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Motivating Example: Ride Sharing

People travelling between locations and would 
like to share a ride. 
▪ some can pick up others on their way to their 

destination; others have to go out of their way to pick 
up others.

▪ a car can only hold 5 people.

Assume people care about (1) money and (2) 
time and it is possible to convert between the 
two.

Who should rideshare together? 

How much should they pay each other? 
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Concerns

Rationality
▪ the person should should save more money than she looses time

Fairness
▪ savings in money and loses in time should be fairly distributed

Cooperative game theory formalizes such notions and provides 
techniques for working with them.
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Introduction
Cooperative Game Theory
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Model of coalition (team) formation
▪ friends agreeing on a trip

▪ entrepreneurs trying to form companies

▪ companies cooperating to handle a large contract

Assumes a coalition can achieve more than (the sum of) 
individual agents
▪ Better to team up and split the payoff than receive payoff individually

Also called coalitional game theory

Called cooperative but agents still pursue their own interests!

Cooperative Game Theory
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Non Cooperative vs. Cooperative GT

Non-cooperative GT

Payoffs go directly to 
individual agents

Players choose an action

Model of strategic 
confrontation

7

*transferable utility games
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Cooperative GT

Payoffs go to coalitions which 
redistribute them to their 
members*

Players choose a coalition to join 
and agree on payoff distribution

Model of team / cooperation 
formation

Players are self-interested



Example: Task Allocation

A set of tasks needs to be performed requiring different types of
expertise/resources.

Agents do not have enough resource on their own to perform all
tasks and they need to team up with complementary agents to 
perform the tasks

Example:
▪ transport domain: agents are trucks, trains, airplanes, or ships. Tasks are 

shipping orders to be transported (or think airline alliances).

▪ robots have the ability to move objects in a plant, but multiple robots are 
required to move a heavy box.
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The parliament of Micronesia is made up of four political parties,
A, B, C, and D, which have 45, 25, 15, and 15 representatives,
respectively. 

They are to vote on whether to pass a $100 million spending bill 
and how much of this amount should be controlled by each of the 
parties. 

A majority vote, that is, a minimum of 51 votes, is required in 
order to pass any legislation, and if the bill does not pass then 
every party gets zero to spend.

Example: Voting Game
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Example: Joint Paper Co-authorship Game

Researchers teaming up to work on a joint research paper 
together. When successfully published, the paper contributes to 
each researcher’s reputation.

 non-transferable payoff  (except for the bonus)
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Example: Buying Ice-cream

𝒏 children, each has some amount of money
▪ the 𝑖-th child has 𝑏𝑖 dollars

Three types of ice-cream tubs are for sale:
▪ Type 1 costs $7, contains 500g 

▪ Type 2 costs $9, contains 750g

▪ Type 3 costs $11, contains 1kg 

Children have care about ice-cream
and do not care about money

The payoff of each group: the maximum quantity
of ice-cream the members of the group can buy 
by pooling their money

The ice-cream can be shared arbitrarily within the group
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How Is a Cooperative Game Played? 

1. Knowing the payoffs for different coalitions, agents analyze 
which coalitions and which payoff distributions would be 
beneficial for them.

2. Agents agree on coalitions and payoff distributions 
▪ requires contracts – infrastructure for cooperation

3. Task is executed and the payoff is distributed.

We will now see how to formalize these ideas.
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Basic Definitions
Cooperative Game Theory
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Coalitional Games

TRANSFERABLE UTILITY 
GAMES
Payoffs are given to the 
group and then divided 
among its members.

Satisfied whenever there is 
a universal currency that is 
used for exchange in the 
system.

NON-TRANSFERABLE 
UTILITY GAMES
Group actions result in 
payoffs to individual group 
members.

There is no universal 
currency.
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Transferable utility assumption: the payoff to a coalition may be 
freely redistributed among its members.

