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Previously ... on multi-agent systems.

1 Agent Architectures

2 Non-cooperative Game Theory

3 Distributed Constraint Satisfaction/Optimization

4 Cooperative/Coalitional Game Theory

5 Social Choice



Condorcet Winner and Extension

Rules that satisfy Condorcet extension:

Copelands rule: an alternative gets a point for every pairwise
majority win, and some fixed number of points between 0 and
1 (say, 1/2) for every pairwise tie. The winners are the
alternatives with the highest number of points.

Maximin rule: evaluate every alternative by its worst pairwise
defeat by another alternative assigning some score (e.g., the
difference between the votes for and against). The winners are
candidates X with minX maxY score(X,Y )

(score(X,Y ) is positive only in case X loses in the pairwise
comparison with Y ).



... and now ...



Auctions



Auctions and Mechanism Design

Definition (Auction)

An auction is a protocol that allows agents (=bidders) to indicate
their interests in one or more resources and that uses these
indications of interest to determine both an allocation of
resources and a set of payments by the agents. [Shoham &
Leyton-Brown 2009]

Auctions are an example of Mechanism Design – designing
mechanisms (rules, protocols, algorithms) where rational agents
participate.



Auctions and Mechanism Design

Types of auctions:

single-item

multi-item

one-sided

two-sided

There are other resource allocation mechanisms (e.g., without
money) where resources (possibly bundled) are distributed among
the agents.

facility location

allocation of divisible goods (cake cutting)

allocation of indivisible goods (CPU, memory)



Resource Allocations

Two key indicators of social welfare. Aspects of efficiency (not
computational) include:

The chosen agreement should be such that there is no
alternative agreement that would be better for some and not
worse for any of the other agents (Pareto optimality).

If the preferences are quantitative, the sum of all payoffs
should be as high as possible (utilitarianism).

Aspects of fairness include:

No agent should prefer to take the bundle allocated to one of
its peers rather than keeping their own (envy-freeness).

The agent that is going to be worst off should be as well off
as possible (egalitarianism).



Simple Auction Mechanisms

single-item one-sided auctions:

English - The auctioneer sets a starting price for the good,
and agents then have the option to announce successive bids,
each of which must be higher than the previous bid (usually
by some minimum increment set by the auctioneer).

Japanese - The auctioneer sets a starting price for the good
that is (continuously) increasing and the agents must confirm
that they still want to buy the good for that price.

Dutch - The auctioneer begins by announcing a high price
and then successively lower the price. The auction ends when
the first agent signals the auctioneer that she buys the good
for the current price.



Auctions and Mechanism Design

single-item one-sided auctions (continued):

1st price sealed-bid - Each agent submits to the auctioneer
a secret, “sealed” bid for the good that is not accessible to
any of the other agents. The agent with the highest bid must
purchase the good. In a first-price sealed-bid auction (or
simply first-price auction) the winning agent pays an amount
equal to his own bid.

2nd price sealed-bid - In a second-price auction the winning
agent pays an amount equal to the next highest bid (i.e., the
highest rejected bid).



Auctions as Games

What is the optimal strategy in auctions? A strategy in a game.

Definition (Bayesian Game)

A Bayesian game is a tuple 〈N ,A,Θ, p, u〉 where

N = {1, . . . , n} is the set of players

Θ = Θ1 × . . .×Θn, Θi is the type space of player i

A = A1 × . . .×An, Ai is the set of actions where Ai is the
set of actions for player i

p : 0→ [0, 1] is a common prior over types

u = u1, . . . , un, where ui : 0→ R is the utility function of
player i

Bayes-Nash equilibrium (BNE): rational, risk-neutral players are
seeking to maximize their expected payoff, given their beliefs about
the other players’ types.



