Statistical Machine Learning (BE4M33SSU)
Lecture 4: Support Vector Machines

Czech Technical University in Prague
V.Franc
Linear classifier with minimal classification error

- \mathcal{X} is a set of observations and $\mathcal{Y} = \{+1, -1\}$ a set of hidden labels
- $\phi: \mathcal{X} \to \mathbb{R}^n$ is fixed feature map embedding \mathcal{X} to \mathbb{R}^n
- **Task**: find linear classification strategy $h: \mathcal{X} \to \mathcal{Y}$

$$h(x; w, b) = \text{sign}(\langle w, \phi(x) \rangle + b) = \begin{cases} +1 & \text{if } \langle w, \phi(x) \rangle + b \geq 0 \\ -1 & \text{if } \langle w, \phi(x) \rangle + b < 0 \end{cases}$$
Linear classifier with minimal classification error

- \(\mathcal{X} \) is a set of observations and \(\mathcal{Y} = \{+1, -1\} \) a set of hidden labels
- \(\phi: \mathcal{X} \rightarrow \mathbb{R}^n \) is fixed feature map embedding \(\mathcal{X} \) to \(\mathbb{R}^n \)
- **Task:** find linear classification strategy \(h: \mathcal{X} \rightarrow \mathcal{Y} \)

\[
h(x; \mathbf{w}, b) = \text{sign}(\langle \mathbf{w}, \phi(x) \rangle + b) = \begin{cases} +1 & \text{if } \langle \mathbf{w}, \phi(x) \rangle + b \geq 0 \\ -1 & \text{if } \langle \mathbf{w}, \phi(x) \rangle + b < 0 \end{cases}
\]

with minimal expected risk

\[
R^{0/1}(h) = \mathbb{E}_{(x,y) \sim p}(\ell^{0/1}(y, h(x))) \quad \text{where } \ell^{0/1}(y, y') = [y \neq y']
\]

- We are given a set of training examples

\[
\mathcal{T}^m = \{(x^i, y^i) \in (\mathcal{X} \times \mathcal{Y}) \mid i = 1, \ldots, m\}
\]

drawn from i.i.d. with the distribution \(p(x, y) \).
ERM learning for linear classifiers

- The Empirical Risk Minimization principle leads to solving

\[
(w^*, b^*) \in \text{Argmin} \ R_{\mathcal{F}_m}^{0/1}(h(\cdot; w, b))
\]

where the empirical risk is

\[
R_{\mathcal{F}_m}^{0/1}(h(\cdot; w, b)) = \frac{1}{m} \sum_{i=1}^{m} [y^i \neq h(x^i; w, b)]
\]

In this lecture we address the following issues:

1. The statistical consistency of the ERM for hypothesis space containing linear classifiers.

2. Algorithmic issues: in general, there is no known algorithm solving the task (1) in time polynomial in \(m\).
Vapnik-Chervonenkis (VC) dimension

Definition 1. Let $\mathcal{H} \subseteq \{-1,+1\}^\mathcal{X}$ and $\{x^1,\ldots,x^m\} \in \mathcal{X}^m$ be a set of m input observations. The set $\{x^1,\ldots,x^m\}$ is said to be shattered by \mathcal{H} if for all $y \in \{+1,-1\}^m$ there exists $h \in \mathcal{H}$ such that $h(x^i) = y^i$, $i \in \{1,\ldots,m\}$.

Definition 2. Let $\mathcal{H} \subseteq \{-1,+1\}^\mathcal{X}$. The Vapnik-Chervonenkis dimension of \mathcal{H} is the cardinality of the largest set of points from \mathcal{X} which can be shattered by \mathcal{H}.
Theorem 1. The VC-dimension of the hypothesis class of all two-class linear classifiers operating in n-dimensional feature space

$$\mathcal{H} = \{ h(x; \mathbf{w}, b) = \text{sign}(\langle \mathbf{w}, \phi(x) \rangle + b) \mid (\mathbf{w}, b) \in (\mathbb{R}^n \times \mathbb{R}) \}$$

is $n + 1$.
The VC-dimension of the hypothesis class of all two-class linear classifiers operating in n-dimensional feature space

$$\mathcal{H} = \{ h(x; w, b) = \text{sign}(\langle w, \phi(x) \rangle + b) \mid (w, b) \in (\mathbb{R}^n \times \mathbb{R}) \}$$
is $n + 1$.