Coalitional Game with Transferable
Utility

Definition (Coalitional game with transferable utility)

A coalitional game with transferable utility is a pair (𝑵, 𝒗) where
• 𝑁 is a finite set of players (also termed grand coalition), 

indexed by 𝑖; and 
• 𝑣: 2𝑁 ↦ ℝ is a characteristic function (also termed valuation 

function) that associates with each coalition 𝑆 ⊆ 𝑁 a real-
valued payoff 𝒗(𝑺) that the coalition’s members can distribute 
among themselves. We assume 𝑣 ∅ = 0.
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Simple Example

𝑁 = {1,2,3}
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Illustrative Example

Characteristic function 𝑣(𝐶)
▪ 𝑣 ∅ = 𝑣({𝐶}) = 𝑣({𝑀}) = 𝑣({𝑃}) = 0

▪ 𝑣({𝐶, 𝑀}) = 500, 𝑣({𝐶, 𝑃}) = 500, 𝑣({𝑀, 𝑃}) = 0

▪ 𝑣({𝐶, 𝑀, 𝑃}) = 750

17

Charlie: $4               Marcie: $3                 Pattie: $3
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Outcome and Payoff Vector

Payoff is individually rational (also called imputation) 
if 𝑥𝑖 ≥ 𝑣( 𝑎𝑖 )

We only assume efficient payoff distributions, i.e., the whole 
payoff of a coalition is distributed among its members.

Note: When the coalition structure is not explicitly mentioned, a 
grand coalition (all players) is assumed
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Definition (Outcome and Payoff)

An outcome of a game (𝑁, 𝑣) is a pair (𝐶𝑆, Ԧ𝑥) where 
• 𝐶𝑆 = (𝐶1, … , 𝐶𝑘), ڂ𝑖 𝐶𝑖 = 𝑁 , 𝐶𝑖 ∩ 𝐶𝑗 = ∅ for 𝑖 ≠ 𝑗, is a 

coalition structure, i.e., a partition of 𝑁 into coalitions.
• Ԧ𝑥 = (𝑥1, … , 𝑥𝑛), 𝑥𝑖 ≥ 0 for all 𝑖 ∈ 𝑁, σ𝑖∈C 𝑥𝑖 = 𝑣(𝐶) for 

each 𝐶 ∈ 𝐶𝑆, is a payoff (distribution) vector which 
distributes the value of each coalition in 𝐶𝑆 to the coalition’s 
members.
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Example

𝑺 𝒗(𝑺)

(1) 2

(2) 2

(3) 4

(1 2) 5

(1 3) 7

(2 3) 8

(1 2 3) 9
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Outcome examples

(1)(2)(3)

(1)(2 3) (2) (1 3) (3) (1 2)

(1 2 3)

2 + 2 + 4 = 8

2  +  8 = 10 2   +   7 = 9 4   +   5 = 9

9

Ԧ𝑥 = (2, 3, 4)

Not stable!



Superadditive Games

In superadditive games, two coalitions can always merge without 
losing money (i.e. their members can work without interference); 
hence, we can assume that players form the grand coalition.
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Definition (Superadditive game)

A coalitional game (𝑁, 𝑣) is called superadditive if 𝑣 𝐶 ∪ 𝐷 ≥
𝑣 𝐶 + 𝑣(𝐷) for every pair of disjoint coalitions 𝐶, 𝐷 ⊆ 𝑁.

? Is the icecream game superadditive?

Yes.
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Solution Concepts
Cooperative Games
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What are the outcomes that are likely to arise in cooperative 
games?

Rewards from cooperation need to be divided in a motivating
way.

Fairness: How well payoffs reflect each agent’s contribution?

Stability: What are the incentives for agents to stay in a coalition 
structure?

Solution Concepts
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What Is a Good Outcome?

Characteristic function

𝑣 Ø = 𝑣 𝐶 = 𝑣 𝑀 = 𝑣 𝑃 = 𝑣 𝑀, 𝑃 = 0, 𝑣 𝐶, 𝑀 =
𝑣 𝐶, 𝑃 = 500, 𝑣({𝐶, 𝑀, 𝑃}) = 750

How should the players share the ice-cream?
▪What about sharing as (200, 200, 350) ?

▪ The outcome (200, 200, 350) is not stable ( Charlie and Marcie can get 
more ice-cream by buying a 500g tub on their own, and splitting it equally)

25

C: $4                     M: $3                 P: $3
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Under what payoff distributions is the outcome of a game 
stable?
▪ As long as each subcoalition earns at least as much as it can make on its 

own. 

