
Agent Architectures and
Programming

Michal Pechoucek, Branislav Bošanský & Michal Jakob
AE4M36MAS Autumn 2016

Selected illustrations taken Russel and Norvig – Artificial Intelligence: Modern Approach 
Selected slides have been prepared by Terry Payne, University of Liverpool, who kindly provided them for OI/MAS

https://cw.fel.cvut.cz/wiki/courses/be4m36mas/start

Where are we?

Agent architectures (inc. BDI architecture)

Logics for MAS

Non-cooperative game theory

Coalition game theory

Mechanism design

Auctions

Social choice

Distributed constraint reasoning  
(satisfaction and optimization)

!2

Agent Architectures
Introduction to Agents

!3

Implementing the Agent
How should one implement the agent function?

Concern 1: Rationality
Concern 2: Computability and tractability

Agent

Actuators

Sensors
Percepts

Actions

?

E
nvironm

ent

Hierarchy of Agents

The key challenge for AI is to find out how to write programs that
produce rational behaviour from a small amount of code rather than
from a large number of table entries.

4+1 basic types of agents in the order of increasing capability:
1. simple reactive agents
2. model-based agents with state
3. goal-based agents
4. utility-based agents
5. learning agents

There is a link between the complexity of the task and the minimum
agent architecture required to implement a rational agent.

!5

Running Example: Robotic Taxi

Task specification

– Performance measure: the overall profit (= passenger revenues - fines)
– Environment: road network with traffic signs, passengers
– Actions (actuators): driving between junctions, picking up and dropping out

passengers
– Percepts (sensors): current GPS location, junction layout, traffic signs,

passengers

!6

Simple Reactive Agents

Simple reactive/reflex agent chooses the next action on the
basis of the current percept only.

!7

Simple Reactive Agent

Condition-action rules provide a way to present common regularities
appearing in input/output associations, example:  

If car-in-front-is-braking  
=> initialize-braking

Function SIMPLE-REACTIVE-AGENT(percept)
 rule <= RULE-MATCHING(rules)
 action <= rule.ACTION
 Return action

Function RULE-MATCHING(state, rules) ...

!8

Simple Reactive Agent for Robotic Taxi

Simple program:

If a passenger at your location  
=> pickup the passenger
else Continue in the left-most direction possible

More sophisticated program:

Turn-directions depend on the current GPS location (can
implement specific fixed route through the city)

!9

Issues with Reactive Agents

Robotic taxi
– driving to a given destination
– respecting traffic signs (e.g. speed limits)
– getting stuck in loops

Reactive agents are simple but of limited intelligence, rational if
1. the environment is fully observable and
2. the decision can be made based solely on the current percept

otherwise may leads to suboptimal action choices, infinite loops.

!10

Issues with Reactive Agents

Robotic taxi
– driving to a given destination
– respecting traffic signs (e.g. speed limits)
– getting stuck in loops

Reactive agents are simple but of limited intelligence, rational if
1. the environment is fully observable and
2. the decision can be made based solely on the current percept

otherwise may leads to suboptimal action choices, infinite loops.

→ It can be advantageous  
to store information about the world in the agent.

!11

Model-based Agent
Keeps track of the world by extracting relevant information
from percepts and storing it in its memory.

!12

Model-based Agent

!13

Model

Keeps track of the world by extracting relevant information
from percepts and storing it in its memory.

Model-based Agent

!14

Function SIMPLE-REACTIVE-AGENT(percept)
 state <=  
 UPDATE-STATE(state, action, percept, model)
 rule <= RULE-MATCHING(state, rules)
 action <= rule.ACTION
 Return action

States tracked in the model
– passengers’ destinations
– traffic signs
– visited locations (to avoid cycles)
– pickup locations (=> learning)

Model-based Reactive Taxi Agent

States tracked in the model
– passengers’ destinations
– traffic signs
– visited locations (to avoid cycles)
– pickup locations (=> learning)

!15

Issues with Model-based Agents

Taxi agent: Hot to get to a destination?
– Always move towards the destination location  
→ can end-up in dead end streets

– Hard-code routes between all locations
» memory demanding and of limited intelligence
» e.g. requires reprogramming the agent if street network changes

Cause:
– whats and hows tightly coupled (impossible to tell the agent what to do)
– the agent does not anticipate the effects of its actions (only finds out the

result after having executed the action)

