Agent Architectures and
Programming

Michal Pechoucek, Branislav Bosansky & Michal Jakob
AEAM36MAS Autumn 2016

OTEVRENA "
0| INFORMATIKA %%é = &F!

Selected illustrations taken Russel and Norvig — Atrtificial Intelligence: Modern Approach
Selected slides have been prepared by Terry Payne, University of Liverpool, who kindly provided them for OI/MAS



https://cw.fel.cvut.cz/wiki/courses/be4m36mas/start

Where are we?

Agent architectures (inc. BDI architecture)
Logics for MAS

Non-cooperative game theory

Coalition game theory

Mechanism design

Auctions

Social choice

Distributed constraint reasoning
(satisfaction and optimization)




Introduction to Agents

Agent Architectures

e



Implementing the Agent

How should one implement the agent function?

ﬂgent

Sensors

\J
Actuators

\

-

\

Percepts

Actions

J

Concern 1: Rationality

Concern 2: Computability and tractability

JUSWUOJIAUT

s



Hierarchy of Agents

The key challenge for Al is to find out how to write programs that

produce rational behaviour from a small amount of code rather than

from a large number of table entries.

4+1 basic types of agents in the order of increasing capability:

1.

.
3
4.
5

simple reactive agents
model-based agents with state
goal-based agents
utility-based agents

learning agents

There is a link between the complexity of the task and the minimum
agent architecture required to implement a rational agent.

s



Running Example: Robotic Taxi

Task specification

- Performance measure: the overall profit (= passenger revenues - fines)
- Environment: road network with traffic signs, passengers

- Actions (actuators): driving between junctions, picking up and dropping out
passengers

- Percepts (sensors): current GPS location, junction layout, traffic signs,
passengers

6 s



Simple Reactive Agents

Simple reactive/reflex agent chooses the next action on the

basis of the current percept only.

What the world
is like now
— - What action |
Condition—action rules should do now




Simple Reactive Agent

Condition-action rules provide a way to present common regularities
appearing in input/output associations, example:

If car-in-front-is-braking
=> 1initialize-braking

Function SIMPLE-REACTIVE-AGENT (percept)
rule <= RULE-MATCHING(rules)
action <= rule.ACTION

Return action

Function RULE-MATCHING(state, rules)

s



Simple Reactive Agent for Robotic Taxi

Simple program:

If a passenger at your location
=> pickup the passenger

else Continue in the left-most direction possible

More sophisticated program:

Turn-directions depend on the current GPS location (can
implement specific fixed route through the city)

s



10

Issues with Reactive Agents

Robotic taxi

- driving to a given destination
- respecting traffic signs (e.g. speed limits)

— getting stuck in loops

Reactive agents are simple but of limited intelligence, rational if

1. the environment is fully observable and

2. the decision can be made based solely on the current percept

otherwise may leads to suboptimal action choices, infinite loops.

s



11

Issues with Reactive Agents

Robotic taxi

- driving to a given destination
- respecting traffic signs (e.g. speed limits)

— getting stuck in loops

Reactive agents are simple but of limited intelligence, rational if

1. the environment is fully observable and

2. the decision can be made based solely on the current percept

otherwise may leads to suboptimal action choices, infinite loops.

— |t can be advantageous
to store information about the world in the agent.

s



Model-based Agent

Keeps track of the world by extracting relevant information

from percepts and storing It in its memory.

What the world
is like now
. - What action |
Condition—action rules should do now

12



Model-based Agent

Keeps track of the world by extracting relevant information
from percepts and storing It in its memory.

