STATISTICAL MACHINE LEARNING (WS2020) SEMINAR 3

Assignment 1. Let the observation $x \in \mathcal{X} = \mathbb{R}^n$ and the hidden state $y \in \mathcal{Y} = \{+1, -1\}$ be generated by a multivariate normal distribution

$$p(\boldsymbol{x}, y) = p(y) \frac{1}{(2\pi)^{\frac{n}{2}} \det(\boldsymbol{C}_y)^{\frac{1}{2}}} e^{-\frac{1}{2}(\boldsymbol{x}-\boldsymbol{\mu}_y)^T \boldsymbol{C}_y^{-1}(\boldsymbol{x}-\boldsymbol{\mu}_y)}$$

where $\mu_y \in \mathbb{R}^n$, $y \in \mathcal{Y}$, are mean vectors, $C_y \in \mathbb{R}^{n \times n}$, $y \in \mathcal{Y}$, are covariance matrices and p(y) is a prior probability. Assume that the model parameters are unknown and we want to learn a strategy $h \in \mathcal{X} \to \mathcal{Y}$ which minimizes the probability of misclassification. To this end we use a learning algorithm $A: \bigcup_{m=1}^{\infty} (\mathcal{X} \times \mathcal{Y})^m \to \mathcal{H}$ which returns a strategy h from the class $\mathcal{H} = \{h(\boldsymbol{x}) = \operatorname{sign}(\langle \boldsymbol{w}, \boldsymbol{x} \rangle + b) \mid \boldsymbol{w} \in \mathbb{R}^n, b \in \mathbb{R}\}$ containing all linear classifers.

a) What is the approximation error in case that $C_{+} = C_{-}$?

b) Is the approximation error going to increase or decrease if $C_+ \neq C_-$?

c) Give example(s) of distribution p(x, y) such that the approximation error is zero when using the class \mathcal{H} .

Assignment 2. Let $\mathcal{X} = [a, b] \subset \mathbb{R}$, $\mathcal{Y} = \{+1, -1\}$, $\ell(y, y') = [[y \neq y']]$, $p(x \mid y = +1) = p(x \mid y = -1)$ be uniform distributions on \mathcal{X} and p(y = +1) = 0.8. Consider learning algorithm which for a given training set $\mathcal{T}^m = \{(x^1, y^1), \dots, (x^m, y^m)\}$ returns the strategy

$$h_m(x) = \begin{cases} y^j & \text{if } x = x^j \text{ for some } j \in \{1, \dots, m\} \\ -1 & \text{otherwise} \end{cases}$$

a) Show that the empirical risk $R_{\mathcal{T}^m}(h_m) = \frac{1}{m} \sum_{i=1}^m \ell(y^i, h_m(x^i))$ equals 0 with probability 1 for any finite m.

b) Show that the expected risk $R(h_m) = \mathbb{E}_{(x,y)\sim p}(\ell(y, h_m(x)))$ equals 0.8 for any finite m.

Assignment 3. We are given a set $\mathcal{H} = \{h_i \colon \mathcal{X} \to \{1, \dots, 100\} \mid i = 1, \dots, 1000\}$ containing 1000 strategies each predicting a biological age $y \in \{1, \dots, 100\}$ from an image $x \in \mathcal{X}$ capturing a human face. The quality of a single strategy is measured by the expected absolute deviation between the predicted age and the true age

$$R^{\text{MAE}}(h) = \mathbb{E}_{(x,y)\sim p}(|y - h(x)|),$$

where the expectation is computed w.r.t. an unknown distribution p(x, y). The empirical estimate of $R^{\text{MAE}}(h)$ reads

$$R_{\mathcal{T}^m}(h) = \frac{1}{m} \sum_{i=1}^m |y^j - h(x^j)|$$

where $\mathcal{T}^m = \{(x^i, y^i) \in (\mathcal{X} \times \mathcal{Y}) \mid i = 1, ..., m\}$ is a set of examples drawn from i.i.d. random variables with the same unknown p(x, y). Let $h_m \in \operatorname{Arg\,min}_{h \in \mathcal{H}} R_{\mathcal{T}^m}(h)$ be a strategy with the minimal empirical risk.

a) What is the minimal $\varepsilon > 0$ which allows you to claim that the expected risk $R^{\text{MAE}}(h_m)$ is in the interval $(R_{\mathcal{T}^m}(h_m) - \varepsilon, R_{\mathcal{T}^m}(h_m) + \varepsilon)$ with probability 95% at least provided you have m = 10,000 training examples?

b) What is the minimal number of the training examples m which guarantees that $R^{\text{MAE}}(h_m)$ is in the interval $(R_{\mathcal{T}^m}(h_m) - 1, R_{\mathcal{T}^m}(h_m) + 1)$ with probability 95% at least ?

Hint: look at slide 8 of lecture 3.

Assignment 4. Assume we want to learn a strategy $h: \mathcal{X} \to \mathcal{Y}$ minimizing the expectation $R(h) = \mathbb{E}_{(x,y)\sim p}\ell(y,h(x))$ of a loss $\ell: \mathcal{Y} \times \mathcal{Y} \to [a,b]$ w.r.t. to some distribution p(x,y). We use the ERM algorithm to select $h_m \in \operatorname{Arg\,min}_{h\in\mathcal{H}} R_{\mathcal{T}^m}(h)$ from the class $\mathcal{H} = \{h_i: \mathcal{X} \to \mathcal{Y} \mid i = 1, \ldots, H\}$ containing H strategies. Let $h_{\mathcal{H}} \in \operatorname{arg\,min}_{i=1,\ldots,H} R(h_i)$ be the best strategy in the class \mathcal{H} . Let $\varepsilon > 0$ and $\gamma \in (0,1)$ be fixed.

Derive a formula to compute the minimal number of training examples m such that

$$\mathbb{P}\Big(R(h_m) - R(h_{\mathcal{H}}) < \varepsilon\Big) \ge \gamma\,,$$

i.e. probability of having the estimation error $R(h_m) - R(h_H)$ less than ε is at least γ . *Hint: look at slides 8 and 9 of lecture 3.*