!16

Goal-based Agents

Goal-based agents are more flexible

Problem: goals are not necessarily achievable by a single action:
! search and planning

!17

Goal-based Agents

Goal-based agents are more flexible

Problem: goals are not necessarily achievable by a single action:
→ search and planning

!18

Goal-based Taxi Agent

Uses planning
– Uses a map to find a sequence of movement actions that brings the taxi to

the destination reliable

Issue
– will not choose the fastest route
– will not balance revenue vs. fees/fines

Cause: goals alone are not sufficient for decision making:
1. there may be multiple ways of achieving them;
2. agents may have several conflicting goals that cannot be achieved

simultaneously.

!19

Utility-based Agents

Goals only a very crude (binary) distinction between “happy”
and “unhappy” states.

We introduce the concept of utility:
– utility is a function that maps a state onto a real number; it captures

“quality” of a state
– if an agent prefers one world state to another state then the former

state has higher utility for the agent.

Utility can be used for:
1. choosing the best plan
2. resolving conflicts among goals
3. estimating the successfulness of an agent if the outcomes of actions

are uncertain.

!20

Utility-based Agents
Utility-based agent use the utility function to choose the most
desirable action/course of actions to take

!21

Utility-based Agents
Utility-based agent use the utility function to choose the most
desirable action/course of actions to take

!22

Utility-based Taxi Agent

Uses optimizing planning
– searches for the plan that leads to the maximum utility

There are still issues
– irreducible preference orderings
– non-deterministic environment (! Markov decision processes)

!23

Deductive Reasoning
Agents Architecture

03 October 2013

Symbolic Reasoning Agents

Two challenges

The representation / reasoning problem

Deductive Reasoning Agents

Deductive Reasoning Agents

Action Function

An example: The Vacuum World

An example: The Vacuum World

An example: The Vacuum World

An example: The Vacuum World

Agent-oriented programming

AGENT0

AGENT0 Decision Cycle

AGENT0 Commitment Rules

AGENT Programming Languages

BDI Agent Architecture

03 October 2013

Basic Agent Architectures

03 October 2013
�42

Basic Agent Architectures

03 October 2013�43

MICHAL JAKOB: BELIEF-DESIRE-INTENTION ARCHITECTURE

Goal-based agents

How to go from goals to actions
effectively?