Example for $n = 2$-dimensional feature class
Consistency of prediction with two classes and 0/1-loss

Theorem 2. Let $\mathcal{H} \subseteq \{+1, -1\}^X$ be a hypothesis class with VC dimension $d < \infty$ and $\mathcal{T}^m = \{(x^1, y^1), \ldots, (x^m, y^m)\} \in (X \times Y)^m$ a training set drawn from i.i.d. random variables with distribution $p(x, y)$. Then, for any $\varepsilon > 0$ it holds

$$\mathbb{P}\left(\sup_{h \in \mathcal{H}} \left| R^{0/1}_{\mathcal{T}}(h) - R^{0/1}_{\mathcal{T}^m}(h) \right| \geq \varepsilon \right) \leq 4 \left(\frac{2em}{d}\right)^d e^{-\frac{m \varepsilon^2}{8}}$$
Consistency of prediction with two classes and 0/1-loss

Theorem 2. Let $\mathcal{H} \subseteq \{+1, -1\}^X$ be a hypothesis class with VC dimension $d < \infty$ and $T^m = \{(x^1, y^1), \ldots, (x^m, y^m)\} \in (X \times Y)^m$ a training set drawn from i.i.d. random variables with distribution $p(x, y)$. Then, for any $\varepsilon > 0$ it holds

$$
P\left(\sup_{h \in \mathcal{H}} \left| R_{0/1}(h) - R_{T^m}(h) \right| \geq \varepsilon \right) \leq 4 \left(\frac{2em}{d} \right)^d e^{-\frac{m\varepsilon^2}{8}}$$

Corollary 1. Let $\mathcal{H} \subseteq \{+1, -1\}^X$ be a hypothesis class with VC dimension $d < \infty$. Then ULLN applies and hence ERM is statistically consistent in \mathcal{H} w.r.t $\ell_{0/1}$ loss function.
Training linear classifier from separable examples

Definition 3. The examples $\mathcal{T}^m = \{(x^i, y^i) \in (\mathcal{X} \times \mathcal{Y}) | i = 1, \ldots, m\}$ are linearly separable w.r.t. feature map $\phi: \mathcal{X} \rightarrow \mathbb{R}^n$ if there exists $(w, b) \in \mathbb{R}^{n+1}$ such that

$$y^i(\langle w, \phi(x^i) \rangle + b) > 0, \quad i \in \{1, \ldots, m\}$$

(2)
Training linear classifier from separable examples

Definition 3. The examples \(T^m = \{(x^i, y^i) \in (X \times Y) \mid i = 1, \ldots, m\} \) are linearly separable w.r.t. feature map \(\phi : X \to \mathbb{R}^n \) if there exists \((w, b) \in \mathbb{R}^{n+1}\) such that

\[
y^i(\langle w, \phi(x^i) \rangle + b) > 0, \quad i \in \{1, \ldots, m\}
\] (2)

Perceptron algorithm:

Input: linearly separable examples \(T^m \)

Output: linear classifier with \(R_{T^m}^{0/1}(h(\cdot; w, b)) = 0 \)

step 1: \(w \leftarrow 0, \ b \leftarrow 0 \)

step 2: find \((x^i, y^i)\) such that \(y^i(\langle w, \phi(x^i) \rangle + b) \leq 0 \).

If not found exit, the current \((w, b)\) solves the problem.

step 3: \(w \leftarrow w + y^i \phi(x^i), \ b \leftarrow b + y^i \) and goto to step 2.
Training linear classifier from NON-separable examples

- The intractable ERM problem we wish to solve

$$(w^*, b^*) \in \underset{(w,b) \in (\mathbb{R}^n \times \mathbb{R})}{\text{Argmin}} \frac{1}{m} \sum_{i=1}^{m} \left[y^i \neq h(x^i; w, b) \right] \ell_{0/1}(y^i, h(x^i; w, b))$$

where $h(x; w, b) = \text{sign}(f(x; w, b))$ and $f(x; w, b) = \langle w, \phi(x) \rangle + b$.
Training linear classifier from NON-separable examples

- The intractable ERM problem we wish to solve

\[(w^*, b^*) \in \text{Argmin} \quad \frac{1}{m} \sum_{i=1}^{m} \ell_0/1(y^i, h(x^i; w, b)) \]

where \(h(x; w, b) = \text{sign}(f(x; w, b)) \) and \(f(x; w, b) = \langle w, \phi(x) \rangle + b \).