▪ This is the case if and only if the payoff vector is drawn from a set called the 
core.

The core of a game is the set of all stable outcomes, i.e., 
outcomes that no coalition wants to deviate from.
▪ analogue to strong Nash equilibrium (allows deviations by groups of

players)

Core

Definition (Core)

A payoff vector Ԧ𝑥 is in the core of a coalitional game (𝑁, 𝑣) iff

∀𝐶 ⊆ 𝑁, ෍

𝑖∈𝐶

𝑥𝑖 ≥ 𝑣(𝐶)
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Ice-Cream Game: Core

𝑣 Ø = 𝑣 𝐶 = 𝑣 𝑀 = 𝑣 𝑃 = 𝑣 𝑀, 𝑃 = 0, 𝑣 𝐶, 𝑀 =
𝑣 𝐶, 𝑃 = 500, 𝑣({𝐶, 𝑀, 𝑃}) = 750

Is (200, 200, 350) in the core? 
▪ No! 𝑣({𝐶, 𝑀}) > 𝑥𝐶 + 𝑥𝑀

Is (250, 250, 250) in the core?
▪ Yes! No subgroup of players can deviate so that each member of the 

subgroup gets more

Is (750, 0, 0) in the core?
▪ Yes! Marcie and Pattie cannot get more on their own!..

▪  but not very fair

27
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Core: Example

In the core, i.e., ∀𝑆 ⊆ 𝑁, σ𝑖∈S 𝑥𝑖 ≥ 𝑣(𝑆)?

Ԧ𝑥 = (2, 1, 2)

Ԧ𝑥′ = 2, 2, 2

Ԧ𝑥′′ = (1, 2, 3)

No

Yes

No

෍

𝑖∈S

𝒙𝒊

2

1

2

3

4

3

5

෍

𝑖∈S

𝑥𝑖
′

2

2

2

4

4

4

6

෍

𝑖∈S

𝑥𝑖
′′

1

3

2

3

3

5

6
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Is the core always non-empty?

Core: Existence

No. Core existence guaranteed only for certain special 
subclasses of games.
▪ convex games always have non-empty core (and Shapley value is in the 

core)

▪ a simple game has a non-empty core iff it has a veto player. 

Core is also not unique (there might be infinitely many payoff 
divisions in the core).
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𝜀-Core
If the core is empty, we may want to find approximately stable 
outcomes. 

Need to relax the notion of the core:      
▪ core:     Ԧ𝑥 𝐶 = σ𝑖∈𝐶 𝑥𝑖 ≥ 𝑣(𝐶) for all 𝐶 ⊆ 𝑁

▪ 𝜀-core: Ԧ𝑥 𝐶 ≥ 𝑣 𝐶 − 𝜀 for all 𝐶 ⊆ 𝑁

Example:
𝑁 = {1, 2, 3}, 𝑣(𝐶) = 1 if |𝐶| > 1, 𝑣 𝐶 = 0 otherwise
▪ 1/3-core is non-empty: (1/3, 1/3, 1/3) 1/3-core

▪ 𝜀-core is empty for any 𝜀 < 1/3:
 𝑥𝑖 ≥ 1/3 for some 𝑖 = 1, 2, 3, so Ԧ𝑥(𝑁 ∖ {𝑖}) ≤ 2/3, 𝑣(𝑁{𝑖}) = 1
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Definition (𝝐-Core)

A payoff vector Ԧ𝑥 is in the 𝝐-core of a superadditive coalitional
game (𝑁, 𝑣) for some 𝜖 ∈ ℝ iff

෍

𝑖∈𝐶

𝑥𝑖 ≥ 𝑣(𝐶) − 𝜖 ∀𝐶 ⊆ 𝑁



Least Core

If an outcome Ԧ𝑥 is in ε-core, the deficit 𝑣(𝐶) − Ԧ𝑥(𝐶) of any 
coalition is at most ε.

We are interested in outcomes that minimize the worst-case 
deficit.

Example (previous slide): least core = 1/3-core.

Least core is always non-empty.
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Definition (Least Core)

Given a superadditive coalitional game G = (𝑁, 𝑣) let 

𝜖∗ 𝐺 = inf 𝜖 𝜖−core of G is non−empty .

