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Lecture Outline
MapReduce

• Programming model and implementation
• Motivation, principles, details, …

Apache Hadoop
• HDFS – Hadoop Distributed File System
• MapReduce
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Programming Models
What is a programming model?
• Abstraction of an underlying computer system 

Describes a logical view of the provided functionality 
Offers a public interface, resources or other constructs
Allows for the expression of algorithms and data structures
Conceals physical reality of the internal implementation
Allows us to work at a (much) higher level of abstraction

• The point is
how the intended user thinks in order to solve their tasks and 
not necessarily how the system actually works
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Programming Models
Examples

• Traditional von Neumann model
Architecture of a physical computer with several components 
such as a central processing unit (CPU), arithmetic-logic unit 
(ALU), processor registers, program counter, memory unit, etc. 
Execution of a stream of instructions

• Java Virtual Machine (JVM)
• …

Do not confuse programming models with
• Programming paradigms (procedural, functional, logic, modular, 

object-oriented, recursive, generic, data-driven, parallel, …)

• Programming languages (Java, C++, …)
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Parallel Programming Models
Process interaction

Mechanisms of mutual communication of parallel processes
• Shared memory – shared global address space, asynchronous read 

and write access, synchronization primitives
• Message passing
• Implicit interaction

Problem decomposition
Ways of problem decomposition into tasks executed in parallel

• Task parallelism – different tasks over the same data
• Data parallelism – the same task over different data
• Implicit parallelism
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MapReduce Framework
What is MapReduce?

• Programming model + implementation
• Developed by Google in 2008

Google:
A simple and powerful interface that enables automatic par- 
allelization and distribution of large-scale computations, 
combined with an implementation of this interface that 
achieves high performance on large clusters of commodity 
PCs.
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History and Motivation
Google PageRank problem (2003)

• How to rank tens of billions of web pages by their importance
… efficiently in a reasonable amount of time
… when data is scattered across thousands of computers
… data files can be enormous (terabytes or more)
… data files are updated only occasionally (just appended)
… sending the data between compute nodes is expensive
… hardware failures are rule rather than exception

• Centralized index structure was no longer sufficient
• Solution

Google File System – a distributed file system
MapReduce – a programming model
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MapReduce Framework
MapReduce programming model

• Cluster of commodity personal computers (nodes)
Each running a host operating system, mutually interconnected 
within a network, communication based on IP addresses, …

• Data is distributed among the nodes
• Tasks executed in parallel across the nodes

Classification
• Process interaction: message passing
• Problem decomposition: data parallelism
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Basic Idea
Divide-and-conquer paradigm

• Breaks down a given problem into simpler sub-problems
• Solutions of the sub-problems are then combined together 
Two core functions
• Map function

Generates a set of so-called intermediate key-value pairs
• Reduce function

Reduces values associated with a given intermediate key
And that’s all!

B4M36DS2, BE4M36DS2: Database Systems 2 | Lecture 3: MapReduce, Apache Hadoop | 9. 10. 2023 10



Basic Idea
And that’s really all! 
It means...

• We only need to implement Map and Reduce functions
• Everything else such as

input data distribution, 
scheduling of execution tasks,
monitoring of computation progress, 
inter-machine communication, 
handling of machine failures,
…

is managed automatically by the framework!

B4M36DS2, BE4M36DS2: Database Systems 2 | Lecture 3: MapReduce, Apache Hadoop | 9. 10. 2023 11



Model Description
Map function

• Input: input key-value pair = input record
• Output: list of intermediate key-value pairs

Usually from a different domain 
Keys do not have to be unique 
Duplicate pairs are permitted

• (key, value) → list of (key, value)
Reduce function

• Input: intermediate key + list of (all) values for this key
• Output: possibly smaller list of values for this key

Usually from the same domain
• (key, list of values) → (key, list of values)
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Example: Word Frequency

/**
* Map function
* @param key Document identifier
* @param value Document contents
*/

map(String key, String value) {  
foreach word w in value: emit(w, 1);

}

/**
* Reduce function
* @param key Particular word
* @param values List of count values generated for this word
*/

reduce(String key, Iterator values) { 
int result = 0;
foreach v in values: result += v;
emit(key, result);