03 October 2013!44

MICHAL JAKOB: BELIEF-DESIRE-INTENTION ARCHITECTURE

Big Picture

Practical
reasoning

BDI
architecture

Agent
programming

languages

Interpreters /
Execution

architectures

Various
(modal) logics

philosophical
foundations

analysis and
design

implementation

03 October 2013!45

Deductive
reasoning

other
architecture

solvers, theorem
provers

Interpreters /
Execution

architectures

MICHAL JAKOB: BELIEF-DESIRE-INTENTION ARCHITECTURE

Practical Reasoning

Conceptualizing rational action

03 October 2013!46

MICHAL JAKOB: BELIEF-DESIRE-INTENTION ARCHITECTURE

Practical Reasoning

03 October 2013!47

MICHAL JAKOB: BELIEF-DESIRE-INTENTION ARCHITECTURE

Theoretical vs Practical Reasoning

03 October 2013!48

MICHAL JAKOB: BELIEF-DESIRE-INTENTION ARCHITECTURE

The Components of Practical Reasoning
ta

ct
ic

al
st

ra
te

gi
c

03 October 2013!49

MICHAL JAKOB: BELIEF-DESIRE-INTENTION ARCHITECTURE

Deliberation

03 October 2013!50

MICHAL JAKOB: BELIEF-DESIRE-INTENTION ARCHITECTURE

Desires

03 October 2013!51

MICHAL JAKOB: BELIEF-DESIRE-INTENTION ARCHITECTURE

Intentions

03 October 2013!52

MICHAL JAKOB: BELIEF-DESIRE-INTENTION ARCHITECTURE

Functional Components of Deliberation

03 October 2013!53

MICHAL JAKOB: BELIEF-DESIRE-INTENTION ARCHITECTURE

Properties of Intentions

1. Intentions drive means-end reasoning.

2. Intentions constrain future deliberation (i.e., provide a “filter”).

3. Intentions persist.

4. Intentions influence beliefs concerning future practical reasoning.

5. Agents believe their intentions are possible.

6. Agents do not believe they will not bring about their intentions.

7. Under certain circumstances, agents believe they will bring about
their intentions.

8. Agents need not intend all the expected side effects of their
intentions.

03 October 2013!54

MICHAL JAKOB: BELIEF-DESIRE-INTENTION ARCHITECTURE

Plans

03 October 2013!55

MICHAL JAKOB: BELIEF-DESIRE-INTENTION ARCHITECTURE

Commitments

03 October 2013!56

MICHAL JAKOB: BELIEF-DESIRE-INTENTION ARCHITECTURE

Commitments to Ends and Means

03 October 2013!57

MICHAL JAKOB: BELIEF-DESIRE-INTENTION ARCHITECTURE

Degrees of Commitments

03 October 2013!58

An open-minded agent will maintain an intention until
until achieved as long as it is still believed possible.

MICHAL JAKOB: BELIEF-DESIRE-INTENTION ARCHITECTURE

BDI Programming

Operationalizing practical reasoning

03 October 2013!59

Prechod bylo dost nejasny,
predchazejici sekci chybi shrnuti.

MICHAL JAKOB: BELIEF-DESIRE-INTENTION ARCHITECTURE

What is BDI Programming Language?

03 October 2013!60

MICHAL JAKOB: BELIEF-DESIRE-INTENTION ARCHITECTURE

What is BDI Programming Language?

03 October 2013!61

MICHAL JAKOB: BELIEF-DESIRE-INTENTION ARCHITECTURE

What is BDI Programming Language?

03 October 2013!62

MICHAL JAKOB: BELIEF-DESIRE-INTENTION ARCHITECTURE

Intentions

03 October 2013!63

MICHAL JAKOB: BELIEF-DESIRE-INTENTION ARCHITECTURE

AgentSpeak (L)

• Developed by A. S. Rao and has been
influential in the design of other agent
programming languages.

• Programming language for
implementing BDI architectures.

• Extended to make it a practical agent
programming language (R. Bordini).

• AgentSpeak programs can be executed
by the Jason interpreter (R. Bordini et
al.).

– http://jason.sourceforge.net/
• Based on logic programming (Prolog)

using restricted first-order language with
events and actions.

– There are also non-logic-based
agent programming languages.

03 October 2013!64

http://jason.sourceforge.net/
http://jason.sourceforge.net/

MICHAL JAKOB: BELIEF-DESIRE-INTENTION ARCHITECTURE

AgentSpeak

03 October 2013!65

MICHAL JAKOB: BELIEF-DESIRE-INTENTION ARCHITECTURE

AgentSpeak - Beliefs and Goals

03 October 2013!66

MICHAL JAKOB: BELIEF-DESIRE-INTENTION ARCHITECTURE

AgentSpeak -- Events and Plans

03 October 2013!67

MICHAL JAKOB: BELIEF-DESIRE-INTENTION ARCHITECTURE

AgentSpeak -- Events and Plans

03 October 2013!68

MICHAL JAKOB: BELIEF-DESIRE-INTENTION ARCHITECTURE

AgentSpeak -- Events and Plans

03 October 2013!69

MICHAL JAKOB: BELIEF-DESIRE-INTENTION ARCHITECTURE

Jason

03 October 2013!70

MICHAL JAKOB: BELIEF-DESIRE-INTENTION ARCHITECTURE

Jason Reasoning Cycle

03 October 2013!71

MICHAL JAKOB: BELIEF-DESIRE-INTENTION ARCHITECTURE

AgentSpeak: Example

• During lunch time,  
forward all calls to Carla.

• When I am busy,
incoming calls from
colleagues should be

ALICE

03 October 2013!72

AgentSpeak Example Plans

user(alice).
user(bob).
user(carla).
user(denise).
~status(alice, idle).
status(bob, idle).
colleague(bob).
lunch_time(“11:30”).

!73

AgentSpeak Example Plans

user(alice).
user(bob).
user(carla).
user(denise).
~status(alice, idle).
status(bob, idle).
colleague(bob).
lunch_time(“11:30”).