Model

What the world
How the world evolves

What my actions do

— ; What action |
Condition—action rules should do now

13



Model-based Agent

14

Function SIMPLE-REACTIVE-AGENT (percept)

state <=
UPDATE-STATE(state, action, percept, model)

rule <= RULE-MATCHING(state, rules)
action <= rule.ACTION

Return action

States tracked in the model

passengers’ destinations
traffic signs
visited locations (to avoid cycles)

pickup locations (=> learning)

s



Model-based Reactive Taxi Agent

States tracked in the model

— passengers’ destinations

— traffic signs

- visited locations (to avoid cycles)

~ pickup locations (=> learning)

15

s



Issues with Model-based Agents

Taxi agent: Hot to get to a destination?

- Always move towards the destination location
— can end-up In dead end streets

-~ Hard-code routes between all locations
» memory demanding and of imited intelligence

» €.g. requires reprogramming the agent if street network changes

Cause:
- whats and hows tightly coupled (impossible to tell the agent what to do)

- the agent does not anticipate the effects of its actions (only finds out the
result after having executed the action)

. o



Goal-based Agents

What the world
How the world evolves

What my actions do

— , What action |
Condition—action rules should do now

Goal-based agents are more flexible

Problem: goals are not necessarily achievable by a single action:

- search and planning
17

s



Goal-based Agents

What the world
How the world evolves

. What it will be like
What my actions do if | do action A

What action |
should do now

Goal-based agents are more flexible

Problem: goals are not necessarily achievable by a single action:

— search and planning
18

s



Goal-based Taxi Agent

Uses planning

- Uses a map to find a sequence of movement actions that brings the taxi to
the destination reliable

Issue

-~ will not choose the fastest route

- will not balance revenue vs. fees/fines

Cause: goals alone are not sufficient for decision making:

1. there may be multiple ways of achieving them;

2. agents may have several conflicting goals that cannot be achieved
simultaneously.

. o



Utility-based Agents

Goals only a very crude (binary) distinction between “happy”
and “unhappy” states.

We introduce the concept of utility:
— utility I1s a function that maps a state onto a real number; it captures
“quality” of a state

- 1f an agent prefers one world state to another state then the former
state has higher utility for the agent.

Utility can be used for:
1. choosing the best plan

2. resolving conflicts among goals

3. estimating the successfulness of an agent if the outcomes of actions
are uncertain.

. o



21

Utility-based Agents

Utility-based agent use the utility function to choose the most
desirable action/course of actions to take

What the world
How the world evolves

. What it will be like
What my actions do if | do action A

What action |
should do now




Utility-based Agents

Utility-based agent use the utility function to choose the most

desirable action/course of actions to take

—
e — —

¥ =~
N Sensors

Come e N\

What the world
Q—Iow the world evolves is like Now
Y
. What it will be like
(What my actions do if I do action A

Y

.- : How happy | will be
Utility in such a state
y

What action |
should do now

#

Actuators

22

JUSWIUOJIAUT

)

s



23

Utility-based Taxi Agent

Uses optimizing planning

— searches for the plan that leads to the maximum utility

There are still 1ssues

— irreducible preference orderings

- non-deterministic environment (= Markov decision processes)

s



Deductive Reasoning
Agents Architecture

s



Symbolic Reasoning Agents

® [he classical approach to building agents is to view them as
a particular type of knowledge-based system, and bring all
the associated methodologies of such systems to bear.

® This paradigm is known as symbolic Al.

® \\Ve define a deliberative agent or agent architecture to be
one that:
® contains an explicitly represented, symbolic model of the world;

® makes decisions (for example about what actions to perform) via symbolic
reasoning.

s



Two challenges

The Transduction Problem
Identifying objects is hard!!!

The Representation/Reasoning Problem
Representing objects is harder!

The transduction problem is that of translating the
real world into an accurate, adequate symbolic
description, in time for that description to be
useful.

How to symbolically represent information about
complex real-world entities and processes, and
how to get agents to reason with this information

in time for the results to be useful.
This has led onto research into vision, speech

: : This has led onto research into knowledge
understanding, learning...

representation, automated reasoning, planning...

/



The representation / reasoning problem

® The underlying problem with knowledge representation/
reasoning lies with the complexity of symbol manipulation
algorithms.

