
STATISTICAL MACHINE LEARNING (WS2020)
SEMINAR 3

Assignment 1. Let the observation x ∈ X = Rn and the hidden state y ∈ Y =
{+1,−1} be generated by a multivariate normal distribution

p(x, y) = p(y)
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where µy ∈ Rn, y ∈ Y , are mean vectors, Cy ∈ Rn×n, y ∈ Y , are covariance matrices
and p(y) is a prior probability. Assume that the model parameters are unknown and we
want to learn a strategy h ∈ X → Y which minimizes the probability of misclassifica-
tion. To this end we use a learning algorithm A : ∪∞m=1 (X ×Y)m → H which returns a
strategy h from the class H = {h(x) = sign(〈w,x〉+ b) | w ∈ Rn, b ∈ R} containing
all linear classifers.

a) What is the approximation error in case that C+ = C− ?

b) Is the approximation error going to increase or decrease if C+ 6= C− ?

c) Give example(s) of distribution p(x, y) such that the approximation error is zero when
using the classH.

Assignment 2. Let X = [a, b] ⊂ R, Y = {+1,−1}, `(y, y′) = [[y 6= y′]], p(x | y =
+1) = p(x | y = −1) be uniform distributions on X and p(y = +1) = 0.8. Consider
learning algorithm which for a given training set T m = {(x1, y1), . . . , (xm, ym)} returns
the strategy

hm(x) =

{
yj if x = xj for some j ∈ {1, . . . ,m}
−1 otherwise

a) Show that the empirical risk RT m(hm) =
1
m

∑m
i=1 `(y

i, hm(x
i)) equals 0 with proba-

bility 1 for any finite m.

b) Show that the expected risk R(hm) = E(x,y)∼p(`(y, hm(x)) equals 0.8 for any finite
m.

Assignment 3. We are given a set H = {hi : X → {1, . . . , 100} | i = 1, . . . , 1000}
containing 1000 strategies each predicting a biological age y ∈ {1, . . . , 100} from an
image x ∈ X capturing a human face. The quality of a single strategy is measured by
the expected absolute deviation between the predicted age and the true age

RMAE(h) = E(x,y)∼p(|y − h(x)|) ,
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where the expectation is computed w.r.t. an unknown distribution p(x, y). The empirical
estimate of RMAE(h) reads

RT m(h) =
1

m

m∑
i=1

|yj − h(xj)|

where T m = {(xi, yi) ∈ (X ×Y) | i = 1, . . . ,m} is a set of examples drawn from i.i.d.
random variables with the same unknown p(x, y). Let hm ∈ Argminh∈HRT m(h) be a
strategy with the minimal empirical risk.

a) What is the minimal ε > 0 which allows you to claim that the expected riskRMAE(hm)
is in the interval (RT m(hm)− ε, RT m(hm) + ε) with probability 95% at least provided
you have m = 10, 000 training examples?
b) What is the minimal number of the training examples m which guarantees that
RMAE(hm) is in the interval (RT m(hm) − 1, RT m(hm) + 1) with probability 95% at
least ?

Hint: look at slide 8 of lecture 3.

Assignment 4. Assume we want to learn a strategy h : X → Y minimizing the ex-
pectation R(h) = E(x,y)∼p`(y, h(x)) of a loss ` : Y × Y → [a, b] w.r.t. to some dis-
tribution p(x, y). We use the ERM algorithm to select hm ∈ Argminh∈HRT m(h)
from the class H = {hi : X → Y | i = 1, . . . , H} containing H strategies. Let
hH ∈ argmini=1,...,H R(hi) be the best strategy in the classH. Let ε > 0 and γ ∈ (0, 1)
be fixed.

Derive a formula to compute the minimal number of training examples m such that

P
(
R(hm)−R(hH) < ε

)
≥ γ ,

i.e. probability of having the estimation error R(hm)−R(hH) less than ε is at least γ.

Hint: look at slides 8 and 9 of lecture 3.