+invite(X, alice) :
lunch_time(t) ← !call_forward(alice, X, carla). (p1)

+invite(X, alice) :
colleague(X) ← call_forward_busy(alice,X,denise). (p2)

+invite(X, Y):
true ← connect(X,Y). (p3)

+!call_forward(X, From, To) :
invite(From, X) ← +invite(From, To), - invite(From,X) (p4)

+!call_forward_busy(Y, From, To) :
invite(From, Y)& not(status(Y, idle)))
← +invite(From, To), - invite(From,Y). (p5)
 !74

MICHAL JAKOB: BELIEF-DESIRE-INTENTION ARCHITECTURE

Execution - 1

A new event is sensed from the environment, +invite(Bob, Alice) (there is a
call for Alice from Bob).

There are three relevant plans for this event (p1, p2 and p3)

– the event matches the triggering event of those three plans.

Relevant Plans Unifier

p1: +invite(X, alice) : lunch_time(t)
 ←!call_forward(alice, X, carla)

p2: +invite(X, alice) : colleague(Bob)
 ← !call_forward_busy(alice, X, denise).

{X=bob}

p3 : +invite(X, Y): true ← connect(X,Y). {Y=alice,
X=bob}

03 October 2013!75

MICHAL JAKOB: BELIEF-DESIRE-INTENTION ARCHITECTURE

Execution - 2

Context of plan p2 is satisfied - colleague(bob) => p2 is applicable.

A new intention based on this plan is created in the set of intentions, because
the event was external, generated from the perception of the environment.

The plan starts to be executed. It adds a new event, this time an internal
event: !call_forward_busy(alice,bob,denise).

Intention ID Intention Stack Unifier
1 +invite(X,alice):colleague(X)

<- !call_forward_busy(alice,X,denise)
{X=bob}

03 October 2013!76

of plan p2 is satisfied - colleague(bob)
=> p2 is applicable.

MICHAL JAKOB: BELIEF-DESIRE-INTENTION ARCHITECTURE

Execution - 3

A plan relevant to this new event is found (p5):

Relevant Plans Unifier
p5: +!call_forward_busy(Y, From, To) :
invite(From, Y) & not(status(Y, idle)))
 ← +invite(From, To),
 - invite(From,Y).

{From=bob,
Y=alice,
To=denise}

p5 has the context condition true, so it becomes an applicable plan and it is
pushed on top of intention 1 (it was generated by an internal event)

Intention
ID

Intention Stack Unifier

2

1

+!call_forward_busy(Y,From,To) :
invite(From,Y) & not status(Y,idle)
<- +invite(From,To); -invite(From,Y)

{From=bob,
Y=alice,
To=denise}

+invite(X,alice) : colleague(X)
<- !call_forward_busy(alice,X,denise)

{X=bob}

03 October 2013!77

MICHAL JAKOB: BELIEF-DESIRE-INTENTION ARCHITECTURE

Execution - 4

A new internal event is created, +invite(bob, denise).
three relevant plans for this event are found, p1, p2 and p3.
However, only plan p3 is applicable in this case, since the others don’t have the context
condition true.
The plan is pushed on top of the existing intention.

Intention
ID

Intension Stack Unifier

3

2

1

+invite(X,Y) : <- connect(X,Y) {Y=denise,
X=bob}

+!call_forward_busy(Y,From,To) :
invite(From,Y) & not status(Y,idle)
<- +invite(From,To); -invite(From,Y)

{From=bob,
Y=alice,
To=denise}

+invite(X,alice) : colleague(X)
<- !call_forward_busy(alice,X,denise)

{X=bob}

03 October 2013!78

MICHAL JAKOB: BELIEF-DESIRE-INTENTION ARCHITECTURE

Execution - 5
On top of the intention is a plan whose body contains an action.
The action is executed, connect(bob, denise) and is removed from the
intention.
When all formulas in the body of a plan have been removed (i.e., have been
executed), the whole plan is removed from the intention, and so is the
achievement goal that generated it.

Intention ID Intension Stack Unifier
1 +!call_forward_busy(Y,From,To) :

invite(From,Y) & not status(Y,idle)
<- -invite(From,Y)

{From=bob,
Y=alice,
To=denise}

+invite(X,alice) : colleague(X)
<- !call_forward_busy(alice,X,denise)

{X=bob}

■ The only thing that remains to be done is –invite(bob, alice) (this event
is removed from the beliefs base).

■ This ends a cycle of execution, and the process starts all over again, checking
the state of the environment and reacting to events.

03 October 2013!79

MICHAL JAKOB: BELIEF-DESIRE-INTENTION ARCHITECTURE

Jason x Prolog

03 October 2013!80

