B4M36DS2, BEAM36DS2: Database Systems 2
https://cw.fel.cvut.cz/b211/courses/b4m36ds2/

Lecture 11 u“J:g'[\':HESB I G“ A

Graph Databases: Neodj: l]A;l'AsmH@f
Cypher :

Yuliia Prokop

prokoyul@fel.cvut.cz

4.12.2022 N O

Author: Martin Svoboda
(martin.svoboda@matfyz.cuni.cz)

Czech Technical University in Prague, Faculty of Electrical Engineering

http://www.ksi.mff.cuni.cz/~svoboda/courses/211%E2%80%90B4M36DS2/
mailto:martin.svoboda@fit.cvut.cz
mailto:martin.svoboda@matfyz.cuni.cz

Lecture Outline

Graph databases
e Introduction
Neodj
e Data model: property graphs

¢ Traversal framework
e Cypher query language
= Read, write, and general clauses

Neo4j Graph Database

@ neoy]

Sample Data

Sample graph with movies and actors

(m1:MOVIE
(m2MOVIE
(m3MOVIE
(m4MOVIE

id: "vratnelahve", title: "Vratné lahve", year: 2006 })
id: "samotari”, title: "Samotafi", year: 2000 })
id: "medvidek", title: "Medvidek", year: 2007 })

id: "stesti", title: "Stésti", year: 2005 })

_—m e

(@l:ACTOR { id: "trojan", name: "Ivan Trojan", year: 1964 })

(@2:ACTOR { id: "machacek", name: "Jifi Machacek", year: 1966 })
(@3:ACTOR { id: "schneiderova", name: "Jitka Schneiderova", year: 1973 })
(@4:ACTOR { id: "sverak", name: "Zdenék Svérak", year: 1936 })

(m1)-[c1:PLAY { role: "Robert Landa" }]->(a2)

(m1)-[c2:PLAY { role: "Josef Tkaloun" }]->(a4)
(m2)-[c3:PLAY { role: "Ondfej" }]->(al)

(m2)-[c4:PLAY { role: "Jakub" }]->(a2)

(m2)-[c5:PLAY { role: "Hanka" }]->(a3)

(m3)-[c6:PLAY { role: "Ivan" }]->(al)

(m3)-[c7:PLAY { role: "Jirka", award: "Czech Lion" }]->(a2)

Sample Data

Sample graph with movies and actors

1 Vratné lahve I Trotan 1964 la1
m 2006 van Trojan a
2 Samotafi Jiti Machadek 2
m 2000 1966 @
3 Medvidek Jitka Schneiderova 3
m 2007 1973 @
4| &esti 2005 Zdenék Svérak "
m &sti 1936 a

Cypher

Cypher

Cypher
e Declarative graph query language

= Allows for expressive and efficient querying and updates
= Inspired by SQL (query clauses) and SPARQL (pattern matching)

* OpenCypher

= Ongoing project aiming at Cypher standardization
=« http://www.opencypher.org/

Clauses
o E.g. MATCH, RETURN, CREATE, ...

* Clauses can be (almost arbitrarily) chained together
» Intermediate result of one clause is passed to a subsequent one

B4M36DS2, BE4AM36DS2: Database Systems 2 | Lecture 11: Graph Databases: Neodj: Cypher | 4. 12. 2022

http://www.opencypher.org/

Sample Query

Find names of actors who played in Medvidek movie

MATCH(m:MOVIE)-[r:PLAY]->(a:ACTOR)
WHERE m.title = "Medvidek"

RETURN a.name, a.year
ORDER BY a.year

Ivan Trojan 1964
Jifi Machacek 1966

Clauses

Read clauses and their sub-clauses

e MATCH — specifies graph patterns to be searched for
= WHERE — adds additional filtering constraints

* ...