Auctions as Games

A sealed bid auction under independent private values (IPV) is a
Bayesian game in which

player i’s actions correspond to his bid bi

player types Θi correspond to player’s private valuations vi
over the auctioned item(s)

the payoff of a player i corresponds to his/her valuation of the
item vi minus payed bid bi



Truth Telling in Second-Price Sealed-Bid Auctions

The analysis of auctions/mechanisms is difficult. Often, we want
to find mechanisms where truth telling (i.e., bi = vi) is the optimal
(dominant) strategy.

Theorem

Truth-telling is a dominant strategy in a second-price sealed bid
auction (assuming independent private values (IPV) model and risk
neutral bidders).

Proof We show that the utility for deviating from the true
valuation of player i will not be strictly better.



Truth Telling in Second-Price Sealed-Bid Auctions



Dutch and First-price Sealed-bid Auctions

These two mechanisms are strategically equivalent: an agent bids
without knowing about the other agents’ bids

a bidder must decide on the amount he’s willing to pay,
conditioned on having placed the highest bid

Few differences:

First-price auctions can be held asynchronously

Dutch auctions are fast, and require minimal communication

There is no dominant strategy, the agents must trade-off between
the probability of winning vs. amount paid upon winning.

Individually optimal strategy depends on assumptions about others’
valuations (and strategies) – an equilibrium.



Dutch and First-price Sealed-bid Auctions

Equilibria in two-player FPSB Auctions

Assume a first-price auction with two risk-neutral bidders whose
valuations are drawn independently and uniformly at random from
the interval [0, 1] – what is the equilibrium strategy?

(v1
2
,
v2
2

)
Can be generalized to the n-player case.

Theorem

In a first-price sealed bid auction with n risk-neutral agents whose
valuations v1, v2, . . . , vn are independently drawn from a uniform
distribution on the same bounded interval of the real numbers, the
unique symmetric equilibrium is given by the strategy profile(
n−1
n v1, . . . ,

n−1
n vn

)



English and Japanese Auctions

A much more complicated strategy space:

extensive-form game

bidders are able to condition their bids on information
revealed by others

in the case of English auctions, the ability to place jump bids

Intuitively, though, the revealed information doesn’t make any
difference in the independent-private value (IPV) setting.

Theorem

Under the IPV model, it is a dominant strategy for bidders to bid
up to (and not beyond) their valuations in both Japanese and
English auctions.



Multi-Item (Combinatorial) Auctions

Auctions for bundles of goods.

Let Z = {z1, . . . , zm} be a set of items to be auctioned. A
valuation function vi : 2Z → R indicates how much a bundle
Z ⊆ Z is worth to agent i.

Properties:

normalization (v(∅) = 0)

free disposal (Z1 ⊆ Z2 implies v(Z1) ≤ v(Z2))

Combinatorial auctions do not have to have additive valuation
function:

complementarity: v(Z1 ∪ Z2) > v(Z1) + v(Z2) (e.g. left and
right shoe)

substitutable items: v(Z1 ∪Z2) < v(Z1) + v(Z2) (e.g. cinema
tickets for the same time)



Difficulties in Combinatorial Auctions

There are multiple difficulties that we need to address:

Computational complexity: The allocation problem is
computationally hard (NP-complete) even for simple special
cases.

Representation and communication: The valuation
functions have an exponential size since they specify a value
for each bundle. How can we even represent them? How do
we transfer enough information to the auctioneer so that a
reasonable allocation can be found?

Strategies: How can we analyze the strategic behavior of the
bidders?



Single-Minded Combinatorial Auctions

Definition

A valuation v is called single minded if there exists a bundle of
items Z∗ and a value v∗ ∈ R+ such that v(Z) = v∗ for all
Z ⊇ Z∗, and v(Z ′) = 0 for all other Z ′. A single-minded bid is the
pair (Z∗, v∗).

Theorem

The allocation problem among single-minded bidders is NP-hard.
More precisely, the decision problem of whether the optimal
allocation has social welfare of at least k (where k is an additional
part of the input) is NP-complete.



