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Linear classifier with minimal classification error

� X is a set of observations and Y = {+1,−1} is a set of hidden labels

� φ : X → Rn is fixed feature map embedding observations from X to Rn

� Task: we search for a linear classification strategy h : X → Y

h(x;w, b) = sign(〈w,φ(x)〉+ b) =

{
+1 if 〈w,φ(x)〉+ b ≥ 0

−1 if 〈w,φ(x)〉+ b < 0

with minimal expected risk

R0/1(h) = E(x,y)∼p

(
`0/1(y, h(x))

)
where `0/1(y, y′) = [[y 6= y′]]

� We are given a set of training examples

T m = {(xi, yi) ∈ (X × Y) | i = 1, . . . ,m}

drawn from i.i.d. with the distribution p(x, y).
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ERM for hypothesis space containing linear classifiers

� The Empirical Risk Minimization principle leads to solving

(w∗, b∗) ∈ Argmin
(w,b)∈(Rn×R)

R
0/1
T m(h(·;w, b)) (1)

where the empirical risk is

R
0/1
T m(h(·;w, b)) =

1

m

m∑
i=1

[[yi 6= h(xi;w, b)]]

� Algorithmic issues: In the general case there is no known algorithm
solving the task (1) in time polynomial in m.

� Correctness: is the ERM algorithm using the hypothesis space
H = {h(x;w, b) = sign(〈w,φ(x)〉+ b) | (w, b) ∈ (Rn×R)} statistically
consistent? . . . Yes.
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Generalization bound for prediction with two classes and
0/1-loss

Theorem 1. Let H ⊆ {+1,−1}X be a hypothesis space with VC dimension
D <∞ and T m = {(x1, y1), . . . , (xm, ym)} ∈ (X × Y)m a training set draw
from i.i.d. random variables with distribution p(x, y). Then, for any
0 < δ < 1, with probability at least 1− δ the inequality

R0/1(h) ≤ R0/1
T m(h) +

√
D(log 2m

D + 1) + log 1
δ

m

holds for any h ∈ H.

� Unlike the finite hypothesis case the cardinality of H is replaced by the
VC-dimension of H define even if |H| is infinite.

� As in the finite case, the bound holds for any p(x, y) and the confidence
interval can be decreased either by increasing m or decreasing D.
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Vapnik-Chervonenkis (VC) dimension

Definition 1. Let H ⊆ {−1,+1}X and {x1, . . . , xm} ∈ Xm be a set of m
input observations. The set {x1, . . . , xm} is said to be shattered by H if for
all y ∈ {+1,−1}m there exists h ∈ H such that h(xi) = yi, i ∈ {1, . . . ,m}.

Definition 2. Let H ⊆ {−1,+1}X . The Vapnik-Chervonenkis dimension of
H is the cardinality of the largest set of points from X which can be
shattered by H.

Theorem 2. The VC-dimension of the hypothesis space of all linear
classifiers operating in n-dimensional feature space
H = {h(x;w, b) = sign(〈w,φ(x)〉+ b) | (w, b) ∈ (Rn × R)} is n+ 1.
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Training linear classifier from separable examples

Definition 3. The examples T m = {(xi, yi) ∈ (X × Y) | i = 1, . . . ,m} are
linearly separable w.r.t. feature map φ : X → Rn if there exists
(w, b) ∈ Rn+1 such that

yi(〈w,φ(xi)〉+ b) > 0 , i ∈ {1, . . . ,m} (2)

� Implementation of the ERM for linearly separable examples T m leads to
solving (2) which provides a classifier h(x;w, b) with zero empirical risk
R

0/1
T m(h(·;w, b)) = 0.

� Note that yi(〈w,φ(xi)〉+ b) > 0 implies

h(xi) = sign(〈w,φ(xi)〉+ b) = yi

� The task (2) can be dealt with by linear programming solvers or special
solvers like the Perceptron algorithm.

http://cmp.felk.cvut.cz
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Maximum margin classifier

Definition 4. Given linearly separable examples T m, the maximum margin
classifier is a linear classifier h(·;w∗, b∗) with parameters

(w∗, b∗) ∈ Argmax
w∈Rn\{0}

b∈R

γ(w, b) (3)

where the margin is defined as

γ(w, b) = min
i∈{1,...,m}

yi(〈w,φ(xi)〉+ b)