Write clauses and their sub-clauses

e CREATE — creates new nodes or relationships

e DELETE — deletes nodes or relationships

e SET — updates labels or properties

e REMOVE — removes labels or properties

Clauses

General clauses and their sub-clauses
e RETURN — defines what the query result should contain

= ORDER BY — describes how the query result should be ordered
= SKIP - excludes certain number of solutions from the result
= LIMIT - limits the number of solutions to be included

e WITH- allows query parts to be chained together

Path Patterns

Path pattern expression
* Sequence of interleaved node and relationship patterns
» Describes a single path (not a general subgraph)

[rotepatam -
 —

* ASCII-Art inspired syntax

= Circles () for nodes
= Arrows <——, ——, ——> for relationships

Path Patterns

Node pattern
¢ Matches one data node

e “o® ‘mEmm O

* Variable
= Allows us to access a given node later on
» Set of labels
= Data node must have all the specified labels to be matched
* Property map
= Data node must have all the requested properties (including
their values) to be matched (the order is unimportant)

Path Patterns

Property map

@ \®~/ ®-
t)

Relationship pattern
* Matches one data relationship

L:,f "\ [atonis patemaoar }— L:.J

Path Patterns

Relationship pattern

O @ o]
0~ |

——wav——mae

{
L

e Variable
= Allows us to access a given node later on
o Set of types

= Data relationship must be of one of the enumerated types
to be matched

Path Patterns

Relationship pattern (cont.)
* Property map
= Data relationship must have all the requested properties
* Variable path length

= Allows us to match paths of arbitrary lengths
(not just exactly one relationship)

-
©
oG-

= Examples: *, 4, *2..6, *..6, *2..

Path Patterns

Examples

O

(x)--(v)
(m:MOVIE)-->(a:ACTOR)

(:MOVIE)-->(a { name: "Ivan Trojan" })

(<-[r:PLAY]-()

(m)-[:PLAY { role: "Ivan" }]->()

(ACTOR { name: "Ivan Trojan" })}-:KNOW *2]->(:ACTOR)

O-[KNOW *5..1->(f)

Match Clause

MATCH clause

e Allows to search for sub-graphs of the data graph that
match the provided path pattern / patterns (all of them)

= Query result (table) = unordered set of solutions
= One solution (row) = set of variable bindings

e Each variable has to be bound

\ 7 D =7
Corrionan)- { % _ﬂ

(
\ @) -[emee -

Match Clause

WHERE sub-clause may provide additional constraints

e These constraints are evaluated directly during the
matching phase (i.e. not after it)
e Typical usage
= Boolean
= expressions
= Comparisons
= Path patterns — true if at least one solution is found

Match Clause: Example

Find names of actors who played with Ivan Trojan in any movie

MATCH(i:ACTOR)<-[:PLAY]-(m:MOVIE)-[:PLAY]->(a:ACTOR)
WHERE (i.name = "Ivan Trojan")
RETURN a.name

MATCH(i:ACTOR { name: "Ivan Trojan" })
<-[:PLAY]-(m:MOVIE)-[:PLAY]->

(a:ACTOR)
RETURN a.name
i m a
(a1) (m2) @) | o Jifi Machacek
(a1) (m2) (a3) Jitka Schneiderova
(a1) (m3) (a2) Jiti Machacek

Match Clause

Uniqueness requirement

* One data node may match several query nodes, but one
data relationship may not match several query relationships

OPTIONAL MATCH

* Attempts to find matching data sub-graphs as usual...
¢ but when no solution is found,

one specific solution with all the variables bound to NULL
is generated

¢ Note that
either the whole pattern is matched, or nothing is matched

B4M36DS2, BE4AM36DS2: Database Systems 2 | Lecture 11: Graph Databases: Neodj: Cypher | 4. 12. 2022

19

Match Clause: Example

Find movies filmed in 2005 or earlier and names of their actors
(if any)

MATCH(m:MOVIE)

WHERE (m.year <= 2005)
OPTIONAL MATCH(m)-[:PLAY]->(a:ACTOR)
RETURN m.title, a.name

m a
m (m2) (a1) Samotari Ivan Trojan
(m2) = (m2) | (a2) | = | Samotafi Jifi Machacek
(m4) (m2) (a3) Samotari Jitka Schneiderova
(m4) | NULL Stésti NULL

Return Clause

RETURN clause

e Defines what to include in the query result
= Projection of variables, properties of nodes or
relationships (via dot notation), aggregation functions, ...

e Optional ORDER BY, SKIP and LIMIT sub-clauses
H-ﬁ.-?