}
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Logical Phases

B4M36DS2, BE4M36DS2: Database Systems 2 | Lecture 3: MapReduce, Apache Hadoop | 9. 10. 2023 14



Logical Phases
Mapping phase

• Map function is executed for each input record
• Intermediate key-value pairs are emitted

Shuffling phase
• Intermediate key-value pairs are grouped and sorted

according to the keys
Reducing phase

• Reduce function is executed for each intermediate key
• Output key-value pairs are generated
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Cluster Architecture
Master-slave architecture

• Two types of nodes, each with two basic roles
• Master

Manages the execution of MapReduce jobs
– Schedules individual Map / Reduce tasks to idle workers
– …

Maintains metadata about input / output files
– These are stored in the underlying distributed file system

• Slaves (workers)
Physically store the actual data contents of files

– Files are divided into smaller parts called splits
– Each split is stored by one / or even more particular workers

Accept and execute assigned Map / Reduce tasks

B4M36DS2, BE4M36DS2: Database Systems 2 | Lecture 3: MapReduce, Apache Hadoop | 9. 10. 2023 16



Cluster Architecture
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MapReduce Job Submission
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MapReduce Job Submission
Submission of MapReduce jobs

• Jobs can only be submitted to the master node
• Client provides the following:

Implementation of (not only) Map and Reduce functions
Description of input file (or even files) 
Description of output directory

Localization of input files
• Master determines locations of all involved splits

I.e. workers containing these splits are resolved
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Input Splits Localization
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Input Splits Localization
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Map Task Assignment
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Map Task Execution
Map Task = processing of 1 split by 1 worker

• Assigned by the master to an idle worker that is (preferably) 
already containing (physically storing) a given split

Individual steps…
• Input reader is used to parse contents of the split

I.e. input records are generated
• Map function is applied on each input record

Intermediate key-value pairs are emitted
• These pairs are stored locally and organized into regions

Either in the system memory,
or flushed to a local hard drive when necessary
Partition function is used to determine the intended region

– Intermediate keys (not values) are used for this purpose
– E.g. hash of the key modulo the overall number of reducers
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Input Parsing
Parsing phase

• Each split is parsed so that input records are retrieved
(i.e. input key-value pairs are obtained)
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Map Phase
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Map Phase
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Map Task Confirmation
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Reduce Task Assignment
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Reduce Task Execution
Reduce Task = reduction of selected key-value pairs by 1 worker

• Goal: processing of all emitted intermediate key-value pairs 
belonging to a particular region

Individual steps…
• Intermediate key-value pairs are first acquired

All relevant mapping workers are addressed
Data of corresponding regions are transfered (remote read)

• Once downloaded, they are locally merged
I.e. sorted and grouped based on keys

• Reduce function is applied on each intermediate key
• Output key-value pairs are emitted and stored (output writer)

Note that each worker produces its own separate output file
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Region Data Retrieval
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Region Data Retrieval
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Reduce Phase
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Reduce Phase
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Reduce Task Confirmation
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MapReduce Job Termination
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Combine Function
Optional Combine function

• Objective
Decrease the amount of intermediate data
i.e. decrease the amount of data that is needed to be 
transferred from Mappers to Reducers

• Analogous purpose and implementation to Reduce function
• Executed locally by Mappers
• However, only applicable when the reduction is…

Commutative  
Associative
Idempotent: f(f(x)) = f(x)
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Improved Map Phase

B4M36DS2, BE4M36DS2: Database Systems 2 | Lecture 3: MapReduce, Apache Hadoop | 9. 10. 2023 37



Improved Reduce Phase

B4M36DS2, BE4M36DS2: Database Systems 2 | Lecture 3: MapReduce, Apache Hadoop | 9. 10. 2023 38



Improved Reduce Phase
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Functions Overview
Input reader
• Parses a given input split and prepares input records 
Map function
Partition function

• Determines a particular Reducer for a given intermediate key
Compare function

• Mutually compares two intermediate keys 
Combine function

Reduce function
Output writer

• Writes the output of a given Reducer
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Advanced Aspects
Counters

• Allow to track the progress of a MapReduce job in real time
Predefined counters