The least core of G is its 𝜖∗ 𝐺 -core. The quantity 𝜖∗ 𝐺 is 
called the value of the least core. 



Further Solution Concepts 

Nucleolus 

Bargaining set

Kernel

33

more complicated
stability considerations
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How should we fairly distribute a coalition’s payoff?  

Distributing Payments

• If the agents form (12), how much should each get paid?

34
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What is fair?

Axiomatic approach – a fair payoff distribution should satisfy:
▪ Symmetry: if two players contribute the same, they should receive the same 

pay-off (they are interchangeable)

▪ Dummy player: players that do not add value to any coalition should get 
what they earn on their own

▪ Additivity: if two games are combined, the value a player gets should be the 
sum of the values it gets in individual games

Fairness: Axiomatic Approach
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Players 𝑖 and 𝑗 are interchangeable if they always contribute the 
same amount to every coalition of the other agents.
▪ for all 𝐶 that contains neither 𝑖 nor 𝑗, 𝑣(𝐶 ∪ {𝑖}) = 𝑣(𝐶 ∪ {𝑗}).

The symmetry axiom states that such equally capable agents 
should receive the same payoff.

Axiomatizing Fairness: Symmetry

Axiom (Symmetry)

If 𝑖 and 𝑗 are interchangeable, then 𝑥𝑖 = 𝑥𝑗 .
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Player 𝑖 is a dummy player if the amount that 𝑖 contributes to any 
coalition is exactly the amount that 𝑖 is able to achieve alone.
▪ for all 𝐶 such that 𝑖 ∉ 𝐶: 𝑣(𝐶 ∪ {𝑖}) − 𝑣(𝐶) = 𝑣({𝑖}).

The dummy player axiom states that dummy players should 
receive a payoff equal to exactly the amount that they achieve on 
their own.

Axiomatizing Fairness: Dummy Player

Axiom (Dummy player)

If 𝑖 is a dummy player, then 𝑥𝑖 = 𝑣( 𝑖 ).
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Consider two different coalitional games, defined by two different 
characteristic functions 𝑣′ and 𝑣′′, involving the same set of 
players.

The additivity axiom states that if we re-model the setting as a 
single game in which each coalition 𝑆 achieves a payoff of 𝑣′(𝑆) +
𝑣′′(𝑆), the players’ payoffs in each coalition should be the sum of 
the payoffs they would have achieved for that coalition under the 
two separate games.

Axiomatizing fairness: Additivity

Axiom (Additivity)

If Ԧ𝑥′ and Ԧ𝑥′′ are payoff distributions in the game (𝑁, 𝑣′) and 
(𝑁, 𝑣′′), respectively, then 𝑥𝑖

+ = 𝑥𝑖
′ + 𝑥𝑖

′′ where Ԧ𝑥+is the
payoff distribution in a game 𝑁, 𝑣′ + 𝑣′′ .
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This payoff division is called Shapley value.

Shapley Value

Theorem

Given a coalitional game (𝑁, 𝑣), there is a unique payoff 

division 𝜙(𝑁, 𝑣) that divides the full payoff of the grand 
coalition and that satisfies the Symmetry, Dummy player and 
Additivity axioms.
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This captures the “average marginal contribution” of player 𝑖, 
averaging over all the different sequences according to which the 
grand coalition could be built up from the empty coalition. (i.e. 
the average of marginal contributions of player 𝑖 taken over all 
permutations of 𝑁)

Shapley Value

Definition (Shapley value)

Given a coalitional game (𝑁, 𝑣), the Shapley value of player 𝑖 is 
given by

𝜙𝑖 𝑁, 𝑣 =
1

𝑁!
෍

𝑆⊆𝑁∖{𝑖}

𝑆 ! 𝑁 − 𝑆 − 1 ! [𝑣 𝑆 ∪ 𝑖 − 𝑣 𝑆 ]

40OPEN INFORMATICS / MULTIAGENT SYSTEMS: COOPERATIVE GAME THEORY

Does Shapley value always exist??



Shapley Value:  Example

If they form (12), how much should 
each get paid?

