Linear classifier with minimal classification error

- \mathcal{X} is a set of observations and $\mathcal{Y} = \{+1, -1\}$ a set of hidden labels
- $\phi: \mathcal{X} \to \mathbb{R}^n$ is fixed feature map embedding \mathcal{X} to \mathbb{R}^n
- **Task:** find linear classification strategy $h: \mathcal{X} \to \mathcal{Y}$

$$h(x; \mathbf{w}, b) = \text{sign}(\langle \mathbf{w}, \phi(x) \rangle + b) = \begin{cases} +1 & \text{if } \langle \mathbf{w}, \phi(x) \rangle + b \geq 0 \\ -1 & \text{if } \langle \mathbf{w}, \phi(x) \rangle + b < 0 \end{cases}$$

with minimal expected risk

$$R^{0/1}(h) = \mathbb{E}_{(x,y) \sim p}(\ell^{0/1}(y, h(x))) \quad \text{where} \quad \ell^{0/1}(y, y') = [y \neq y']$$

- We are given a set of training examples

$$\mathcal{T}^m = \{(x^i, y^i) \in (\mathcal{X} \times \mathcal{Y}) \mid i = 1, \ldots, m\}$$

drawn from i.i.d. with the distribution $p(x, y)$.
ERM learning for linear classifiers

- The Empirical Risk Minimization principle leads to solving

\[
(w^*, b^*) \in \text{Argmin}_{(w, b) \in (\mathbb{R}^n \times \mathbb{R})} R_{\mathcal{F}m}^{0/1}(h(\cdot; w, b))
\]

where the empirical risk is

\[
R_{\mathcal{F}m}^{0/1}(h(\cdot; w, b)) = \frac{1}{m} \sum_{i=1}^{m} \left[y^i \neq h(x^i; w, b) \right]
\]

In this lecture we address the following issues:

1. The statistical consistency of the ERM for hypothesis space containing linear classifiers.

2. Algorithmic issues: in general, there is no known algorithm solving the task (1) in time polynomial in \(m \).
Vapnik-Chervonenkis (VC) dimension

Definition 1. Let $\mathcal{H} \subseteq \{-1, +1\}^\mathcal{X}$ and $\{x^1, \ldots, x^m\} \in \mathcal{X}^m$ be a set of m input observations. The set $\{x^1, \ldots, x^m\}$ is said to be shattered by \mathcal{H} if for all $y \in \{+1, -1\}^m$ there exists $h \in \mathcal{H}$ such that $h(x^i) = y^i$, $i \in \{1, \ldots, m\}$.

Definition 2. Let $\mathcal{H} \subseteq \{-1, +1\}^\mathcal{X}$. The Vapnik-Chervonenkis dimension of \mathcal{H} is the cardinality of the largest set of points from \mathcal{X} which can be shattered by \mathcal{H}.
VC dimension of class of two-class linear classifiers

Theorem 1. The VC-dimension of the hypothesis class of all two-class linear classifiers operating in n-dimensional feature space

$$
\mathcal{H} = \{ h(x; w, b) = \text{sign}(\langle w, \phi(x) \rangle + b) \mid (w, b) \in (\mathbb{R}^n \times \mathbb{R}) \} \text{ is } n + 1.
$$

Example for $n = 2$-dimensional feature class
Consistency of prediction with two classes and 0/1-loss

Theorem 2. Let $\mathcal{H} \subseteq \{+1, -1\}^X$ be a hypothesis class with VC dimension $d < \infty$ and $T^m = \{(x^1, y^1), \ldots, (x^m, y^m)\} \in (X \times Y)^m$ a training set draw from i.i.d. rand vars with distribution $p(x, y)$. Then, for any $\varepsilon > 0$ it holds

$$
P \left(\sup_{h \in \mathcal{H}} \left| R_{0/1}^0(h) - R_{T^m}^{0/1}(h) \right| \geq \varepsilon \right) \leq 4 \left(\frac{2e m}{d} \right)^d e^{-m \varepsilon^2 / 8}
$$