General Valued Combinatorial Auctions

Consider a linear pricing rule, where a price per each item is
available, and the price of each bundle is the sum of the prices of
the items in this bundle.

The winner determination problem in combinatorial auctions can
be formulated as an integer program (IP).

Definition

Given a set of prices, the demand of each bidder is the bundle
that maximizes her utility. (There may be more than one such
bundle, in which case each of them is called a demand.) Formally,
for a given bidder valuation vi and given item prices p1, . . . , pm, a
bundle Z is called a demand of bidder i if for every other bundle
Z ′ ⊆ Z we have that vi(Z

′)−
∑

j∈Z′ pj ≤ vi(Z)−
∑

j∈Z pj .



Walrasian Equilibrium

Definition

A set of nonnegative prices p∗1, . . . , p
∗
m and an allocation

S∗1 , . . . , S
∗
n of the items is a Walrasian equilibrium if for every

player i, S∗i is a demand of bidder i at prices p∗1, . . . , p
∗
m and for

any item j that is not allocated we have pj = 0.

Walrasian equilibrium does not always have to exist.

Theorem

A Walrasian equilibrium exists in a combinatorial-auction
environment if and only if the corresponding linear programming
relaxation of integer program (IP) admits an integral optimal
solution.



Auctions on Internet

Web operators (search engines, ad services, ...) sell the position for
advertisement based on the user, keyword, web-page, etc.

There are multiple positions, we assume that the higher positions
have higher utility (more users will click on the ad, will be
influenced by the ad, etc.)

To preserve privacy and allow asynchronous protocols, generalized
sealed-bid auctions can be used (we are selling multiple items of
different quality).

The game is naturally repeated (the players observe their outcome
(their position for their bid) and can update their bids accordingly).



Auctions on Internet

Question

Can we use generalized first-price sealed bid auction?

Advantages:

simple, easy to understand (each agents pays what they bid)
cannot be manipulated by the auctioneer by setting (a
hidden) reserve price to increase the revenue

Main disadvantages is instability:

Fig. from Edelman, Ostrovsky: “Strategic Bidder Behavior in Sponsored Search Auctions”



Generalized Second Price Auctions

Generalization of the second-sealed bid auction.

Each bidder places a bid. The highest bidder gets the first slot, the
second-highest, the second slot etc. The highest bidder pays the
price bid by the second-highest bidder, the second-highest pays the
price bid by the third-highest, etc.

Not a truthful mechanism in general – submitting true valuations
is not dominant or equilibrium strategy, there may be multiple
equilibria.



Generalized Second Price Auctions

Example:

Assume that all agents bid their true values.

Agent x’s utility for the first slot is 10 · (7− 6) = 10.

However, decreasing their bid to 5 and getting the second slot
increases the utility to 4 · (7− 1) = 24.



Auctions in a Practical Approach

Consider the agents have a limited budget Bi for a given
time-period.

Even GSP is not ideal – consider, for example, a vindictive
bidding – one can increase the payment of the bidder in the slot
above by raising ones bid without affecting ones own payment.

How do the auctioneer allocate the slots?

If we can estimate the future (who is coming, what people are
searching) – a simple optimization problem. But this is often
difficult (imprecise).



Practical Approach - Dynamic Procedure

Greedy approach: among the bidders whose budgets are not
exhausted, allocate the query to the one with the highest bid.

Algorithm 1

Every time a query i arrives, allocate its advertisement space to
the bidder j, who maximizes bijϕ(fj), where bij is the bid for
item i, fj is the fraction of the bidder j’s budget which has been
spent so far, and ϕ(x) = 1− ex−1.

Theorem

The revenue of Algorithm 1 is at least 1− 1/e of the optimum
revenue.



Conclusions and Key Takeaways

Auction Mechanism

Basic single-item auction protocols, optimal strategies, strategic
equivalence

Markets, Walrasian equilibrium, applications of auctions in practice