– E.g. numbers of launched / finished Map / Reduce tasks, 
parsed input key-value pairs, …

Custom counters (user-defined)
– Can be associated with any action that a Map or Reduce 

function does
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Advanced Aspects
Fault tolerance

• When a large number of nodes process a large number of data
⇒ fault tolerance is necessary

Worker failure
• Master periodically pings every worker; if no response is received in 

a certain amount of time, master marks the worker as failed
• All its tasks are reset back to their initial idle state and become 

eligible for rescheduling on other workers
Master failure

• Strategy A – periodic checkpoints are created; if master fails, 
a new copy can then be started

• Strategy B – master failure is considered to be highly unlikely; 
users simply resubmit unsuccessful jobs
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Advanced Aspects
Stragglers

• Straggler = node that takes unusually long time to complete 
a task it was assigned

• Solution
When a MapReduce job is close to completion, the master 
schedules backup executions of the remaining in-progress tasks 
A given task is considered to be completed whenever either
the primary or the backup execution completes

B4M36DS2, BE4M36DS2: Database Systems 2 | Lecture 3: MapReduce, Apache Hadoop | 9. 10. 2023 43



Advanced Aspects
Task granularity

• Intended numbers of Map and Reduce tasks
• Practical recommendation (by Google)

Map tasks
– Choose the number so that each individual Map task has 

roughly 16 – 64 MB of input data
Reduce tasks

– Small multiple of the number of worker nodes we expect to use
– Note also that the output of each Reduce task ends up 

in a separate output file
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Additional Examples
URL access frequency

• Input: HTTP server access logs
• Map: parses a log, emits (accessed URL, 1) pairs
• Reduce: computes and emits the sum of the associated values
• Output: overall number of accesses to a given URL

Inverted index
• Input: text documents containing words
• Map: parses a document, emits (word, document ID) pairs
• Reduce: emits all the associated document IDs sorted
• Output: list of documents containing a given word
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Additional Examples
Distributed sort

• Input: records to be sorted according to a specific criterion
• Map: extracts the sorting key, emits (key, record) pairs
• Reduce: emits the associated records unchanged

Reverse web-link graph
• Input: web pages with <a href="…">…</a> tags
• Map: emits (target URL, current document URL) pairs
• Reduce: emits the associated source URLs unchanged
• Output: list of URLs of web pages targeting a given one
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Additional Examples
Reverse web-link graph
/**
* Map function
* @param key Source web page URL
* @param value HTML contents of this web page
*/

map(String key, String value) {
foreach <a> tag t in value: emit(t.href, key);

}

/**
* Reduce function
* @param key URL of a particular web page
* @param values List of URLs of web pages targeting this one
*/

reduce(String key, Iterator values) {
emit(key, values);

}
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Use Cases: General Patterns
Counting, summing, aggregation

• When the overall number of occurrences of certain items or a 
different aggregate function should be calculated

Collating, grouping
• When all items belonging to a certain group should be found, 

collected together or processed in another way

Filtering, querying, parsing, validation
• When all items satisfying a certain condition should be found, 

transformed or processed in another way

Sorting
• When items should be processed in a particular order with respect 

to a certain ordering criterion
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Use Cases: Real-World Problems
Just a few real-world examples…

• Risk modeling, customer churn
• Recommendation engine, customer preferences
• Advertisement targeting, trade surveillance
• Fraudulent activity threats, security breaches detection
• Hardware or sensor network failure prediction
• Search quality analysis
• …

Source: http://www.cloudera.com/
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Apache Hadoop
Open-source software framework

• http://hadoop.apache.org/
• Distributed storage and processing of very large data sets 

on clusters built from commodity hardware
Implements a distributed file system
Implements a MapReduce programming model

• Derived from the original Google MapReduce and GFS
• Developed by Apache Software Foundation
• Implemented in Java
• Operating system: cross-platform
• Initial release in 2011
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Apache Hadoop
Modules

• Hadoop Common
Common utilities and support for other modules

• Hadoop Distributed File System (HDFS)
High-throughput distributed file system

• Hadoop Yet Another Resource Negotiator (YARN)
Cluster resource management 
Job scheduling framework