‖w‖

� The problem (3) is equivalent to a convex quadratic program

(w∗, b∗) = argmin
(w,b)∈Rn+1

1

2
‖w‖2

subject to

yi(〈w,φ(xi)〉+ b) ≥ 1 , i ∈ {1, . . . ,m}

http://cmp.felk.cvut.cz
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Linear support vector machines

Definition 5. Given (possibly non-separable) examples T m, the parameters
of the linear SVM classifier are obtained as the solution of a convex QP

(w∗, b∗, ξ∗) = argmin
(w,b)∈Rn+1

ξ∈Rm

(
λ

2
‖w‖2 + 1

m

m∑
i=1

ξi

)

subject to

yi(〈w,φ(xi)〉+ b) ≥ 1−ξi , i ∈ {1, . . . ,m}
ξi ≥ 0 , i ∈ {1, . . . ,m}

� The (regularization) constant λ > 0 is a hyper-parameter controlling the
trade-off between the quadratic term 1

2‖w‖
2 and the sum of slack

variables.
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Equivalent formulations of linear SVM

� The linear SVM is equivalent to an unconstrained convex problem

(w∗, b∗) = argmin
(w,b)∈Rn+1

(
λ

2
‖w‖2+ 1

m

m∑
i=1

max{0, 1− yi(〈w,φ(xi)〉+ b)}
)

following from the observation that for given (w, b) the optimal value of
the slack variable is ξi(w, b) = max{0, 1− yi(〈xi,w〉+ b}

� The linear SVM problem is further equivalent to

(w∗, b∗) = argmin
‖w‖≤R,b∈R

(
1

m

m∑
i=1

max{0, 1− yi(〈w,φ(xi)〉+ b)}
)

where R = r(λ) and r : R→ R is a non-increasing function of λ.

http://cmp.felk.cvut.cz
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Linear SVM implements ERM of an auxiliary problem

� X , Y = {+1,−1} and φ : X → Rn defined as before.

� The goal of the auxiliary problem is to find a decision function
f : X → R minimizing the expectation of the hinge loss:

Rψ(f) = E(x,y)∼p(ψ(y, f(x))) where ψ(y, t) = max{0, 1− y t}

� Assuming the hypothesis space which contains the linear functions

FR =
{
f(x) = 〈φ(x),w〉+ b | (w, b) ∈ Rn+1, ‖w‖ ≤ R

}
the ERM principle leads to solving

f∗ = Argmin
f∈FR

RψT m(f) where RψT m(f) =
1

m

m∑
i=1

ψ(yi, f(xi))

which is exactly the task solved by SVM algorithm.

http://cmp.felk.cvut.cz
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The hinge-loss upper bounds the 0/1-loss

� The hinge-loss is an upper bound of the 0/1-loss evaluated for the
predictor h(x) = sign(f(x)):

[[sign(f(x)) 6= y]]︸ ︷︷ ︸
`0/1(y,f(x))

= [[ y f(x) ≤ 0]] ≤ max{0, 1− y f(x)}︸ ︷︷ ︸
ψ(y,f(x))

1
[[t ≤ 0]]

max(0, 1− t)

10 t

� Therefore 0/1-risk of h(x) = sign(f(x)) is upper-bounded by ψ-risk:

R0/1(sign(f)) ≤ Rψ(f) for any f : X → R

http://cmp.felk.cvut.cz
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Upper bound on the excess error

� The best attainable 0/1-risk is R0/1
∗ = infh∈YX R

0/1(h).

� The best attainable ψ-risk is Rψ∗ = inff∈RX R
ψ(f)

Theorem 3. The inequality

R0/1(sign(f))−R0/1
∗︸ ︷︷ ︸

excess error
of original task

≤ Rψ(f)−Rψ∗︸ ︷︷ ︸
excess error

of auxiliary task

holds for all f : X → R

Corollary 1. Let F ⊆ {f : X → R} be such that the approximation error of
the auxiliary task is zero, that is, inff∈F Rψ(f) = Rψ∗ . Then any minimizer
of the ψ-risk Rψ(f) is a minimizer of the 0/1-risk R0/1(sign(f)).

http://cmp.felk.cvut.cz
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Summary

Topics covered in the lecture

� Generalization bound for two-class classifiers and 0/1-loss

� Vapnik-Chervonenkis dimension for linear classifier

� Linear Support Vector Machines

� SVMs implement ERM for an auxiliary problem

� Excess error of ψ-risk upper bounds the excess error of 0/1-risk

http://cmp.felk.cvut.cz
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