® |n general many (most) search-based symbol manipulation algorithms of
interest are highly intractable.

e Hard to find compact representations.

® Because of these problems, some researchers have looked

to alternative techniques for building agents; we look at
these later.

s



Deductive Reasoning Agents

® How can an agent decide what to do using theorem proving?

® Basic idea is to use logic to encode a theory stating the best action to perform
in any given situation.

®| ct:
® p be this theory (typically a set of rules);
® A be a logical database that describes the current state of the world;
® Ac be the set of actions the agent can perform;
® A, ¢ means that ¢ can be proved from A using p.

s



Deductive Reasoning Agents

e How does this fit into the abstract description we talked about last time?

® The perception function is as before:

see : B — Per

® of course, this is (much) easier said than done.

® The next state function revises the database A :

next : A x Per — A
® And the action function?

® \Well a possible action function is on the next slide.

s



Action Function

for each o € Ac do /* try to find an action explicitly prescribed */
if A+, Do(a) then
return «
end-if
end-for

for each a € Ac do /* try to find an action not excluded */
if A I/, ~Do(a) then

return o
end-if
end-for

return null /* no action found */




An example: The Vacuum World

The Vacuum World

The goal is for the robot to clear up all the dirt.

Uses 3 domain predicates in this
exercise:

In(x,y) agent is at (x,y)
Dirt(x,y)  there is dirt at (x,y)

Facing(d) the agent is facing direction d

Possible Actions:

Ac = {turn, forward, suck}

Note: turn means “turn right”

s



An example: The Vacuum World

Facing(north)
Dirt(0,2)
Dirt(1,2)

In(0, 0)

Dirt(0,2)

Dirt(1,2)
Dirt(1,2)

In(1, 0)

Facing(south)
1 Hit
With the system as depicted '
0 A@ above, here are some possible

ways that the system might run.

In(0, 1) In(0, 2) In(0, 2)

’ Facing(north) L

Facing(north) forward Dir9c(0,2) Facing(north)
Dirt(0,2) Dirt(1,2) Dirt(1,2)

In(0, 0) Dirt(1,2)

In(2, 0)
Facing(east) In(1, 0) Faci.ng(east)
Dirt(0,2) forward Facing(east) forward Dirt(0,2)

Dirt(1,2)

s



An example: The Vacuum World

®Rules p for determining what to do:

In(0,0) A Facing(north) A ~Dirt(0,0) — Do(forward)

In(0,1) A Facing(north) A ~Dirt(0,1) — Do(forward)

In(0,2) A Facing(north) A ~Dirt(0,2) — Do(turn)
In(0,2) A Facing(east) — Do(forward)

® ... and so on!

® Using these rules (+ other obvious
ones), starting at (0, 0) the robot will
clear up dirt.

Uses 3 domain predicates
in this exercise:

In(x,y) agent is at (x,y)
Dirt(x,y) there s dirt at (x,y)

. the agent is facin
Facing(d) direcgon d e

Possible Actions:

Ac = {turn, forward, suck}

Note: turn means “turn right”




An example: The Vacuum World

® Problems: ® Typical solutions:
® how to convert video camera ® weaken the logic;
input to Dirt(0), 1)? e use symbolic, non-logical
® decision making assumes a static representations;
environment:

e shift the emphasis of reasoning
* calculative rationality. from run time to design time.
® decision making using first-order

logic is undecidable)!

s



Agent-oriented programming

® Yoav Shoham introduced “agent-oriented programming” in
1990:

“... new programming paradigm, based on a societal view of computation ...”

® [he key idea:

e directly programming agents in terms of intentional notions

® |ike belief, desire, and intention
® Adopts the same abstraction as humans

e Resulted in the AgentO programming language

s



AGENTO

® AGENTO is implemented as an extension to LISP.
® Each agent in AGENTO has 4 components:

® g set of capabilities (things the agent can do);
® Qa set of initial beliefs;
® a set of initial commitments (things the agent will do); and

® 3 set of commitment rules.