- The ERM problem is approximated by a tractable convex problem

\[(w^*, b^*) \in \text{Argmin} \quad \frac{1}{m} \sum_{i=1}^{m} \max\{0, 1 - y^i f(x^i; w, b)\} \]

where \(\psi(y, f(x)) \) is so called Hinge-loss.
The hinge-loss upper bounds the 0/1-loss

The hinge-loss is an upper bound of the 0/1-loss evaluated for the predictor $h(x) = \text{sign}(f(x))$:

$$\ell^{0/1}(y, f(x)) = \left[y f(x) \leq 0 \right] \leq \max\{0, 1 - y f(x)\}$$

$\psi(y, f(x))$

$$\max(0, 1 - t)$$

$[t \leq 0]$
Support Vector Machines

- Find linear classifier \(h(x; w, b) = \text{sign}(\langle \phi(x), w \rangle + b) \) by solving

\[
(w^*, b^*) = \arg\min_{w \in \mathbb{R}^n, b \in \mathbb{R}} \left(\frac{1}{2} ||w||^2 + C \sum_{i=1}^{m} \max\{0, 1 - y^i(\langle w, \phi(x^i) \rangle + b)\} \right)
\]
Support Vector Machines

- Find linear classifier $h(x; w, b) = \text{sign}(\langle \phi(x), w \rangle + b)$ by solving

$$
(w^*, b^*) = \arg\min_{w \in \mathbb{R}^n, b \in \mathbb{R}} \left(\frac{1}{2} \|w\|^2 + C \sum_{i=1}^{m} \max\{0, 1 - y^i(\langle w, \phi(x^i) \rangle + b)\} \right)
$$

- The regularization constant $C \geq 0$ controls trade-off between estimation error and approximation error.
 - $C_1 < C_2$ implies $\|w_1^*\| \leq \|w_2^*\|$
Support Vector Machines

- Find linear classifier \(h(x; \mathbf{w}, b) = \text{sign}(\langle \phi(x), \mathbf{w} \rangle + b) \) by solving

\[
(\mathbf{w}^*, b^*) = \arg\min_{\mathbf{w} \in \mathbb{R}^n, b \in \mathbb{R}} \left(\frac{1}{2} \| \mathbf{w} \|^2 + C \sum_{i=1}^{m} \max\{0, 1 - y^i(\langle \mathbf{w}, \phi(x^i) \rangle + b)\} \right)
\]

- The regularization constant \(C \geq 0 \) controls trade-off between estimation error and approximation error.
 - \(C_1 < C_2 \) implies \(\| \mathbf{w}_1^* \| \leq \| \mathbf{w}_2^* \| \)

- Small \(\| \mathbf{w} \| \) implies score \(f(x; \mathbf{w}, b) = \langle \mathbf{w}, \phi(x) \rangle + b \) varies slowly.
 - Cauchy inequality:
 \[
 (\langle \phi(x), \mathbf{w} \rangle - \langle \phi(x'), \mathbf{w} \rangle)^2 \leq \| \phi(x) - \phi(x') \|^2 \| \mathbf{w} \|^2
 \]
Example: Primal SVM problem

$$(w^*, b^*) = \arg\min_{w \in \mathbb{R}^n, b \in \mathbb{R}} \left(\frac{1}{2} \|w\|^2 + C \sum_{i=1}^{m} \max\{0, 1 - y^i(\langle w, \phi(x^i) \rangle + b)\} \right)$$

- penalty term
- empirical error
Example: Primal SVM problem

\[(w^*, b^*) = \arg\min_{w \in \mathbb{R}^n, b \in \mathbb{R}} \left(\frac{1}{2} \|w\|^2 + C \sum_{i=1}^{m} \max\{0, 1 - y^i(\langle w, \phi(x^i) \rangle + b)\} \right)\]

\[
1/|w| = 0.80
\]

\[
C=0.1, |w|=1.26, \text{trnErr}=0.13, \text{hingeLoss}=0.27
\]
Example: Primal SVM problem

$$(w^*, b^*) = \arg\min_{w \in \mathbb{R}^n, b \in \mathbb{R}} \left(\frac{1}{2} \|w\|^2 + C \sum_{i=1}^{m} \max\{0, 1 - y^i(\langle w, \phi(x^i) \rangle + b)\} \right)$$

$\frac{1}{|w|}=0.51$

$C=1.0$, $|w|=1.96$, $\text{trnErr}=0.12$, $\text{hingeLoss}=0.23$

trn error

hinge loss

$|w|$
Example: Primal SVM problem

$$(w^*, b^*) = \arg\min_{w \in \mathbb{R}^n, b \in \mathbb{R}} \left(\frac{1}{2}||w||^2 + C \sum_{i=1}^{m} \max\{0, 1 - y^i(\langle w, \phi(x^i) \rangle + b)\} \right)$$