𝜙1 =
1

2
𝑣 1 − 𝑣 + 𝑣 21 − 𝑣 2

=
1

2
1 − 0 + 6 − 3 = 2

𝜙2 =
1

2
𝑣 2 − 𝑣 + 𝑣 12 − 𝑣 1

=
1

2
3 − 0 + 6 − 1 = 4

41
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Shapley Value: Ice Cream Example

𝑣 Ø = 𝑣 𝐶 = 𝑣 𝑀 = 𝑣 𝑃 = 𝑣 𝑀, 𝑃 = 0, 𝑣 𝐶, 𝑀 = 𝑣 𝐶, 𝑃 =
500, 𝑣 𝐶, 𝑀, 𝑃 = 750

Shapley value for Charlie?

𝜙𝐶 =
1

3!
ቀ

ቁ

𝑣 𝐶 − 𝑣 ∅ + 𝑣 𝐶𝑀 − 𝑣 𝑀 + 𝑣 𝐶𝑃 − 𝑣 𝑃 +

2 𝑣 𝐶𝑀𝑃 − 𝑣 𝑀𝑃 =
1

6
൫

൯

0 − 0 + 500 − 0 + 500 − 0 + 2 ∗

750 − 0 =
1

6
500 + 500 + 1500 = 416

2

3

42
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An important subclass of superadditive games

Convexity is a stronger condition than superadditivity.
▪ “a player is more useful when he joins a bigger coalition”

Convex games have a number of useful properties
▪ the core is always non-empty

▪ Shapley value is in the core

Convex Games

MAS LECTURE 8: COOPERATIVE GAME THEORY

Definition (Convex game)

A coalitional game (𝑁, 𝑣) is termed convex if 𝑣 𝐶 ∪ 𝐷 ≥ 𝑣 𝐶 +
𝑣 𝐷 − 𝑣(𝐶 ∩ 𝐷) for every pair of coalitions 𝐶,𝐷 ⊆ 𝑁.
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Simple Games 

Model of yes/no voting systems.

A coalition 𝐶 in a simple game is said to be winning if 𝑣(𝐶) = 1
and losing if 𝑣(𝐶) = 0.

A player 𝑖 in a simple game is a veto player if 𝑣(𝐶) = 0 for any 
𝐶 ⊆ 𝑁 ∖ {𝑖}
▪ equivalently, by monotonicity, v(N\{i}) = 0.

Traditionally, in simple games an outcome is identified with a 
payoff vector for N.

Theorem: A simple game has a non-empty core iff it has a veto 
player. 

44

Definition (Simple game)

A coalitional game (𝑁, 𝑣) is termed simple if 𝑣 𝐶 ∈ 0,1 for any 
𝐶 ⊆ 𝑁 and 𝑣 is monotone, i.e., if 𝑣 𝐶 = 1 and 𝐶 ⊆ 𝐷, then
𝑣 𝐷 = 1.

MAS LECTURE 8: COOPERATIVE GAME THEORY



Relation of Game Clases
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Representation Aspects
Cooperative Game Theory
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A naive representation of a coalition game is infeasible 
(exponential in the number of agents):
▪ e.g. for three agents 1, 2, 3 :

(1) = 5 (1, 3) = 10

(2) = 5 (2, 3) = 20

(3) = 5 (1, 2, 3) = 25

(1, 2) = 10

We need a succinct/compact representations.

Completeness vs. succinctness
▪ Complete: can represent any game but not necessarily succinct. 

▪ Succinct: small-size but incomplete – can only represent an (important) 
subclass.

Need for Compact Representations
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Compact Representations

48

Combinatorial 
optimization 

games

Weighted 
voting games

Complete 
representation 

languages

incomplete complete
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Induced Subgraph (Weighted Graph) Games

Characteristic function defined by an undirected weighted graph.  
Value of a coalition 𝑆 ⊆ 𝑁: 𝑣 𝑆 = σ 𝑖,𝑗 ⊆S 𝑤𝑖,𝑗

Incomplete representation (not all characteristic functions can be 
represented) 

If all edge weights are non-negative, the game is convex (=> non-
empty core.)