® The key component, which determines how the agent acts, is the
commitment rule set.

e Each commitment rule contains

® a message condition;
® a mental condition; and

® an action.

s



AGENTO Decision Cycle

p
On each decision cycle . . .

Actions may be . ..

e Private
® An externally executed computation

e Communicative
e Sending messages

® The message condition is matched against the messages the agent has received,;
® The mental condition is matched against the beliefs of the agent.
e [f the rule fires, then the agent becomes committed to the action (the action gets added to the agents
commitment set).

Messages are constrained to be
one of three types . . .

e requests
e To commit to action

® unrequests
e To refrain from action

® |nforms
e Which pass on information

s



AGENTO Commitment Rules

® [his rule may be paraphrased as
follows:

e if | receive a message from agent which requests
me to do action at time, and | believe that:
® agent is currently a friend;
® | can do the action;
® at rime, | am not committed to doing any other action,

® then commit to doing action at time.

A commitment Rule

COMMIT(
( agent, REQUEST, DO(time, action)
), ;;; msg condition
( B,
[now, Friend agent] AND

CAN(self, action) AND

NOT [time, CMT(self, anyaction)]
), ;;; mental condition
self,
DO(time, action)

)

s



AGENT Programming Languages

1990:
1993:
1996:
1996:
1997
1998:
2000:
2000:
2000:
2002:
2003:
2008:

AGENT-0 (Shoham)

PLACA (Thomas; AGENT-0 extension with plans)

AgentSpeak(L) (Rao; inspired by PRS)
Golog (Reiter, Levesque, Lesperance)
3APL (Hindriks et al.)

ConGolog (Giacomo, Levesque, Lesperance)
JACK (Busetta, Howden, Ronnquist, Hodgson)

GOAL (Hindriks et al.)
CLAIM (Amal El FallahSeghrouchni)

Jason (Bordini, Hubner; implementation of AgentSpeak)

Jadex (Braubach, Pokahr, Lamersdorf)
2APL (successor of 3APL)

Speech acts

Plans

Events/Intentions

Action theories, logical specification
Practical reasoning rules
Capabilities, Java-based
Declarative goals

Mobile agents (within agent commui
AgentSpeak + Communication
JADE + BDI

Modules, PG-rules, ...

s



BDI Agent Architecture

s



CAREERS PRESS

©  Intelligent vehicles
that thrive in a
world without
boundaries.

Vehicles powered by our humanistic Al are engineered to anticipate the unexpected. Unlike
traditional autonomous vehicles, they flourish in dynamic and unpredictable situations. Our
science has been proven in halls of MIT and on the open road. Where else can you take it?




Basic Agent Architectures

Reflex agent Model-based
agent

Goal-based Utility-based
agent agent



Basic Agent Architectures

Goal-based
agent

J el



Goal-based agents

What the world
How the world evolves

. What it will be like
What my actions do if | do action A

What action |
should do now

How to go from goals to actions
effectively?

44



Big Picture

philosophical
foundations

analysis and

design

implementation

45

Practical
reasoning

Deductive
reasoning

BDI
architecture

other
architecture

Various

(modal) logics

Agent
programming
languages

-

Interpreters /
Execution
architectures

solvers, theorem
provers

Interpreters /
Execution
architectures

s



Practical Reasoning

Conceptualizing rational action

46

s



Practical Reasoning

47

» Practical reasoning is reasoning directed towards actions — the process
of figuring out what to do.

» Principles of practical reasoning applied to agents largely derive from
work of philosopher Michael Bratman (1990):

“Practical reasoning is a matter of weighing conflicting
considerations for and against competing options, where the
relevant considerations are provided by what the agent
desires/values/cares about and what the agent believes.”

» Distinguish practical reasoning from theoretical reasoning.