$1/|w| = 0.38$
Example: Primal SVM problem

\[
(w^*, b^*) = \arg\min_{w \in \mathbb{R}^n, b \in \mathbb{R}} \left(\frac{1}{2} \|w\|^2 + C \sum_{i=1}^{m} \max\{0, 1 - y^i(\langle w, \phi(x^i) \rangle + b)\} \right)
\]

\[
\text{penalty term} + \text{empirical error}
\]

\[
1/|w|=0.35
\]

\[
C=100.0, |w|=2.89, \text{trnErr}=0.11, \text{hingeLoss}=0.22
\]
Example: Primal SVM problem

$$(w^*, b^*) = \arg\min_{w \in \mathbb{R}^n, b \in \mathbb{R}} \left(\frac{1}{2} \|w\|^2 + C \sum_{i=1}^{m} \max\{0, 1 - y^i(\langle w, \phi(x^i) \rangle + b)\} \right)$$

$1/|w| = 0.34$

$C=1000.0, |w|=2.96, trnErr=0.10, hingeLoss=0.22$
SVM as Quadratic Program

Find linear classifier \(h(x; \mathbf{w}, b) = \text{sign} (\langle \phi(x), \mathbf{w} \rangle + b) \) by solving

\[
(\mathbf{w}^*, b^*) = \arg\min_{\mathbf{w} \in \mathbb{R}^n, b \in \mathbb{R}} \left(\frac{1}{2} \| \mathbf{w} \|^2 + C \sum_{i=1}^{m} \max\{0, 1 - y^i (\langle \mathbf{w}, \phi(x^i) \rangle + b)\} \right)
\]

where \(C > 0 \) is the regularization constant.
SVM as Quadratic Program

- Find linear classifier \(h(x; \mathbf{w}, b) = \text{sign}(\langle \phi(x), \mathbf{w} \rangle + b) \) by solving

\[
(\mathbf{w}^*, b^*) = \arg\min_{\mathbf{w} \in \mathbb{R}^n, b \in \mathbb{R}} \left(\frac{1}{2} \| \mathbf{w} \|^2 + C \sum_{i=1}^m \max\{0, 1 - y^i(\langle \mathbf{w}, \phi(x^i) \rangle + b)\} \right)
\]

where \(C > 0 \) is the regularization constant.

- It can be re-formulated as a convex quadratic program

\[
(\mathbf{w}^*, b^*, \xi^*) = \arg\min_{(\mathbf{w}, b) \in \mathbb{R}^{n+1}, \xi \in \mathbb{R}^m} \left(\frac{1}{2} \| \mathbf{w} \|^2 + C \sum_{i=1}^m \xi_i \right)
\]

subject to

\[
\xi_i \geq 1 - y^i(\langle \mathbf{w}, \phi(x^i) \rangle + b), \quad i \in \{1, \ldots, m\}
\]
\[
\xi_i \geq 0, \quad i \in \{1, \ldots, m\}
\]
From Primal SVM to Dual SVM problem

- Lagrangian of the primal SVM problem:

\[
L(w, b, \xi, \alpha, \mu) = \frac{1}{2}||w||^2 + C \sum_{i=1}^{m} \xi_i
\]

original objective

\[
- \sum_{i=1}^{m} \alpha_i (y^i (\langle w, \phi(x^i) \rangle + b) - 1 + \xi_i) - \sum_{i=1}^{m} \mu_i \xi_i
\]

constraint violation penalty
From Primal SVM to Dual SVM problem

- Lagrangian of the primal SVM problem:

\[
L(w, b, \xi, \alpha, \mu) = \frac{1}{2} \|w\|^2 + C \sum_{i=1}^{m} \xi_i
\]

original objective

\[
- \sum_{i=1}^{m} \alpha_i (y_i (\langle w, \phi(x_i) \rangle + b) - 1 + \xi_i) - \sum_{i=1}^{m} \mu_i \xi_i
\]

constraint violation penalty

- Strong duality:

\[
\min_{w \in \mathbb{R}^n} \max_{\alpha \in \mathbb{R}_+^m, \mu \in \mathbb{R}_+^m} L(w, b, \xi, \alpha, \mu) = \max_{\alpha \in \mathbb{R}_+^m} \min_{w \in \mathbb{R}^n, \mu \in \mathbb{R}_+^m} L(w, b, \xi, \alpha, \mu)
\]