Easy to compute the Shapley value for a given player in 
polynomial time:  𝑠ℎ𝑖 =

1

2
σ𝑗≠𝑖 𝑤𝑖,𝑗

49

𝑣 1, 2, 3 = 3 + 2 = 5
𝑣 4 = 5
𝑣 2,4 = 1 + 5 = 6
𝑣 1,3 = 2

1 2

43

2

4

1

3

5
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Other Combinatorial Representations

Network flow games
▪ players are edges in a network with source s

and sink t

▪ value of a coalition = amount of s–t flow it can 
carry

Assignment games
▪ Players are vertices of a bipartite graph

▪ Value of a coalition = weight of 
the max-weight induced matching

Matching games
▪ generalization of assignment games to other 

than bipartite graphs

50
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Weighted Voting Games

Defined by (1) overall quota 𝑞 and (2) weight 𝑤𝑖 for each player 𝑖

Coalition is winning if the sum of their weights exceeds the 

quota 𝑣 𝐶 = ቊ
1 if σ 𝑖∈𝐶 𝑤𝑖 ≥ 𝑞

0 otherwise

Example: Simple majority voting: 𝑤𝑖 = 1 and 𝑞 = 𝑁 + 1 /2

Succinct (but incomplete representation): 𝑞, 𝑤1, … , 𝑤𝑛
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Complete Representations

Marginal contribution nets
▪ Represents characteristic function as rules: pattern→value

Synergy coalition groups
▪ only represents values of coalitions of size 1 and those where there is a 

synergy

Skill-based representation
▪ agents are assigned a set of skills

▪ payoff depends on skills in a coalition

Agent-type representation
▪ agents classified into a small number of types

▪ characteristic function depends on the number of agents of certain type
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Coalition Structure 
Generation
How do we partition the set of agents into coalitions to 
maximize the overall profit?

54
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So far the focus was on distributing the gains from cooperation…

…now we focus on maximizing those gains.

Trivial if superadditive grand coalition.

Otherwise: Search for the best coalition structure.

Finding Optimal Coalition Structure
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Coalition structure generation problem

Let 𝒫𝐶 is the set of all coalition structures over the set 𝐶.

Given coalition game 𝑁, 𝑣 , a subset 𝐶 ⊆ 𝑁 and a coalition 
structure 𝐶𝑆 ∈ 𝒫𝐶, let 𝑉(𝐶𝑆) denote the value of CS, which is 
calculated as follows: 

𝑉 𝐶𝑆 = σ𝐶′∈𝐶𝑆 𝑣(𝐶′). 
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Definition (Coalition structure generation problem)

The coalition structure generation problem for a coalition game 
(𝑁, 𝑣) is to find an optimal coalition structure 𝐶𝑆∗ ∈ 𝒫𝑁, i.e., an 
(arbitrary) element of the set 

argmax𝐶𝑆∈𝒫𝑁 𝑉 𝐶𝑆



optimal 
coalition 
structure

Example: given three players, the possible coalitions are:

{1}        {2}        {3}        {1,2}        {1,3}        {2,3}        {1,a2,3}

The possible coalition structures are:

{{1},{2},{3}}        {{1,2},{3}}       {{2},{1,3}}       {{1},{2,3}}        {{1,2,3}}

The Coalition Structure Generation Problem

57

v({1}) = 20

v({2}) = 40

v({3}) = 30

v({1,2}) = 70

v({1,3}) = 40

v({2,3}) = 65

v({1,2,3}) = 95

The input is the 
characteristic function

What we want as output is a 
coalition structure in which the 

sum of values is maximized

V( {{1},{2},{3}} ) = 20+40+30 = 90

V( {{1,2},{3}} ) = 70+30 = 100

V( {{2},{1,3}} ) = 40+40 = 80

V( {{1},{2,3}} ) = 20+65 = 85         

V( {{1,2,3}} = 95
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Search Space Representation
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Coalition 
structure graph

• Categorizes coalitions 
based on numbers of 
coalitions they contain

Integer 
partition graph

• Categorizes coalition 
structures based on sizes 
of coalitions they 
contain



P𝑖
𝑁 ⊆ PN contains all coalition structures that consist of exactly i coalitions

Coalition Structure Graph (for 4 players)