Theoretical vs Practical Reasoning

“In theory, there is no difference between theory and practice.
But, in practice, there is.” — Jan L. A. van de Snepscheut

Theoretical reasoning is reasoning directed towards beliefs — concerned
with deciding what to believe.

» Tries to assess the way things are.
» Process by which you change your beliefs and expectations;.

» Example: you believe g if you believe p and you believe that if p then gq.

Practical reasoning is reasoning directed towards actions — concerned
with deciding what to do.

» Decides how the world should be and what individuals should do.
» Process by which you change your choices, plans, and intentions.

» Example: you go to class, if you must go to class.

. s



The Components of Practical Reasoning

Human practical reasoning consists of two activities:

Deliberation: deciding what state of affairs we want to achieve.

» considering preferences, choosing goals, etc;

» balancing alternatives (decision-theory);

» the outputs of deliberation are intentions;

» interface between deliberation and means-end reasoning.

Q
(@))
O
e
©
S
i)
(7))}

Means-ends reasoning: deciding how to achieve these states of affairs:

» thinking about suitable actions, resources and how to “organize” activity;
» building courses of action (planning);
» the outputs of means-ends reasoning are plans.

tactical

Fact: agents are resource-bounded & world is dynamic!

The key: To combine deliberation & means-ends reasoning appropriately.

49




50

Deliberation

How does an agent deliberate?

Begin by trying to understand what the options available to you are:

» options available are desires.

Choose between them, and commit to some:
» chosen options are then intentions.

s



51

Desires

» Desires describe the states of affairs that are considered for achievement,
i.e., basic preferences of the agent.

» Desires are much weaker than intentions; not directly related to activity:

“My desire to play basketball this afternoon is merely a
potential influence of my conduct this afternoon. It must vie
with my other relevant desires [...] before it is settled what |
will do. In contrast, once | intend to play basketball this
afternoon, the matter is settled: | normally need not continue
to weigh the pros and cons. When the afternoon arrives, | will

normally just proceed to execute my intentions.”
(Bratman 1990)

s



Intentions

» In ordinary speech: intentions refer to actions or to states of mind;

» here we consider the latter!
» E.g., | may adopt/have the intention to be an academic.

» Focus on future-directed intentions i.e. pro-attitudes leading to actions.

» Intentions are about the (desired) future.

» We make reasonable attempts to fulfill intentions once we form them,
but they may change if circumstances do.

» Behavior arises to fulfill intentions.
» |ntentions affect action choice.

. s



53

Functional Components of Deliberation

Option Generation agent generates a set of possible alternatives; via a
function, options, which takes the agent’s current beliefs and
intentions, and from them determines a set of options/desires.

Filtering in which the agent chooses between competing alternatives,
and commits to achieving them. In order to select between
competing options, an agent uses a filter function.

Intentions

Beliefs



Properties of Intentions

54

~N o 0 A o=

Intentions drive means-end reasoning.

Intentions constrain future deliberation (i.e., provide a “filter”).
Intentions persist.

Intentions influence beliefs concerning future practical reasoning.
Agents believe their intentions are possible.

Agents do not believe they will not bring about their intentions.

Under certain circumstances, agents believe they will bring about
their intentions.

Agents need not intend all the expected side effects of their
Intentions.

s



Plans

Human practical reasoning consists of two activities:
Deliberation: deciding what to do. Forms intentions.
Means-ends reasoning: deciding how to do it. Forms plans. Forms plans.

Intentions drive means-ends reasoning: If | adopt an intention, | will attempt
to achieve it, this affects action choice.

R Intentions

Beliefs

. s



56

Commitments

We may think that deliberation and planning are sufficient to achieve desired
behavior, unfortunately things are more complex...

After filter function, agent makes a commitment to chosen option:
» Commitment: an agreement or pledge to do something in the future;

» . it implies temporal persistence.