Corollary 1. Let $\mathcal{H} \subseteq \{+1, -1\}^X$ be a hypothesis class with VC dimension $d < \infty$. Then ULLN applies and hence ERM is statistically consistent in \mathcal{H} w.r.t $\ell^{0/1}$ loss function.
Training linear classifier from separable examples

Definition 3. The examples $\mathcal{T}^m = \{(x^i, y^i) \in (\mathcal{X} \times \mathcal{Y}) | i = 1, \ldots, m\}$ are linearly separable w.r.t. feature map $\phi: \mathcal{X} \rightarrow \mathbb{R}^n$ if there exists $(\mathbf{w}, b) \in \mathbb{R}^{n+1}$ such that

$$y^i(\langle \mathbf{w}, \phi(x^i) \rangle + b) > 0, \quad i \in \{1, \ldots, m\} \quad (2)$$

Perceptron algorithm:

Input: linearly separable examples \mathcal{T}^m

Output: linear classifier with $R^{0/1}_{\mathcal{T}^m}(h(\cdot; \mathbf{w}, b)) = 0$

step 1: $\mathbf{w} \leftarrow 0$, $b \leftarrow 0$

step 2: find (x^i, y^i) such that $y^i(\langle \mathbf{w}, \phi(x^i) \rangle + b) \leq 0$. If not found exit, the current (\mathbf{w}, b) solves the problem.

step 3: $\mathbf{w} \leftarrow \mathbf{w} + y^i \phi(x^i)$, $b \leftarrow b + y^i$ and goto to step 2.
Training linear classifier from NON-separable examples

- The intractable ERM problem we wish to solve

\[(w^*, b^*) \in \arg\min_{(w, b) \in \mathbb{R}^n \times \mathbb{R}} \frac{1}{m} \sum_{i=1}^{m} \left[y^i \neq h(x^i; w, b) \right] \ell_0/1(y^i, h(x^i; w, b)) \]

where \(h(x; w, b) = \text{sign}(f(x; w, b)) \) and \(f(x; w, b) = \langle w, \phi(x) \rangle + b \).

- The ERM problem is approximated by a tractable convex problem

\[(w^*, b^*) \in \arg\min_{(w, b) \in \mathbb{R}^n \times \mathbb{R}} \frac{1}{m} \sum_{i=1}^{m} \max\{0, 1 - y^i f(x^i; w, b)\} \psi(y^i, f(x^i; w, b)) \]

where \(\psi(y, f(x)) \) is so called Hinge-loss.
The hinge-loss upper bounds the 0/1-loss

The hinge-loss is an upper bound of the 0/1-loss evaluated for the predictor \(h(x) = \text{sign}(f(x)) \):

\[
\ell_{0/1}(y, f(x)) = \left[y f(x) \leq 0 \right] \leq \max\{0, 1 - y f(x)\}
\]

\[
\psi(y, f(x))
\]

\[
[t \leq 0] \leq \max(0, 1 - t)
\]
Support Vector Machines

- Find linear classifier $h(x; \mathbf{w}, b) = \text{sign}(\langle \phi(x), \mathbf{w} \rangle + b)$ by solving

$$
(w^*, b^*) = \underset{\mathbf{w} \in \mathbb{R}^n, b \in \mathbb{R}}{\text{argmin}} \left(\frac{1}{2} \| \mathbf{w} \|^2 + C \sum_{i=1}^{m} \max\{0, 1 - y^i(\langle \mathbf{w}, \phi(x^i) \rangle + b)\} \right)
$$

- The regularization constant $C \geq 0$ controls trade-off between estimation error and approximation error.
 - $C_1 < C_2$ implies $\|w_1^*\| \leq \|w_2^*\|$.