primal problem
dual problem
Dual SVM problem

- The dual SVM formulation is a convex quadratic program

\[
\alpha^* = \arg\max_{\alpha \in \mathbb{R}^m} \left(\sum_{i=1}^{m} \alpha_i - \frac{1}{2} \sum_{i=1}^{m} \sum_{j=1}^{m} \alpha_i \alpha_j y^i y^j \langle \phi(x^i), \phi(x^j) \rangle \right)
\]

s.t. \[\sum_{i=1}^{m} \alpha_i y^i = 0 \], \[0 \leq \alpha_i \leq C \], \[i \in \{1, \ldots, m\} \]
Dual SVM problem

- The dual SVM formulation is a convex quadratic program

\[
\alpha^* = \arg\max_{\alpha \in \mathbb{R}^m} \left(\sum_{i=1}^{m} \alpha_i - \frac{1}{2} \sum_{i=1}^{m} \sum_{j=1}^{m} \alpha_i \alpha_j y^i y^j \langle \phi(x^i), \phi(x^j) \rangle \right)
\]

\[
\text{s.t. } \sum_{i=1}^{m} \alpha_i y^i = 0, \quad 0 \leq \alpha_i \leq C, \quad i \in \{1, \ldots, m\}
\]

- The primal variables \((w, b)\) are obtained from the dual variables \(\alpha\) by

\[
w = \sum_{i=1}^{m} y^i \phi(x^i) \alpha_i = \sum_{i \in \mathcal{I}_{SV}} y^i \phi(x^i) \alpha_i
\]

\[
b = y^i - \langle w, \phi(x^i) \rangle, \quad \forall i \in \mathcal{I}_{SV}^b = \{j \mid 0 < \alpha_j < C\}
\]

- \(\alpha\) is sparse; \(w\) is lin. combination of Support Vectors \(\mathcal{I}_{SV} = \{j \mid \alpha_j > 0\}\)
Example: SVM classifier

\[f(x) = \langle w, \phi(x) \rangle + b = \sum_{i=1}^{m} y^i \alpha_i \phi(x^i), \phi(x) \rangle + b \]

- \(y^i = +1 \)
- \(y^i = -1 \)
Example: SVM classifier

\[f(x) = \langle w, \phi(x) \rangle + b = \langle \sum_{i=1}^{m} y^i \alpha_i \phi(x^i), \phi(x) \rangle + b \]

\[y^i = +1 \]

\[f(x) = +1 \]

\[f(x) = 0 \]

\[f(x) = -1 \]
Example: SVM classifier

\[f(x) = \langle w, \phi(x) \rangle + b = \sum_{i=1}^{m} y^i \alpha_i \phi(x^i), \phi(x) \rangle + b \]

\[y^i = +1 \]
\[y^i = -1 \]
\[\alpha_i = C \]
\[\xi_i > 0 \]
\[\alpha_i = 0 \]
\[\xi_i = 0 \]
\[f(x) = +1 \]
\[f(x) = 0 \]
\[f(x) = -1 \]
\[\alpha_i \in (0, C) \]
\[\xi_i = 0 \]
\[\max(0, 1 - t) \]
$1/|w| = 0.80$
$C=0.1, \ |w|=1.26, \ trnErr=0.13, \ hingeLoss=0.27$
C=1.0, |w|=1.96, trnErr=0.12, hingeLoss=0.23
$C=10.0$, $|w|=2.63$, $\text{trnErr}=0.12$, $\text{hingeLoss}=0.22$
$1/|w| = 0.35$
C=100.0, |w|=2.89, trnErr=0.11, hingeLoss=0.22

- trn error
- hinge loss
- |w|
$1/|w| = 0.34$
\(C = 1000.0, |w| = 2.96, \text{trnErr} = 0.10, \text{hingeLoss} = 0.22 \)
\[y^i = +1 \]

\[y^i = -1 \]
$y^i = +1$

$y^i = -1$

$f(x) = +1$

$f(x) = 0$

$f(x) = -1$
\[y^i = +1 \]
\[\alpha_i = 0 \]
\[\xi_i = 0 \]
\[f(x) = +1 \]
\[f(x) = 0 \]
\[f(x) = -1 \]
\[y^i = -1 \]
\[\alpha_i = C \]
\[\xi_i > 0 \]
\[\alpha_i \in (0, C) \]
\[\xi_i = 0 \]