Questions:

how long should an intention persist?

what is the commitment on?

s



Commitments to Ends and Means

An agent has commitment both to ends (intentions), and means (plans).
» | am committed to meet/see my friend John this week (an intention);

» | am committed to drop-by John's place on Thursday afternoon (a
mean).

Beliefs

. s



Degrees of Commitments

58

Rao and Georgeff (1991) described the following commitment strategies:

Blind /Fanatical commitment A blindly committed agent will continue to
maintain an intention until it believes the intention has
actually been achieved.

Single-minded commitment A single-minded agent will continue to maintain
an intention until it believes that either the intention has been
achieved, or else that it is no longer possible to achieve the
intention.

Open-minded commitment An open-minded agent will maintain an intention until
until achieved as long as it is still believed possible.

s



i

BDI Programming

Operationalizing practical reasoning

59

s



What is BDI Programming Language?

Objective: a

autonomy

pro-activity:
situatedness:
reactivity:

flexibility:

programming language that can provide:

. does not require continuous external control;
pursues goals over time; goal directed behavior;
observe & act in the environment:

perceives the environment and responds to it.

achieve goals in several ways.

robustness: will try hard to achieve goals.

And also: modular scalability & adaptability!

60

AN



What is BDI Programming Language?

We want to program intelligent systems under the following constraints:
The agent interacts with an external environment.
» A grid world with gold pieces, obstacles, and other agents.

The environment is (highly) dynamic; may change in unexpected ways.

» Gold pieces appear randomly.

Things can go wrong; plans and strategies may fail.
» A path may end up being blocked.

Agents have dynamic and multiple objectives.

» Explore, collect, be safe, communicate, etc.
» Motivations/goals/desires may come and go.

. s



What is BDI Programming Language?

Beliefs:
Events:
Plan library:

Intentions:

information about the world.
goals/desires to resolve; internal or external.
recipes for handling goals-events.

partially uninstantiated programs with commitment.

e T
5 ‘f/BFl [EFS O {/DFSIRFS\" 5
ST N

[

— <
\ - N

[T EVENT> [ REASONER ] | ACT]O[\>
: / 1

6z

\/‘\>*/ ,

/——Y—\ \ o
‘ INTFI\TI()\IS

-t

...q___’

ﬂ@\ﬂ%



Intentions

Agent's intentions are determined dynamically by the agent at runtime
based on its known facts, current goals, and available plans.

An intention is just a partially executed strategy:
» comes from the plan library when resolving events.

An intention represent a focus of attention:

» something the agent is currently working on;
» actions/behavjior arises as a consequence of executing intentions.

A An agent may have several intentions active at one time.

» different simultaneous focuses of attention;
A new intention is created when an external event is addressed.

[@ An intention may create/post an internal event:
» the intention will be updated when this event is addressed.

. s



AgentSpeak (L)

64

e Developed by A. S. Rao and has been
influential in the design of other agent
programming languages.

e Programming language for
implementing BDI architectures.

e Extended to make it a practical agent
programming language (R. Bordini).

e AgentSpeak programs can be executed
by the Jason interpreter (R. Bordini et
al.).

— http://jason.sourceforge.net/

e Based on logic programming (Prolog)
using restricted first-order language with
events and actions.

— There are also non-logic-based
agent programming languages.

FWILEY SERIES IN AGENT TECHNOLOGY @WILEY

programming
multi-agent systems

in AgentSpeak

Rafael H. Bordini
Jomi Fred Hiibner
Michael Wooldridge



http://jason.sourceforge.net/
http://jason.sourceforge.net/

AgentSpeak

e The main language constructs of AgentSpeak are:

e Beliefs
e Goals

e Plans

¢ The architecture of an AgentSpeak agent has four main components:

e Belief Base
¢ Plan Library
e Set of Events

e Set of Intentions

65



AgentSpeak - Beliefs and Goals

e Beliefs represent the information available to an agent (e.g., about the
environment or other agents)

publisher (wiley)

e Goals represent states of affairs the agent wants to bring about (come to
believe, when goals are used declaratively)