- Small $\|\mathbf{w}\|$ implies score $f(x; \mathbf{w}, b) = \langle \mathbf{w}, \phi(x) \rangle + b$ varies slowly.
 - Cauchy inequality:
 $$
 (\langle \phi(x), \mathbf{w} \rangle - \langle \phi(x'), \mathbf{w} \rangle)^2 \leq \|\phi(x) - \phi(x')\|^2 \|\mathbf{w}\|^2
 $$
Example: Primal SVM problem

\[(w^*, b^*) = \arg\min_{w \in \mathbb{R}^n, b \in \mathbb{R}} \left(\frac{1}{2} \|w\|^2 + C \sum_{i=1}^{m} \max\{0, 1 - y^i (\langle w, \phi(x^i) \rangle + b)\} \right)\]

\[1/|w|=0.34\]

\[C=1000.0, |w|=2.96, \text{trnErr}=0.10, \text{hingeLoss}=0.22\]
SVM as Quadratic Program

Find linear classifier $h(x; w, b) = \text{sign}(\langle \phi(x), w \rangle + b)$ by solving

$$(w^*, b^*) = \arg\min_{w \in \mathbb{R}^n, b \in \mathbb{R}} \left(\frac{1}{2} \|w\|^2 + C \sum_{i=1}^m \max\{0, 1 - y^i(\langle w, \phi(x^i) \rangle + b)\} \right)$$

where $C > 0$ is the regularization constant.

It can be re-formulated as a convex quadratic program

$$(w^*, b^*, \xi^*) = \arg\min_{(w, b) \in \mathbb{R}^{n+1}, \xi \in \mathbb{R}^m} \left(\frac{1}{2} \|w\|^2 + C \sum_{i=1}^m \xi_i \right)$$

subject to

$$\xi_i \geq 1 - y^i(\langle w, \phi(x^i) \rangle + b), \quad i \in \{1, \ldots, m\}$$
$$\xi_i \geq 0, \quad i \in \{1, \ldots, m\}$$
From Primal SVM to Dual SVM problem

- Lagrangian of the primal SVM problem:

\[
L(w, b, \xi, \alpha, \mu) = \frac{1}{2}||w||^2 + C \sum_{i=1}^{m} \xi_i
\]

original objective

\[
- \sum_{i=1}^{m} \alpha_i (y^i (\langle w, \phi(x^i) \rangle + b) - 1 + \xi_i) - \sum_{i=1}^{m} \mu_i \xi_i
\]

constraint violation penalty

- Strong duality:

\[
\min_{w \in \mathbb{R}^n} \max_{b \in \mathbb{R}} \min_{\xi \in \mathbb{R}^m} \max_{\alpha \in \mathbb{R}^m} \mu \in \mathbb{R}^m} L(w, b, \xi, \alpha, \mu) = \max_{\alpha \in \mathbb{R}^m} \min_{w \in \mathbb{R}^n} \min_{\xi \in \mathbb{R}^m} \max_{b \in \mathbb{R}} L(w, b, \xi, \alpha, \mu)
\]

primal problem

dual problem
The dual SVM formulation is a convex quadratic program

\[\alpha^* = \arg\max_{\alpha \in \mathbb{R}^m} \left(\sum_{i=1}^{m} \alpha_i - \frac{1}{2} \sum_{i=1}^{m} \sum_{j=1}^{m} \alpha_i \alpha_j y_i y_j \langle \phi(x^i), \phi(x^j) \rangle \right) \]

s.t. \[\sum_{i=1}^{m} \alpha_i y_i = 0, \quad 0 \leq \alpha_i \leq C, \quad i \in \{1, \ldots, m\} \]

The primal variables \((w, b)\) are obtained from the dual variables \(\alpha\) by

\[w = \sum_{i=1}^{m} y^i \phi(x^i) \alpha_i = \sum_{i \in I_{SV}} y^i \phi(x^i) \alpha_i \]

\[b = y^i - \langle w, \phi(x^i) \rangle, \quad \forall i \in I_{SV}^b = \{j \mid 0 < \alpha_j < C\} \]

\(\alpha\) is sparse; \(w\) is lin. combination of Support Vectors \(I_{SV} = \{j \mid \alpha_j > 0\}\)
Example: SVM classifier

\[f(x) = \langle w, \phi(x) \rangle + b = \sum_{i=1}^{m} y^i \alpha_i \phi(x^i), \phi(x) \rangle + b \]

\[y^i = +1 \]

\[\alpha_i = C \]
\[\xi_i > 0 \]

\[y^i = -1 \]

\[\alpha_i \in (0, C) \]
\[\xi_i = 0 \]