Edge connects two coalition structures iff: 
1. they belong to two consecutive levels 𝒫𝑖

𝑁 and 𝒫𝑖−1
𝑁

2. the coalition structure in  𝒫𝑖−1
𝑁 can be obtained from the one in 𝒫𝑖

𝑁 by 
merging two coalitions into one
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{1},{2},{3,4} {3},{4},{1,2} {1},{3},{2,4} {2},{4},{1,3} {1},{4},{2,3} {2},{3},{1,4}

{1},{2},{3},{4}

{1},{2,3,4} {1,2},{3,4} {2},{1,3,4} {1,3},{2,4} {3},{1,2,4} {1,4},{2,3} {4},{1,2,3}

{1,2,3,4}

P4
𝑁

P3
𝑁

P2
𝑁

P1
𝑁
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Integer Partition Graph (example of 4 players)
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{{1}, {2}, {3,4}} ,

{{2}, {3}, {1,4}} ,

{{1}, {3}, {2,4}} ,

{{2}, {4}, {1,3}} ,

{{1}, {4}, {2,3}} ,

{{3}, {4}, {1,2}}

{{1}, {2}, {3}, {4}}

{{1,2}, {3,4}} ,

{{1,3}, {2,4}} ,

{{1,4}, {2,3}}

{{1, 2, 3, 4}}

{{1}, {2,3,4}} ,

{{2}, {1,3,4}} ,

{{3}, {1,2,4}} ,

{{4}, {1,a2,3}}

{4}

{1,3}

{1,1,1,1}

{2,2}

{1,1,2}

Every node represents a subspace (coalition sizes match the integers in that 
node)

the subspace 
represented 

by node {1,3}

=P{1,1,2}
𝑁

=P{2,2}
𝑁 P{1,3}

𝑁 =

P{1,1,1,1}
𝑁 =

P{4}
𝑁 =

Two nodes representing partitions 𝐼, 𝐼′ ∈ ℐ𝑛 are connected iff there exists two parts 
𝑖, 𝑗 ∈ 𝐼 such that 𝐼′ = (𝐼 ∖ {𝑖, 𝑗})⨄{𝑖 + 𝑗}
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Challenge

Challenge: the number of coalitions for 𝑛 players: 

𝛼𝑛𝑛/2 ≤ 𝐵𝑛 ≤ 𝑛𝑛

for some positive constant 𝛼 (𝐵𝑛 is a Bell number)
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Algorithms for Coalition Formation

Optimal: Dynamic programming

Anytime (suboptimal) algorithms with guaranteed bounds

Heuristics algorithms

Algorithms for compact representation games
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A

A A

A

. . .

Dynamic Programming (DP) Algorithm

Main observation: To find the optimum coalition structure, it is 
sufficient to:
▪ try the possible ways to split the set of players into two subsets, and

▪ for each subset, find the optimal partition of that subset.
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Dynamic Programming (DP) Algorithm
Main theorem: Given a coalition 𝐶 ∈ 𝑁, let 𝒫𝐶be the set of 
partitions of 𝐶, and let 𝑓(𝐶) be the value of an optimal partition 
of 𝐶, i.e., 𝑓(𝐶) = max

𝑃∈𝒫𝐶
𝑉(𝑃). Then,

64

𝑓 𝐶 =
𝑣(𝐶) if 𝐶 = 1

max 𝑣 𝐶 , max
𝐶′,𝐶′′ ∈𝒫𝐶

𝑓 𝐶′ + 𝑓 𝐶′′ otherwise

the value of the coalition 
itself (without partitioning)

C

the maximum value for all such binary partitions

. . .

C

C C

C
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Dynamic Programming (DP) Algorithm

Algorithm:
▪ Iterate over all coalitions 𝐶: |𝐶| = 1, then over all 𝐶: |𝐶| = 2, then all 

𝐶: |𝐶| = 3, etc.