¢ Achievement goals:
!write(book)
Or attempts to retrieve information from the belief base

¢ Test goals:

?publisher (P)

i
66



AgentSpeak -- Events and Plans

e An agent reacts to events by executing plans
e Events happen as a consequence to changes in the agent’s beliefs or goals
e Plans are recipes for action, representing the agent’s know-how
e An AgentSpeak plan has the following general structure:
triggering event : context <- body.

e where:
¢ the triggering event denotes the events that the plan is meant to handle;
¢ the context represent the circumstances in which the plan can be used;

¢ the body is the course of action to be used to handle the event if the context is
believed true at the time a plan is being chosen to handle the event.

67 S Ss



AgentSpeak -- Events and Plans

e AgentSpeak triggering events:

e +b (belief addition)
e —b (belief deletion)

e +!g (achievement-goal addition)
e —!g (achievement-goal deletion)
e +?g (test-goal addition)

* -2g (test-goal deletion)

¢ The context is logical expression, typically a conjunction of literals to be
checked whether they follow from the current state of the belief base

e The body is a sequence of actions and (sub) goals to achieve.

e NB: This is the original AgentSpeak syntax; Jason allows other things in the
context and body of plans.

65 A1SeS



69

AgentSpeak -- Events and Plans

+green _patch(Rock)

not battery charge(low)

?location(Rock,Coordinates);
lat (Coordinates);
!examine (Rock).

<L =

+!at (Coords)
not at(Coords)

& safe path(Coords)
<- move_towards (Coords);
lat (Coords).

+!at (Coords)

s



Jason

e Jason implements the operational semantics of a variant of AgentSpeak
¢ Various extensions aimed at a more practical programming language

¢ Platform for developing multi-agent systems

e Developed by Jomi F. Hibner and Rafael H. Bordini

e \We'll look at the Jason additions to AgentSpeak and its features

. s



Jason Reasoning Cycle

»| Belief Agent
Beliefs Base
A4
1 2 Events
Percepts ) Plan
EE— perceive BUF | BRF Library
External A External . Selected /
Events Events | Events Beliefs Event
4 Relevant
Beliefs to Internal Check Plans
SocAcc Add and Events Plans
Delete Context
A Applicable Beliefs
. Plans \/
Messages Messages Selected 10 (
—_— checkMail Sy Intended Intention /' procute Action Actions
, | act >
W~ Means Intention
b \ A N N _ ——
AN . .send
\\ AN . Intentions J—
e - - Messages
Suspended Intentions Intentions Push \ N ew . >
P (Actions and Msgs) New Plan \‘ A }Ifwnnon sendMsg -
. E_I:Ie_v; | | R Updated ~—
_____ ! New ! Intention
\J



AgentSpeak: Example

72

ALICE

-~

e During lunch time,

forward all calls to Carla.

e \When | am busy,

incoming calls from
colleagues should be

~

/

s



73

AgentSpeak Example Plans

user (alice).

user (bob) .

user (carla).

user (denise).
~“status(alice, idle).
status (bob, idle).
colleague(bob).
lunch_time(*¢11:30%%).

s



AgentSpeak Example Plans

user (alice).

user (bob) .

user (carla).

user (denise).
~“status(alice, idle).
status (bob, idle).
colleague(bob).
lunch_time(*¢11:30%%).

+invite(X, alice)

lunch_time(t) - tcall_forward(alice, X, carla).
+invite(X, alice)

colleague(X) ¢+ call_forward_busy(alice,X,denise).
+invite(X, Y):

true « connect(X,Y).

+!'call forward(X, From, To)
invite(From, X) +« +invite(From, To), - invite(From,X)

+!1call forward busy(Y, From, To)
invite(From, Y)& not(status(Y, idle)))
+ +invite(From, To), - invite(From,Y).

