search and rescue)

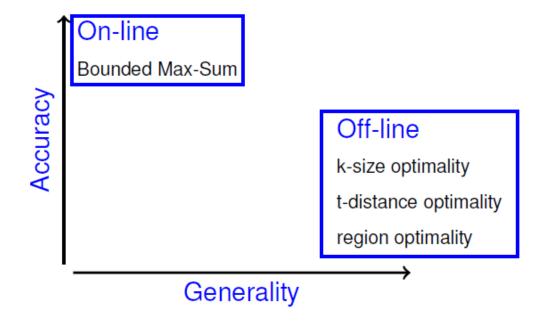
Categories of Quality Guarantees

Off-line

- Prior running the algorithm
- Not tied to specific problem instances

On-line

- After running the algorithm
- On the particular problem instance



Summary

FRODO: a FRamework for Open/Distributed Optimization

Framework for **experimental evaluation** of DCSP/DCOP algorithms

Input

- files defining optimization problems to be solved (in XCSP 2.1 format)
- configuration files defining the algorithm to be used to solve them

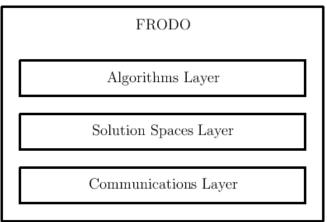
Algorithms implemented

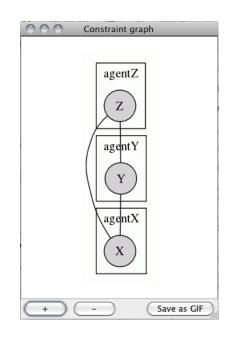
SynchBB, MGM and MGM-2, ADOPT, DSA, DPOP, S-DPOP, MPC-Dis(W)CSP4, O-DPOP, AFB, MB-DPOP, Max-Sum, ASO-DPOP, P-DPOP, P²-DPOP, E[DPOP], Param-DPOP, and P^{3/2}-DPOP

Supports various **performance metrics**

- numbers and sizes of messages sent
- Non-Concurrent Constraint Checks
- simulated time

http://frodo2.sourceforge.net/





Conclusion

Distributed constraint optimization generalizes distributed constraint satisfaction by allowing real-valued constraints

Both complete and approximate algorithms exist

- complete can require exponential number of message exchanges (in the number of variables)
- approximate can return (very) suboptimal solutions

Very active areas of research with a lot of progress – new algorithms emerging frequently

Reading: [Vidal] – Chapter 2; <u>ADOPT: asynchronous distributed constraint optimization with quality guarantees</u>; IJCAI 2011 <u>Optimization in Multi-Agent Systems tutorial</u>, Part 2: 37-61min and Part 3: 0-38min