▪ For every coalition, 𝐶, compute 𝑓(𝐶) using the above equation

▪While computing  𝑓(𝐶):
▪ the algorithm stores in 𝑡(𝐶) the best way to split 𝐶 in two

▪ unless it is more beneficial to keep 𝐶 as it is (i.e., without splitting)

▪ By the end of this process, 𝑓(𝑁) will be computed, which is by definition the 
value of the optimal coalition structure

▪ It remains to compute the optimal coalition structure itself, by using 𝑡(𝑁)
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evaluations performed before settingcoalition

V({1,2})=50    f({1})+f({2})=70

V({1,3})=60    f({1})+f({3})=55

V({1,4})=80    f({1})+f({4})=75 

V({2,3})=55    f({2})+f({3})=65

V({2,4})=70    f({2})+f({4})=85

V({3,4})=80    f({3})+f({4})=70

V({1,2,3})=90           f({1})+f({2,3})=95 

f({2})+f({1,3})=100     f({3})+f({1,2})=95

V({1,2,4})=120         f({1})+f({2,4})=115 

f({2})+f({1,4})=110    f({4})+f({1,2})=115

V({1,3,4})=100          f({1})+f({3,4})=110 

f({3})+f({1,4})=105     f({4})+f({1,3})=105

V({2,3,4})=115          f({2})+f({3,4})=120 

f({3})+f({2,4})=110     f({4})+f({2,3})=110

V({1,2,3,4})=140         f({1})+f({2,3,4})=150  

f({2})+f({1,3,4})=150    f({3})+f({1,2,4})=145 

f({4})+f({1,2,3})=145    f({1,2})+f({3,4})=150 

f({1,3})+f({2,4})=145    f({1,4})+f({2,3})=145

{1} {2}

{1,3}

{1,4}

{2} {3}

{2} {4}

{3,4}

{2} {1,3}

{1,2,4}

{1} {3,4}

{2} {3,4}

{1,2}  {3,4}

{1,2}

{1,3}

{1,4}

{2,3}

{2,4}

{3,4}

{1,2,3}

{1,2,4}

{1,3,4}

{2,3,4}

{1,2,3,4}

70

60

80

65

85

80

100

120

110

120

150

V({1})=30

V({2})=40

V({3})=25

V({4})=45

{1}

{2}

{3}

{4}

{1}

{2}

{3}

{4}

30

40

25

45

step 1

step 2

step 3

step 4

v({1}) = 30

v({2}) = 40

v({3}) = 25

v({4}) = 45

v({1,2}) = 50

v({1,3}) = 60

v({1,4}) = 80

v({2,3}) = 55

v({2,4}) = 70

v({3,4}) = 80

v({1,2,3}) = 90

v({1,2,4}) = 120

v({1,3,4}) = 100

v({2,3,4}) =  115

v({1,2,3,4}) = 140

input:

step 5

t ff
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Dynamic Programming (DP) Algorithm

While DP is guaranteed to find an optimal coalition structure, 
many of its operations were shown to be redundant

 An improved dynamic programming algorithm (called IDP) was 
developed that avoids all redundant operations
▪ Advantage: IDP is the fastest algorithm that finds an optimal coalition 

structure in 𝑶(𝟑𝒏)

▪ Disadvantage:  IDP provides no interim solutions before completion, 
meaning that it is not possible to trade computation time for solution 
quality.
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Anytime Algorithms

Anytime algorithm is one whose solution quality improves 
gradually as computation time increases.
▪ This way, an interim solution is always available in case the algorithm run to 

completion.

Advantages:
▪ agents might not have time to run the algorithm to completion

▪ being anytime makes the algorithm more robust against failure.

Categories of algorithms
▪ algorithms based on identifying subspaces with worst-case guarantees

▪ algorithms based on the integer-partition based representation.

68OPEN INFORMATICS / MULTIAGENT SYSTEMS: COOPERATIVE GAME THEORY



Cooperative game theory models the formation of teams of 
selfish agents.
▪ coalitional game formalizes the concept

▪ core solution concept address the issue of coalition stability

▪ Shapley value solution concept represents a fair distribution of payments

For practical computation, compact representations of coalition 
games are required.

For non-superadditive games, (optimal) coalition structure needs 
to be found.

Reading:
▪ [Weiss]: Chapter 8: https://goo.gl/fykGbo

▪ [Shoham]: 12.1-12.2

▪ [Vidal]: Chapter 4

Conclusions
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