74

(p1)
(p2)

(p3)

(p4)

N



75

Execution - 1

A new event is sensed from the environment, +invite(Bob, Alice) (there is a

call for Alice from Bob).

There are three relevant plans for this event (p1, p2 and p3)

- the event matches the triggering event of those three plans.

Relevant Plans Unifier
pl: +invite(X, alice) : lunch_time(t)
+1call_forward(alice, X, carla)
p2: +invite(X, alice) : colleague(Bob) {Xﬁ:bob}
+ !call_forward_busy(alice, X, denise).
p3 : +invite(X, Y): true + connect(X,Y). {\@:ahce,
X=bob}

s



Vi pMidll Yo 1o vadltioliTtu — U

=> p2 is applicable.

Execution - 2

Context of plan p2 is satisfied - colleague(bob) => p2 is applicable.

A new Intention based on this plan is created in the set of intentions, because
the event was external, generated from the perception of the environment.

The plan starts to be executed. It adds a new event, this time an internal
event: 'call_forward_busy(alice,bob,denise).

Intention ID |Intention Stack Unifier

1 +invite(X,alice):colleague(X) {X=bob}
<- !call_forward_busy(alice,X,denise)

s



Execution -3

A plan relevant to this new event is found (p5):

Relevant Plans Unifier
p5: +!call_forward_busy(Y, From, To) {From=bob,
invite(From, Y) & not(status(Y, idle))) Y =alice,
+ +invite(From, To), To:denise}
- invite(From.Y).

p5 has the context condition true, so it becomes an applicable plan and it is

pushed on top of intention 1 (it was generated by an internal event)

Intention|Iintention Stack Unifier
ID
2 +!call_forward_busy(Y,From,To) {From=Dbob,
invite(From,Y) & not status(Y,idle) Y=alice,
<- +invite(From,To); -invite(From,Y) To=denise}
1 +invite(X,alice) : colleague(X) {X=bob}
<- !call_forward_busy(alice,X,denise) @§§

77

S



Execution -4

78

A new internal event is created, +invite (bob, denise).

three relevant plans for this event are found, pl, p2 and p3.

However, only plan p3 is applicable in this case, since the others don't have the context
condition true.

The plan is pushed on top of the existing intention.

<- !call_forward_busy(alice,X,denise)

Intention|Iintension Stack Unifier
ID
3 +invite(X,Y) : <- connect(X,Y) {Y=denise,
X=bob}
+!call_forward_busy(Y,From,To) {From=bob,
2 invite(From,Y) & not status(Y,idle) Y =alice,
<- +invite(From,To); -invite(From,Y) To=denise}
1 +invite(X,alice) : colleague(X) {X=bob}

e



Execution-5

On top of the intention is a plan whose body contains an action.

The action is executed, connect (bob, denise) and is removed from the
Intention.

When all formulas in the body of a plan have been removed (i.e., have been
executed), the whole plan is removed from the intention, and so is the
achievement goal that generated It.

Intention ID |Intension Stack Unifier
1 +!call_forward_busy(Y,From,To) : {From:bob,
invite(From,Y) & not status(Y,idle) Y=alice,
<- -invite(From,Y) To=denise?
+invite(X,alice) : colleague(X) {X=bob}
<- !'call_forward_busy(alice,X,denise)

The only thing that remains to be done is -invite(bob, alice) (this event
is removed from the beliefs base).

This ends a cycle of execution, and the process starts all over again, checking
the state of the environment and reacting to events. /%



Jason x Prolog

e With the Jason extensions, nice separation of theoretical and practical
reasoning

e BDI arcthicture allows
* long-term goals (goal-based behaviour)
e reacting to changes in a dynamic environment
e handling multiple foci of attention (concurrency)

e Acting on an environment and a higher-level conception of a distributed
system

e Direct integration with Java

(]V] A SCA R~