(.

o - (s]) [

RETURN DISTINCT
* Duplicate solutions (rows) are removed

Return Clause

Projection
e * = all the variables
= Can only be specified as the very first item
* AS allows to explicitly (re)name output records

o>

. 7
@r G G- }

r \-ﬂ'

Return Clause

ORDER BY sub-clause

e Defines the order of solutions within the query result
= Multiple criteria can be specified
= Default direction is ASC

* The order is undefined unless explicitly defined
* Nodes and relationships as such cannot be used as criteria

Luci

Return Clause

SKIP sub-clause

e Determines the number of solutions to be skipped
in the query result

o+-—> expression >0

LIMIT sub-clause

¢ Determines the number of solutions to be included
in the query result

c»-» expression 0

With Clause

WITH clause

* Constructs intermediate result
= Analogous behavior to the RETURN clause

= Does not output anything to the user,
just forwards the current result to the subsequent clause

e Optional WHERE sub-clause can also be provided
”.*T-ﬁ*-jl
(

= 7 SN ey S ey }

(

\ G [-

With Clause: Example

Numbers of movies in which actors born in 1965 or later played

MATCH(a:ACTOR)

WHERE (a.year >=1965)
WITH a, SIZE((a)<-[:PLAY]-(m:MOVIE)) AS movies
RETURN a.name,

movies ORDER BY

movies ASC

a a movies
(@2) = | (a2) 3 = | Jitka Schneiderova 1
(a3) (a3) 1 Jiri Machacek 3

Query Structure

Chaining of Cypher clauses (simplified)

t : UNWIND clause g MERGE clause

{

[—,

¢ Read clauses: MATCH, ...
o Write clauses: CREATE, DELETE, SET, REMOVE, ...

Query Structure

Query parts

* WITH clauses split the whole query into query parts
e Certain restrictions apply...
= Read clauses (if any) must precede write clauses (if any)

in every query part
= The last query part must be terminated by a RETURN
clause

— Unless this part contains at least one write clause
. — l.e. read-only queries must return data

Werite Clauses

CREATE clause
¢ Inserts new nodes or relationships into the data graph

- (eRente)
P»%»f _T

MATCH(m:MOVIE { id: "stesti"})

CREATE
(a:ACTOR { id: "vilhelmova", name: "Tatiana Vilhelmova", year: 1978}),
(m)-[:PLAY]->(a)

Example

Werite Clauses

DELETE clause
* Removes nodes, relationships or paths from the data graph

* Relationships must always be removed before the nodes
they are associated with
= Unless the DETACH modifier is specified

o—»ﬁ expression o

Example

MATCH(:MOVIE { id: "stesti"})-[r:PLAY]->(a:ACTOR)
DELETE r

Werite Clauses

SET clause

e Allows to...
= set a value of a particular property
— orremove a property when NULL is assigned
= replace properties (all of them) with new ones
= add new properties to the existing ones
= add labels to nodes

e Cannot be used to set relationship types

o——.—— O—v(propaftykey)*@——l expression
(variable)—-@-l p ion I

0O

g\

Werite Clauses

REMOVE clause

¢ Allows to...
= remove a particular property
= remove labels from nodes

e Cannot be used to remove relationship types

NVEM}O"(WOMW)
Oy

)
N\

Expressions

Literal expressions
e Integers: decimal, octal, hexadecimal
* Floating-point numbers
e Strings

= Enclosed in double or single quotes
= Standard escape sequences

¢ Boolean values: true, false
* NULL value (cannot be stored in data graphs)

Other expressions

* Collections, variables, property accessors, function calls,
path patterns, boolean expressions, arithmetic expressions,
comparisons, regular expressions, predicates, ...

B4M36DS2, BE4AM36DS2: Database Systems 2 | Lecture 11: Graph Databases: Neodj: Cypher | 4. 12. 2022

33

Lecture Conclusion

Neodj = graph database

* Property graphs
¢ Traversal framework

= Path expanders, uniqueness, evaluators, traverser
Cypher = graph query language
* Read (sub-)clauses: MATCH, WHERE, ...
e Write (sub-)clauses: CREATE, DELETE, SET, REMOVE, ...
e General (sub-)clauses: RETURN, WITH, ORDER BY, LIMIT, ...