• Hadoop MapReduce
YARN-based implementation of the MapReduce model
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Apache Hadoop
Real-world Hadoop users (year 2016)

• Facebook – internal logs, analytics, machine learning, 2 clusters 
1100 nodes (8 cores, 12 TB storage), 12 PB
300 nodes (8 cores, 12 TB storage), 3 PB

• LinkedIn – 3 clusters
800 nodes (2×4 cores, 24 GB RAM, 6×2 TB SATA), 9 PB
1900 nodes (2×6 cores, 24 GB RAM, 6×2 TB SATA), 22 PB
1400 nodes (2×6 cores, 32 GB RAM, 6×2 TB SATA), 16 PB

• Spotify – content generation, data aggregation, reporting, analysis 
1650 nodes, 43000 cores, 70 TB RAM, 65 PB, 20000 daily jobs

• Yahoo! – 40000 nodes with Hadoop, biggest cluster
4500 nodes (2×4 cores, 16 GB RAM, 4×1 TB storage), 17 PB

Source: http://wiki.apache.org/hadoop/PoweredBy
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HDFS
Hadoop Distributed File System

• Open-source, high quality, cross-platform, pure Java
• Highly scalable, high-throughput, fault-tolerant
• Master-slave architecture
• Optimal applications

MapReduce, web crawlers, data warehouses, …
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HDFS: Assumptions
Data characteristics

• Large data sets and files
• Streaming data access
• Batch processing rather than interactive access
• Write-once, read-many

Fault tolerance
• HDFS cluster may consist of thousands of nodes

Each component has a non-trivial probability of failure
• ⇒ there is always some component that is non-functional

I.e. failure is the norm rather than exception, and so
automatic failure detection and recovery is essential
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HDFS: File System
Logical view: Linux-based hierarchical file system

• Directories and files
• Contents of files is divided into blocks

Usually 64 MB, configurable per file level
• User and group permissions
• Standard operations are provided

Create, remove, move, rename, copy, …
Namespace

• Contains names of all directories, files, and other metadata
I.e. all data to capture the whole logical view of the file system

• Just a single namespace for the entire cluster
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HDFS: Cluster Architecture
Master-slave architecture

• Master: NameNode
Manages the namespace
Maintains physical locations of file blocks
Provides the user interface for all the operations

– Create, remove, move, rename, copy, … file or directory
– Open and close file

Regulates access to files by users
• Slaves: DataNodes

Physically store file blocks within their underlying file systems
Serve read/write requests from users

– I.e. user data never flows through the NameNode

Have no knowledge about the namespace
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HDFS: Replication
Replication = maintaining of multiple copies of each file block

• Increases read throughput, increases fault tolerance
• Replication factor (number of copies)

Configurable per file level, usually 3
Replica placement

• Critical to reliability and performance
• Rack-aware strategy

Takes the physical location of nodes into account
Network bandwidth between the nodes on the same rack 
is greater than between the nodes in different racks

• Common case (replication factor 3):
Two replicas on two different nodes in a local rack 
Third replica on a node in a different rack
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HDFS: NameNode

How the NameNode Works?
• FsImage – data structure describing the whole file system 

Contains: namespace + mapping of blocks + system properties Loaded 
into the system memory (4 GB RAM is sufficient)

Stored in the local file system, periodical checkpoints created
• EditLog – transaction log for all the metadata changes

E.g. when a new file is created, replication factor is changed, … 
Stored in the local file system

• Failures
When the NameNode starts up

– FsImage and EditLog are read from the disk, transactions from 
EditLog are applied, new version of FsImage is flushed on the 
disk, EditLog is truncated
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HDFS: DataNode
How each DataNode Works?

• Stores physical file blocks
Each block (replica) is stored as a separate local file 
Heuristics are used to place these files in local directories

• Periodically sends HeartBeat messages to the NameNode
• Failures

When a DataNode fails or in case of a network partition,
i.e. when the NameNode does not receive a HeartBeat 
message within a given time limit

– The NameNode no longer sends read/write requests to this 
node, re-replication might be initiated

When a DataNode starts up
– Generates a list of all its blocks and sends a BlockReport 

message to the NameNode
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HDFS: API
Available application interfaces

• Java API
Python access or C wrapper also available

• HTTP interface
Browsing the namespace and downloading the contents of files

• FS Shell – command line interface 
Intended for the user interaction 
Bash-inspired commands
E.g.:

– hadoop f s  - l s  /
– hadoop f s  -mkdir /mydir
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Hadoop MapReduce
Hadoop MapReduce

• MapReduce programming model implementation
• Requirements

HDFS
– Input and output files for MapReduce jobs

YARN
– Underlying distribution, coordination, monitoring and 

gathering of the results
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Cluster Architecture
Master-slave architecture

• Master: JobTracker
Provides the user interface for MapReduce jobs 
Fetches input file data locations from the NameNode 
Manages the entire execution of jobs

– Provides the progress information
Schedules individual tasks to idle TaskTrackers

– Map, Reduce, … tasks
– Nodes close to the data are preferred
– Failed tasks or stragglers can be rescheduled

• Slave: TaskTracker
Accepts tasks from the JobTracker
Spawns a separate JVM for each task execution
Indicates the available task slots via HearBeat messages

B4M36DS2, BE4M36DS2: Database Systems 2 | Lecture 3: MapReduce, Apache Hadoop | 9. 10. 2023 64



Execution Schema
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Java Interface
Mapper class

• Implementation of the map function
• Template parameters

KEYIN, VALUEIN – types of input key-value pairs
KEYOUT, VALUEOUT – types of intermediate key-value 
pairs

• Intermediate pairs are emitted via context.write(k, v)
class MyMapper extends Mapper<KEYIN, VALUEIN, KEYOUT, VALUEOUT> { 
@Override
public void map(KEYIN key, VALUEIN value, Context context)
throws IOException, InterruptedException

{
// Implementation

}
}
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Java Interface
Reducer class

• Implementation of the reduce function
• Template parameters

KEYIN, VALUEIN – types of intermediate key-value pairs
KEYOUT, VALUEOUT – types of output key-value pairs

• Output pairs are emitted via context.write(k, v)

class MyReducer extends Reducer<KEYIN, VALUEIN, KEYOUT, VALUEOUT> { 
@Override
public void reduce(KEYIN key, Iterable<VALUEIN> values, Context context)
throws IOException, InterruptedException

{
// Implementation

}
}
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Example
Word Frequency

• Input: Documents with words
Files located at /home/input HDFS directory

• Map: parses a document, emits (word, 1) pairs
• Reduce: computes and emits the sum of the associated values
• Output: overall number of occurrences for each word

Output will be written to /home/output

MapReduce job execution

hadoop jar wc.jar WordCount /home/input /home/output
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Example: Mapper Class

public class WordCount {
…
public static class MyMapper
extends Mapper<Object, Text, Text, IntWritable>

{
private final static IntWritable one = new IntWritable(1); 
private Text word = new Text();
@Override
public void map(Object key, Text value, Context context) 
throws IOException, InterruptedException

{
StringTokenizer itr = new StringTokenizer(value.toString()); 
while (itr.hasMoreTokens()) {
word.set(itr.nextToken());
context.write(word, one);

}
}

}
…

}

B4M36DS2, BE4M36DS2: Database Systems 2 | Lecture 3: MapReduce, Apache Hadoop | 9. 10. 2023 69



Example: Reducer Class

public class WordCount {
…
public static class MyReducer
extends Reducer<Text, IntWritable, Text, IntWritable>

{
private IntWritable result = new IntWritable(); 
@Override
public void reduce(Text key, Iterable<IntWritable> values,
Context context) throws IOException, InterruptedException

{
int sum = 0;
for (IntWritable val : values) {  
sum += val.get();

}
result.set(sum); 
context.write(key, result);

}
}
…

}
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Lecture Conclusion
MapReduce criticism
• MapReduce is a step backwards 

Does not use database schema 
Does not use index structures
Does not support advanced query languages
Does not support transactions, integrity constraints, views, … 
Does not support data mining, business intelligence, …

• MapReduce is not novel
Ideas more than 20 years old and overcome
Message Passing Interface (MPI), Reduce-Scatter

The end of MapReduce?
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